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Abstract001

Many studies focus on data annotation tech-002
niques for training effective PRMs. However,003
current methods encounter a significant issue004
when applied to long CoT reasoning processes:005
they tend to focus solely on the first incorrect006
step and all preceding steps, assuming that all007
subsequent steps are incorrect. These methods008
overlook the unique self-correction and reflec-009
tion mechanisms inherent in long CoT, where010
correct reasoning steps may still occur after ini-011
tial reasoning mistakes. To address this issue,012
we propose a novel data annotation method for013
PRMs specifically designed to score the long014
CoT reasoning process. Given that under the015
reflection pattern, correct and incorrect steps016
often alternate, we introduce the concepts of017
Error Propagation and Error Cessation, en-018
hancing PRMs’ ability to identify both effective019
self-correction behaviors and reasoning based020
on erroneous steps. Leveraging an LLM-based021
judger for annotation, we collect 1.7 million022
data samples to train a 7B PRM and evaluate023
it at both solution and step levels. Experimen-024
tal results demonstrate that compared to exist-025
ing open-source PRMs and PRMs trained on026
open-source datasets, our PRM achieves su-027
perior performance across various metrics, in-028
cluding search guidance, BoN, and F1 scores.029
Compared to widely used MC-based annota-030
tion methods, our annotation approach not only031
achieves higher data efficiency but also deliv-032
ers superior performance. Detailed analysis is033
also conducted to demonstrate the stability and034
generalizability of our method.035

1 Introduction036

Mathematical reasoning has become a crucial met-037

ric for evaluating the intelligence of LLMs (Achiam038

et al., 2023; Team et al., 2024; Touvron et al., 2023),039

garnering substantial attention from researchers in040

recent years. While numerous studies have focused041

on enhancing LLMs’ mathematical reasoning capa-042

bilities (Wei et al., 2022; Liu et al., 2024), LLMs043

continue to exhibit limitations in practical applica- 044

tions, including calculation errors, flawed deriva- 045

tions, and logical errors. PRMs help address these 046

challenges by providing fine-grained evaluation sig- 047

nals for the intermediate steps in the LLM reason- 048

ing process, indicating the correctness of each step. 049

In the short chain-of-thought (CoT) pattern, 050

LLMs lack self-reflection abilities. This means 051

that once a mistake is made, all following steps 052

are likely to be wrong. The PRM only needed to 053

identify correct-to-correct and correct-to-incorrect 054

transitions. Therefore, conventional PRM data con- 055

struction methods (Lightman et al., 2023; Luo 056

et al., 2024) use all steps from correct solutions, 057

but only use steps up to the first error step in in- 058

correct solutions. However, as shown in Appendix 059

D, long CoT LLMs often make mistakes during 060

reasoning, but they can later correct themselves 061

or come up with alternative solutions. Therefore, 062

capturing this incorrect-to-correct pattern is crucial 063

for PRMs to better evaluate the intermediate steps 064

in long CoT reasoning. 065

Currently, the Monte Carlo (MC) method (Wang 066

et al., 2024a) is widely used for automatically la- 067

beling intermediate steps. However, when dealing 068

with long CoT patterns, the MC method has the 069

following drawbacks: (1) Inaccurate labeling of 070

intermediate reasoning steps. MC method rolls out 071

multiple paths from an intermediate step. If one 072

path reaches the correct answer, it assumes the step 073

is correct. However, long CoT reasoning processes 074

often involve self-correction or reflection, so the 075

final answer doesn’t always reflect the correctness 076

of intermediate steps. (2) High computational cost. 077

The MC method requires multiple rollouts for each 078

intermediate step. In the long CoT pattern, nu- 079

merous intermediate steps and lengthy rollouts can 080

greatly increase the computational burden. 081

To address the shortcomings of current PRM de- 082

signs and MC methods in long CoT scenarios, we 083

propose a new data annotation approach. First, we 084
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introduce two fundamental rules specifically for085

long CoT: Error Propagation and Error Cessa-086

tion. These rules capture two key patterns: rea-087

soning based on incorrect steps and self-correction088

after making mistakes. We then incorporate these089

rules into the LLM judge’s prompt to guide the090

model in annotating intermediate steps of the rea-091

soning process. Finally, we use the annotated data092

to train the PRM.093

Experimental results demonstrate that compared094

to existing open-source PRMs and PRMs trained095

on open-source datasets, our PRM achieves the best096

performance at both the solution level and the step097

level. At the solution level, we use the traditional098

Best-of-N (BoN) method to see how well PRMs099

can select the best answer from several options.100

Since BoN doesn’t make full use of the process101

reward signals that PRMs provide, we also propose102

a new metric that measures whether incorporating103

these signals into step-level search increases the104

probability of discovering the correct solution. At105

the step level, we establish a test set through the106

cross-validation of two distinct annotation methods107

(o1 model (OpenAI, 2024) and manual annotation),108

enabling rigorous assessment of PRMs in evalu-109

ating the correctness of individual solution steps.110

Across both solution-level and step-level evalua-111

tion metrics on the MATH500 and AIME24, our112

PRM consistently outperforms all baselines. Fur-113

thermore, we conduct a comprehensive comparison114

with the MC-based data annotation method, demon-115

strating that our method not only achieves greater116

data efficiency but also delivers superior perfor-117

mance. An in-depth analysis of our method is also118

conducted to further demonstrate its stability and119

generalizability.120

In summary, our contributions are as follows:121

• To the best of our knowledge, we are the first122

to present a PRM data construction method123

for long CoT reasoning. We introduce context-124

aware Error Propagation and Error Cessa-125

tion mechanisms to effectively capture both126

wrong-to-wrong and wrong-to-right patterns.127

• We evaluate our method using both solution-128

level and step-level metrics, demonstrating its129

effectiveness in evaluating overall solutions130

as well as individual reasoning steps.131

• Additional analysis demonstrates that our132

method has notable advantages in robustness,133

data efficiency, and generalization ability.134

2 Related Work 135

Long Chain-of-Thought Reasoning Language 136

Models LLMs have demonstrated remarkable 137

reasoning capabilities for complex tasks. One 138

pivotal method to improve the reasoning ability 139

of LLMs is Chain-of-Thought (CoT) (Wei et al., 140

2022), which significantly improves performance 141

by guiding LLMs to generate intermediate reason- 142

ing steps. Initial research (Wei et al., 2022; Kojima 143

et al., 2022; Zhang et al., 2022) on CoT mainly 144

focuses on developing effective prompt engineer- 145

ing techniques. Openai o1 (OpenAI, 2024) is the 146

first to introduce inference time scaling law, which 147

employs reinforcement learning to encourage mod- 148

els to generate additional reasoning tokens, thereby 149

overcoming more challenging tasks. In long CoT 150

paradigm, LLMs can decompose problems, explore 151

multiple pathways, and automatically correct rea- 152

soning errors. Several efforts (Team, 2024a; Guo 153

et al., 2025; Team, 2025; Muennighoff et al., 2025) 154

have successfully replicated this powerful reason- 155

ing ability. However, PRMs specifically tailored 156

for this long CoT paradigm remain underexplored. 157

Application of Reward Models in Mathematical 158

Reasoning Mathematical reasoning in LLMs has 159

seen significant progress with the introduction of re- 160

ward models. Two types of reward models are com- 161

monly used: Outcome Reward Model (ORM) and 162

Process Reward Model (PRM). ORMs assess en- 163

tire solutions by assigning scores to final answers, 164

while PRMs assign scores to individual steps, offer- 165

ing granular feedback. Research (Lightman et al., 166

2023; Wang et al., 2024a) demonstrates that PRMs 167

generally outperform ORMs, underscoring their 168

greater potential to enhance reasoning accuracy 169

through guided search (Park et al., 2024; Zhang 170

et al.; Snell et al., 2024) and reinforcement learn- 171

ing (Gao et al., 2024; Setlur et al., 2024). However, 172

the effectiveness of PRMs depends heavily on the 173

availability of high-quality training data, which tra- 174

ditionally requires costly human annotation (Light- 175

man et al., 2023; Uesato et al., 2022). To address 176

this challenge, recent work (Wang et al., 2024a; 177

Luo et al., 2024; Wang et al., 2024b; Chen et al., 178

2024; Zhang et al., 2025) explores automated tech- 179

niques for collecting data, streamline the data col- 180

lection process based on MC estimation. Despite 181

these advances, substantial computational demands 182

of MC-based methods remain a significant barrier 183

when dealing with long reasoning chains, hindering 184

the accumulation of sufficient training data. 185
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3 Disadvantages of Current PRMs186

Previous works on training PRMs primarily focus187

on the first incorrect step and assume that all sub-188

sequent steps are reasoned based on this erroneous189

step, thus deeming them all incorrect. However, in190

a long CoT pattern, self-correction behaviors often191

occur, where correct reflective steps can still follow192

an incorrect step. This results in a distribution shift193

between the PRM training data and the data en-194

countered during inference in long CoT scenarios,195

potentially affecting performance. Therefore, we196

aim to investigate: Does the self-correction behav-197

ior of long CoT models impact the performance of198

current PRMs?199

To answer this question, we construct two test200

sets: an Error-Free Set (EF Set) and a Reflection-201

Based Set (RB set). The final answers of so-202

lutions for both sets are correct. The key dif-203

ference lies in the correctness of the intermedi-204

ate reasoning steps. All reasoning steps in the205

Error-Free Set are correct, while solutions in the206

Reflection-Based Set contain erroneous interme-207

diate steps and perform self-correction. We eval-208

uate several open-source PRMs on these two test209

sets: Qwen2.5-Math-PRM-7B (Zhang et al., 2025),210

MathShepherd-PRM-7B (Wang et al., 2024a), and211

Skywork-PRM-7B (o1 Team, 2024), focusing on212

the accuracy of PRMs in determining whether the213

solutions are correct.214

Our experimental results, as presented in Table 1,215

reveal significant performance disparities between216

the two test sets across all evaluated PRMs. The217

most effective model, Qwen2.5-PRM-7B, demon-218

strates a 10% performance gap between two test219

sets, while other models show even larger dispari-220

ties, even exceeding 50%. These findings suggest221

that PRMs exhibit reduced effectiveness in evaluat-222

ing reasoning processes that incorporate intermedi-223

ate reflection.224

Model EF Set RB Set
Qwen2.5-MATH-PRM-7B 0.98 0.88
MathShepherd-PRM-7B 0.79 0.27
Skywork-PRM-7B 0.93 0.59

Table 1: The prediction accuracy of open-source PRMs.

4 Method225

In this section, we introduce a framework for con-226

structing PRM data tailored to reflective reasoning.227

First, we introduce how to train a long CoT model 228

that can autonomously segment its output based on 229

semantics. Then, we describe our detailed step-by- 230

step annotation guidelines and the implementation 231

of PRM training. The overall framework of our 232

method is shown in Figure 1. 233

4.1 Dividing Reasoning Process into Steps 234

Currently, no open-source LLMs satisfies both re- 235

quirements: (1) generating long CoT reasoning 236

processes, and (2) including separators ensuring 237

semantic integrity at each step. While using dou- 238

ble line breaks as delimiters to segment reason- 239

ing chains is a common practice, it compromises 240

semantic coherence. Moreover, in the long CoT 241

paradigm, this approach results in numerous seg- 242

mentation steps, increasing annotation workload. 243

To address this challenge, we develop a special- 244

ized generator based on Supervised Fine-Tuning 245

(SFT). For constructing the SFT dataset, inspired 246

by (Zheng et al., 2024), we adopt a two-step ap- 247

proach to segment open-source long CoT data. We 248

first replace all line breaks with spaces, and then uti- 249

lize LLMs to resegment the reasoning process. Our 250

segmentation balances cognitive cohesion (merg- 251

ing conceptually related steps) and modular inde- 252

pendence (ensuring each step represents a distinct 253

reasoning unit), while controlling step count and 254

token length. A Detailed solution segmentation 255

case is shown in Appendix A. 256

4.2 Annotation Standards for Reflective 257

Reasoning 258

In the long CoT reasoning process, it is common for 259

LLMs to revisit previous steps for self-correction 260

and reflection, which is important for improving 261

reasoning ability. However, previous annotation 262

methods typically focus only on identifying the 263

first erroneous step and assessing the correctness 264

of preceding steps. These approaches overlook 265

effective reflections after the first error in reflective 266

reasoning, which hampers comprehensive process 267

supervision. 268

We classify steps following an error into two 269

types: (1) Reasoning on faulty assumptions, which 270

compounds mistakes and leads further from the 271

solution; (2) Corrective steps, which identify and 272

address errors, guiding the reasoning back on track. 273

Based on our categorization, we introduce two new 274

annotation rules designed to capture these post- 275

error reasoning dynamics: 276
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Three students' running:

Evelyn: 1.25 h, 4.5 km,
Briana: 2.5 hours, 4 km,  
Carla: 4.25 hours, 5.2 km.

Which student has the 2nd 
fastest average speed?

Problem:   

Our Generator

Let me think about this step 
by step...

Open-source Long 
CoT Response Dataset

Segmented reasoning 
process

 Raw solution

PRM for Long CoT 
Reasoning

Error
Orgination

Error
Propagation

Error
Cessation

Correct
Reasoning

Correct
Reasoning

 

 

open-source 
long CoT response

unlabled thinking steps

thinking step labeled as 
correct

thinking step labeled as 
incorrect

Rollout by 
Generator

Annotate 
steps

Training Set

SFT

Segment

Step1: Okay, so I've got some data ... I need to figure out who has the 
second highest average speed. 
Reason1: Correctly recognizes and restates the problem, 
showing understanding of what needs to be calculated.

Step2: First, I need to understand what average speed means. 
Average speed is the total distance traveled divided by the total time 
taken. So, I need to ...
Reason2: Correctly identifies the formula for average speed 
(distance ÷  time) before proceeding to calculations.

Step3: Let's start with Evelyn. At 1.25 hours, she's at 4.5 kilometers, 
so her speed would be 4.5/1.25 = 3.6 km/h. Similarly, Briana runs 4 
kilometers in 2.5 hours, so her speed is 4/2.5 = 0.625 km/h. ...
Reason3: Correctly calculates Evelyn's speed (4.5 ÷ 1.25 = 
3.6 km/h) but makes a calculation error for Briana's speed.

Step4: Let's double-check: ... Evelyn is 3.6, Briana is 0.625, Carla is 
approximately 1.225. Since 3.6 > 1.225 > 0.625，then the second 
should be Carla.
Reason4: Draws an incorrect conclusion based on the 
erroneous calculation from step3.

Step5: Wait, wait, is the speed really correct? Let’s analyze carefully. 
4.5 / 1.25 = 3.6 - that's okay. But 2.5 / 2.2 = 1.1 ? That's wrong - 4 
divided by 2.5 is 1.6 ... 
Reason5: Correctly identifies and corrects the calculation 
error made in step 3, recalculating Briana's speed.

Step6: ... . So, ordering them: 3.6 (Evelyn), 1.6 (Briana), 1.2235 (Car 
la). Ha, I know the final answer, the student with the second highest 
average speed is Briana. Final answer: Briana
Reason6: Correctly orders the stuadets’ speeds and identifies 
Briana as having the second fastest speed.

Figure 1: The overall framework of our method.

• Error Propagation: If the previous steps are277

incorrect and the current step neither intro-278

duces a new approach nor corrects the pre-279

vious mistakes, but instead builds upon the280

erroneous steps, the current step is also con-281

sidered incorrect.282

• Error Cessation: If the previous steps are283

incorrect but the current step introduces a new,284

error-free approach or corrects the previous285

mistakes, the current step is considered cor-286

rect.287

Based on the annotation rules above, we assign288

appropriate labels to each step in the reasoning289

process. In addition, while our primary focus is on290

mathematical reasoning problems, these rules can291

also be applied to other domains such as coding,292

the 24-point game, and more.293

4.3 LLM Judgement294

Reflective models like the o1 (OpenAI, 2024) se-295

ries have demonstrated outstanding performance in296

complex reasoning tasks. The results of the manual297

inspection in Appendix E indicate that reasoning298

LLMs are capable of effectively solving annotation299

tasks. Therefore, we incorporate the rules in Sec-300

tion 4.2 into the prompt (see Appendix B), allowing301

the reflective LLM to evaluate the correctness of302

each step.303

4.4 Process Reward Model 304

Since the label for each step is a binary score, we 305

use standard classification loss to train our PRM: 306

LPRM =
K∑
i=0

ŷilogyi + (1− ŷi)log(1− yi) (1) 307

where yi represents the golden label of the i-th step 308

si, ŷi = PRM(prompt, s<=i) is the predicted 309

score for si by PRM, and K is the total number of 310

steps of the solution. 311

5 Experiments 312

In this section, we present the experimental results 313

of our PRM in comparison with (1) open-source 314

PRMs and PRMs trained on open-source datasets 315

(Section5.2), and (2) PRMs trained on data gener- 316

ated through MC-based methods (Section5.3). 317

5.1 Experiment Settings 318

5.1.1 Dataset 319

Training: For training the PRMs and the gener- 320

ator, we construct the prompt set by combining 321

the MATH training set with AIME problems from 322

1983 to 2023. 323

Evaluation: Our test set consists of MATH500 324

(Hendrycks et al., 2021) combined with AIME2024 325

(MAA, 2024). Additionally, we employ the gen- 326

erator to produce 800 solutions for prompts in the 327

test set, forming our step-level test set, which is 328
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Model MATH500 AIME2024 Step-Level Testset
PRM@64 PRM@8-step PRM@64 PRM@8-step Precision Recall F1

PRM-PRM800K 0.712 0.682 0.133 0.067 0.640 0.963 0.758
PRM-MS 0.758 0.706 0.233 0.100 0.613 0.994 0.758
Qwen2.5-PRM-7B 0.776 0.738 0.167 0.133 0.634 0.972 0.768
MathShepherd-7B 0.778 0.702 0.267 0.100 0.863 0.376 0.523
Skywork-PRM-7B 0.754 0.740 0.133 0.100 0.936 0.351 0.512
Ours 0.816 0.750 0.267 0.167 0.850 0.806 0.828

Table 2: The solution-level and step-level performance of Qwen2.5-7B-SFT∗ using our PRM and other baselines.

used to evaluate the accuracy of PRM in assess-329

ing each step of the reasoning process. The labels330

for this set are determined through a combination331

of cross-validation with the o1 model and manual332

annotation. For more information, please refer to333

Appendix E.334

5.1.2 Generator335

We segment about 2,000 samples in open-source336

datasets (Min et al., 2024) using method described337

in Section 4.1, and fine-tuned the Qwen2.5-7B-338

base (Team, 2024b) to obtain Qwen2.5-7B-SFT∗.339

5.1.3 Metrics340

Our evaluation of PRMs includes solution-level and341

step-level analyses. At solution level, we assess342

PRMs’ ability to identify high-quality solutions us-343

ing PRM@N and PRM@N-step. At step level, we344

examine PRMs’ accuracy to identify correctness of345

individual steps with F1-related metrics.346

Best of N. Consistent with previous work (Light-347

man et al., 2023; Wang et al., 2024a,b; Luo et al.,348

2024), we use Best-of-N for evaluation, which se-349

lects the highest-scoring response from N candi-350

date responses. We define this evaluation metric as351

PRM@N. The score of each candidate response is352

determined by the score at the final step.353

Online Search. During each step, N candidates354

are sampled and the highest-scoring step is chosen355

to continue the generation. We define this metric356

as PRM@N-step.357

Classification Metrics. To evaluate the classifica-358

tion performance at the step level, we use precision,359

recall, and F1 score as our metrics.360

5.1.4 Baselines361

Our baseline models are categorized as follows:362

• Fine-Tuned PRMs: PRMs fine-tuned on363

open-source datasets, including: (1) PRM-364

PRM800K: Fine-tuned with the PRM800K365

dataset from OpenAI (Lightman et al., 2023). 366

(2) PRM-MS: Fine-tuned with the Math Shep- 367

herd dataset from DeepSeek (Wang et al., 368

2024a). 369

• Open-Source PRMs: Existing open- 370

source models, including: (1) Qwen2.5- 371

MATH-PRM-7B (abbreviated as Qwen2.5- 372

PRM-7B) (Zhang et al., 2025). (2) 373

DeepSeek-MathShepherd-7B (abbreviated as 374

MathShepherd-7B) (Wang et al., 2024a). (3) 375

Skywork-PRM-7B (o1 Team, 2024). 376

5.2 Main Results 377

Solution Level According to the results shown 378

in Table 2, we find that: (1) Our PRM consistently 379

outperforms other PRMs in PRM@64. Specifically, 380

on MATH500, it achieves an accuracy of 81.6%, 381

which is 3.8% higher than the second-best PRM, 382

demonstrating enhanced capability in identifying 383

high-quality solutions. (2) Our PRM performs the 384

best in PRM@8-step. This indicates that our PRM 385

is capable of providing better intermediate signals 386

which guide the generator to produce higher-quality 387

solutions. 388

Step Level The step-level experimental results in 389

Table 2 indicate that: (1) Our PRM performs the 390

best in step-level evaluation, achieving the high- 391

est F1 score. (2) Both open-source PRMs and 392

PRMs trained on current open-source datasets ex- 393

hibit an imbalance between precision and recall. 394

PRM-PRM800K, PRM-MS, and Qwen2.5-PRM- 395

7B tend to classify incorrect steps as correct, while 396

MathShepherd-7B and Skywork-PRM-7B are more 397

prone to classifying correct steps as incorrect. In 398

contrast, our PRM demonstrates the most balanced 399

performance. 400

5.3 Comparison with MC-based Methods 401

Although MC-based method has been widely used, 402

it contains significant noise. Their effectiveness 403
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Figure 2: PRM@N of Qwen2.5-7B-SFT∗ using PRMs trained on data annotated by MC-based and our method.

relies on the ability of completion models. Correct404

steps may be misjudged as incorrect when comple-405

tion models fail to produce correct solutions within406

limited rollouts. Reflective reasoning paradigm ex-407

acerbates the annotation noise. Incorrect steps may408

be misjudged as correct due to subsequent reflec-409

tive and error-correction behaviors (Lanham et al.,410

2023).411

5.3.1 Experiment Setup412

For each prompt in training set, we select 8 so-413

lutions generated by Qwen2.5-7B-SFT∗ for MC-414

based annotation, with the total number of steps415

approaching 1 million. We employ Qwen2.5-416

7B-SFT∗ to perform 8 completions for each step417

to assess their correctness. Following previous418

work (Wang et al., 2024a), we create hard labels419

based on the sampled completions and train PRM-420

MC-1M. The annotation process consumes approx-421

imately 23,040 A100 GPU hours. To ensure a fair422

comparison with PRM-MC-1M, we select the sub-423

set of our training data corresponding to solutions424

used in PRM-MC-1M training to train PRM-ours-425

1M. The PRM trained on the entire training set is426

referred to as PRM-ours-1.7M.427

5.3.2 Results428

Figure 2 presents the experimental results, which429

reveal that: (1) PRM-ours-1M achieves superior430

PRM@N scores compared to PRM-MC-1M consis-431

tently, demonstrating the improved quality of pro-432

cess supervision signals generated by our method.433

(2) PRM@N for PRM-ours-1.7M consistently out-434

performs PRM-ours-1M, indicating robust scala-435

bility of our approach. The PRMs trained using436

our method can effectively leverage more process437

supervision signals in larger training datasets.438

Additionally, leveraging LLM for data annota-439

tion significantly improves efficiency compared to 440

the MC-based method, enabling faster data annota- 441

tion and more rapid training iterations. 442

6 Analysis 443

6.1 Robustness Compared to MC-based 444

Method 445

This section aims to demonstrate that our method 446

can provide more robust process supervision sig- 447

nals compared to commonly used MC-based meth- 448

ods. First, we show that there is a strong correla- 449

tion between the signals obtained via the MC-based 450

method and the completion model, and the corre- 451

lation strengthens with increasing reasoning chain 452

length. Second, we will compare the performance 453

gap when the same PRM provides process reward 454

signals to different models. 455

Correlation between Signals and Completion 456

Model We first fine-tune LLaMA3.1-8B-Base 457

(Dubey et al., 2024) using the SFT data described 458

in Section 5.1.2 to get LLaMA3.1-8B-SFT∗, both 459

Qwen2.5-7B-SFT∗ and LLaMA3.1-8B-SFT∗ are 460

employed as completion models for our analysis. 461

Subsequently, we randomly sample 1,000 solu- 462

tions generated by Qwen-2.5-7B-SFT∗ and use 463

both completion models to annotate step-level hard 464

labels following Math-Shepherd. Our analysis re- 465

veals that only 79% of the solution steps receive 466

identical annotations from both models. Moreover, 467

we observe a negative correlation between solution 468

length and inter-model consistency. As illustrated 469

in Figure 3, the consistency rate between the two 470

completion models decreases as the number of solu- 471

tion steps increases. This finding suggests that MC- 472

based annotation methods become progressively 473

less reliable as reasoning chains extend. 474
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Figure 3: We categorize 1,000 solutions into 10 equal-
sized bins based on their step counts, with Bin 1 contain-
ing solutions with the fewest steps and Bin 10 containing
those with the most steps. Within each bin, we calculate
the proportion of steps where both completion models
assign identical hard labels.

Metric PRM-MC-1M PRM-ours-1M
Qwen LLaMA Gap Qwen LLaMA Gap

PRM@8 0.752 0.386 0.366 0.786 0.466 0.320
PRM@16 0.758 0.370 0.388 0.776 0.464 0.312
PRM@32 0.762 0.400 0.362 0.786 0.478 0.308
PRM@64 0.760 0.436 0.324 0.786 0.518 0.268

Table 3: PRM@N of different models using PRM-MC
and PRM-ours, along with the performance gaps.

Performance Gap when Providing Signals for475

Different Models We evaluate PRM-MC-1M476

and PRM-ours-1M by using them to provide re-477

ward signals during the inference processes of478

LLaMA3.1-8B-SFT∗ and Qwen2.5-7B-SFT∗ on479

MATH500. The results in Table 3 show that PRM-480

MC-1M introduces a significantly larger perfor-481

mance gap between the two models compared to482

PRM-ours-1M. This suggests that our method pro-483

duces a more robust PRM, capable of providing484

consistent reward signals across different language485

models. Moreover, PRM-ours-1M demonstrates su-486

perior PRM@N compared to PRM-MC-1M across487

both Qwen2.5-7B-SFT∗ and LLaMA3.1-7B-SFT∗.488

This consistent performance advantage across dif-489

ferent models validates the adaptability of our PRM490

on different generators.491

6.2 Data Distribution492

This section examines the distributional differences493

between our training data and existing open-source494

datasets.495

As illustrated in Figure 4, our dataset exhibits a496

significantly higher number of steps per solution497

Datasets Metrics FE FES Ours

MATH500

PRM@8 0.764 0.770 0.786
PRM@16 0.774 0.788 0.776
PRM@32 0.776 0.792 0.786
PRM@64 0.780 0.792 0.792

AIME2024

PRM@8 0.133 0.133 0.167
PRM@16 0.133 0.133 0.167
PRM@32 0.167 0.167 0.233
PRM@64 0.200 0.167 0.233

Table 4: PRM@N of Qwen2.5-7B-SFT∗ using PRMs
trained under different experimental settings.

and greater token consumption per step compared 498

to open-source datasets. This distributional diver- 499

gence primarily stems from our annotated data, 500

which comprises long reasoning chains that incor- 501

porate reflective processes. These chains inherently 502

demand more elaborate step-by-step reasoning and 503

extended cognitive operations. 504

We believe that this distributional discrepancy 505

causes PRMs trained on open-source data to gen- 506

erate less effective process reward signals for re- 507

flective reasoning chains. This limitation appears 508

to be one of the key factors contributing to their 509

inferior performance compared to our PRM at both 510

solution level and step level. 511

6.3 Enhanced Data Utilization Beyond 512

First-Error Steps 513

This section aims to demonstrate the advantages of 514

our method over the traditional paradigm, which 515

typically only considers the first error step. Our 516

approach extracts more training signals from each 517

solution while maintaining the same sample size. 518

We design a comparative study with three exper- 519

imental settings: (1) Baseline: Our method; (2) 520

First-error truncation (FE): Using identical training 521

samples as (1) but only considering steps until the 522

first error occurs; and (3) First-error truncation with 523

supplementary data (FES): Extending (2) with ad- 524

ditional training samples to align the total training 525

signals in (1). 526

The experimental results in Table 4 reveal two 527

key findings. First, given an equal number of solu- 528

tion samples, our method achieves superior perfor- 529

mance on both MATH500 and AIME2024 by uti- 530

lizing additional process supervision signals from 531

each solution. Second, when aligning the number 532

of signals, our method achieves comparable results 533

to traditional paradigm while using fewer solutions. 534
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Figure 4: Distribution of the number of steps in each solution and the number of tokens contained in each step
across different datasets. We randomly select 1,000 samples from each dataset for statistical analysis.

Model GSM8K OBen
PRM-PRM800K 0.914 0.394

PRM-MS 0.954 0.441
Qwen2.5-PRM-7B 0.950 0.458
MathShepherd-7B 0.954 0.455
Skywork-PRM-7B 0.954 0.446

Ours 0.950 0.510

Table 5: PRM@64 on GSM8K and OBen of Qwen2.5-
7B-SFT∗ using different PRMs.

Notably, on the more challenging AIME2024, our535

method even demonstrates a slight advantage. The536

enhanced effectiveness on AIME2024 can be at-537

tributed to its inherently challenging nature, which538

demands more sophisticated reflective reasoning539

processes.540

6.4 Out-of-Distribution Performance541

To demonstrate the generalizability of our method,542

we conduct evaluations on both elementary and543

advanced mathematical problems. Our evaluation544

select 500 questions from GSM8K (Cobbe et al.,545

2021) representing simple math problems, and 675546

questions from Olympiad Bench (OBen) (He et al.,547

2024) which contains challenging, competition-548

level problems.549

As can be seen from Table 5, most PRMs demon-550

strate comparable performance on GSM8K. While 551

our PRM performs marginally below PRMs trained 552

on Math-Shepherd and Skywork-PRM-7B, this 553

slight difference might be attributed to the inclusion 554

of GSM8K examples in their training set. Notably, 555

when evaluated on the more challenging OBen 556

dataset, our method exhibits substantially superior 557

performance compared to all baseline approaches, 558

highlighting its strength in handling sophisticated 559

math problems. More information about the perfor- 560

mance advantages of our PRM on complex datasets 561

can be found in Appendix H. 562

7 Conclusion 563

In this paper, we introduce a PRM data annota- 564

tion technique designed for reflective reasoning 565

processes. We propose concepts of Error Propa- 566

gation and Error Cessation, which enable precise 567

identification of steps based on flawed premises and 568

highlight moments of meaningful reflection. Ad- 569

ditionally, leveraging LLMs for annotation helps 570

reduce the resource burden caused by extended rea- 571

soning chains. Experimental results demonstrate 572

our PRM outperforms current open-source PRMs 573

and PRMs trained on open-source datasets at solu- 574

tion and step levels. Compared to commonly-used 575

MC-based methods, our method also exhibits com- 576

prehensive superiority. 577
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8 Limitaions578

Despite achieving superior performance in solution-579

level and step-level metrics compared to other base-580

lines, there are several limitations to our approach.581

(1) Scalability: While our PRM provides more ac-582

curate signals in our diverse evaluation test, due583

to constraints in training data and computational584

resources, we are unable to validate the advantages585

of our method in broader experimental settings. Fu-586

ture work could explore how the accuracy and gen-587

eralization of PRM scale as the number of prompts588

and generated solutions increases. (2) Dependency589

on LLM Capabilities: Our labeling method re-590

quires the LLM judges to have strong reasoning591

capabilities. Consequently, the accuracy of label-592

ing is limited by the inherent abilities of the model593

itself. However, with ongoing improvements in594

open-source reflective models (Team, 2024a; Guo595

et al., 2025; Muennighoff et al., 2025), this issue596

could be mitigated. Future work could also inves-597

tigate the performance of small reflection models598

used for annotation.599
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A Solution Reformatting761

We use the method described in Section Section4.1762

to segment the open-sorce sample. An example763

of the solution reformation is shown in Figure 5.764

After segmentation, sentences at the same step are765

shown in the same color.766

B Prompt Template for LLM Annotation767

The prompt template for LLM judger is shown in768

Figure 7.769

C Training Details770

C.1 SFT771

The detailed training parameters for generator are772

provided in Table 6.

Hyperparameter Value
learning rate 1e-5
epochs 3
batch size 24
max length 16384

Table 6: Hyperparameters of SFT

773

C.2 PRM Training774

The detailed training parameters in PRM training775

are provided in Table 7.

Hyperparameter Value
learning rate 1e-6
epochs 1
batch size 256
max length 10240

Table 7: Hyperparameters of PRM training

776

D Case Study: An Annotation Result of777

LLM judger778

To better illustrate the PRM training data, an ex-779

ample case is presented in Figure 8. The model’s780

reasoning process consists of 11 steps. The "con-781

tent" field represents the model’s reasoning at each782

step, "Score" indicates the evaluation by o1 for that783

step (1 for correct, 0 for incorrect), and "Reason"784

provides the rationale behind o1’s scoring.785

E Human Annotation Details 786

We employ individuals with bachelor’s and gradu- 787

ate degrees to manually assess the annotation ac- 788

curacy of different LLMs on the step-level test set. 789

First, we provide training for the annotators to en- 790

sure they have a comprehensive understanding of 791

the prompts used for LLM-based annotation in Ap- 792

pendix B. To facilitate a thorough comprehension 793

of errors in the reasoning process, we classify math- 794

ematical reasoning errors into two categories: op- 795

eration errors and conceptual errors. Operation 796

errors encompass mistakes in formula calculations, 797

derivations, and similar computational inaccura- 798

cies. In contrast, conceptual errors involve incor- 799

rect reasoning directions, such as misinterpreting 800

the problem or improperly applying mathematical 801

formulations. 802

For each entry in the step-level test set, annota- 803

tors receive a file containing five fields: the ques- 804

tion, the ground-truth answer, each step of the so- 805

lution, the rationale provided by the LLM judge 806

for each step, and the judgment result for each 807

step. A step is considered correctly scored if both 808

the rationale and the scoring outcome are deemed 809

reasonable. Conversely, if either the rationale or 810

the scoring outcome is found to be unreasonable, 811

the scoring is marked as incorrect. The annotation 812

accuracy of different LLMs is shown in Table 8. 813

Model Annotation Accuracy
gpt-4o-2024-08-06, 0.668
claude-3.5-sonnet-v2 0.726
o1 0.963

Table 8: The annotation accuracy of different models.

F Generalization of our PRM 814

To further assess the generalization capability 815

of our PRM, we conducted experiments on the 816

AIME24 dataset under challenging conditions. 817

Specifically, for each problem, we employ the 818

DeepSeek-R1-Distill-Qwen-1.5B model to gener- 819

ate 32 candidate solutions. From these, we select 820

10 solutions per problem, ensuring that no more 821

than 2 of the 10 were correct. This selection strat- 822

egy increases the task difficulty for the PRM, as 823

it must identify the correct solutions from a pool 824

dominated by incorrect ones. 825

We evaluated the performance of various PRMs 826

using two rule-based segmentation methods : 827
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• Segmentation based on Reflection Words828

(SRW): This method segments the response829

content using reflection words and merges830

short segments to form more coherent units.831

• Segmentation based on Double Newlines832

(SDN): Double newline characters serve as833

delimiters to segment the response.834

Experimental results are shown in Table 9. No-835

tably, even when the generation model is not our836

SFT model and segmentation is performed using837

simple rule-based approaches, our PRM consis-838

tently achieves superior performance in terms of839

PRM@10 on the AIME24 dataset. These results840

demonstrate the robustness and strong generaliza-841

tion ability of our PRM across different segmenta-842

tion strategies and generation models.

Model SRW SDN
Qwen2.5-PRM-7B 0.367 0.333
MathShepherd-7B 0.267 0.300
Skywork-PRM-7B 0.300 0.300
Ours 0.533 0.500

Table 9: The PRM@10 of different PRMs under differ-
ent segmentation methods.

843

G Performance on Larger Models844

To strengthen our conclusions, we select Qwen2.5-845

14B-Base as the base model and apply our method846

to train a new PRM. As there are currently no open-847

source PRMs with comparable parameter sizes848

for direct comparison, we establish baselines by849

training Qwen2.5-14B-Base on the open-source850

PRM800K and MathShepherd datasets. The exper-851

imental results of various models on the PRM@64852

metric are presented in Table 10. Our dataset853

achieves the best performance.854

Dataset MATH OBen AIME24
PRM800K 0.810 0.502 0.233
MathShepherd 0.770 0.455 0.200
Ours 0.964 0.536 0.333

Table 10: The performance of different PRM trainset on
Qwen2.5-14B-Base.

H Robust Performance Scaling with 855

Dataset Complexity 856

While our PRM demonstrates modest improve- 857

ments on simpler datasets, its true potential 858

emerges when applied to more challenging prob- 859

lems that demand extensive reasoning and iterative 860

refinement. 861

To quantify reasoning complexity across differ- 862

ent datasets, we analyzed three key indicators: (1) 863

average tokens, (2) average reasoning steps, and (3) 864

average reflection tokens (RT). Reflection tokens 865

encompass specific terms indicating reflection pro- 866

cesses, such as "rethink" and "reconsider", with the 867

vocabulary set derived from (Liu et al., 2025). To 868

measure our method’s effectiveness, we calculated 869

our PRM’s relative advantage, defined as the differ- 870

ence between our PRM’s PRM@64 and the mean 871

PRM@64 of all baseline methods. 872

As illustrated in Table 11, there is a clear correla- 873

tion between dataset complexity and our method’s 874

performance advantage. Specifically, as problems 875

require longer reasoning chains and more frequent 876

reflection steps, the performance gap between our 877

PRM and baseline methods widens significantly. 878

This scaling behavior provides strong evidence that 879

our approach is particularly effective for complex 880

reasoning tasks that demand extended CoT reason- 881

ing. 882

GSM8K MATH500 OBen AIME24
Difficulty Level Grade-school High-school Competition Competition
Average Tokens 2339 5376 8150 12908
Average Steps 6.9 13.1 17.8 25.8
Average RT 2.5 5.7 8.3 12.0
Advantage 0.4% 6.0% 7.1% 8.0%

Table 11: Statistical metrics of reasoning processes
across different datasets, and the advantage of our PRM
compared to other PRMs on different datasets.
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Problem: The chord AB subtends an arc of the circle equal to 120circ ). Point C lies on this
arc, and point D lies on the chord AB. Additionally, AD = 2, BD = 1, and DC =

√
2. Find

the area of triangle ABC.
Solution after reformation: Alright, let’s see here. I’ve got this geometry problem to solve.
So, there’s a circle with a chord AB that subtends an arc of 120 degrees. There’s a point C
on this arc, and a point D on chord AB such that AD is 2, BD is 1, and DC is sqrt(2). I need
to find the area of triangle ABC. First, I should probably draw a diagram to visualize this. So,

I’ve got a circle, chord AB with points A and B on the circle, and the arc from A to B that’s
120 degrees. Point C is somewhere on that arc, and point D is on AB such that AD is 2 and
BD is 1, making AB a total of 3 units. DC is sqrt(2), which is interesting.

Since AB subtends an arc of 120 degrees, that means the central angle corresponding to arc
AB is 120 degrees. In a circle, the measure of an inscribed angle is half the measure of the
central angle that subtends the same arc. So, angle ACB, which is inscribed and subtended by
arc AB, should be 60 degrees.

Wait, no. Actually, angle ACB is not necessarily 60 degrees. Let me think again. The central
angle is 120 degrees, so the inscribed angle subtended by the same arc would be half of that,
which is 60 degrees. But angle ACB is an inscribed angle subtended by arc AB, so yes, it
should be 60 degrees.

But hold on, point C is on the arc AB, so angle ACB is indeed 60 degrees. Now, I need to
find the area of triangle ABC. To find the area, I can use the formula (1/2)*base*height, or
(1/2)*ab*sin(C), where a and b are sides and C is the included angle.

But I don’t know the lengths of sides AC and BC yet. Maybe I can find those using the Law
of Sines or Cosines.

First, I need to find the lengths of AC and BC. Since I have a circle with chord AB of length
3, and central angle 120 degrees, I can find the radius of the circle.

The formula for the length of a chord is 2*r*sin(theta/2), where theta is the central angle in
radians. Wait, theta is in degrees here, so I need to be careful with units.

Let me convert 120 degrees to radians. 120 degrees is (120/180)*pi = (2/3)pi radians.

So, chord length AB = 2*r*sin((120)/2) = 2*r*sin(60 degrees). Sin 60 degrees is sqrt(3)/2, so
AB = 2*r*(sqrt(3)/2) = r*sqrt(3).

But AB is given as AD + DB = 2 + 1 = 3 units. So, r*sqrt(3) = 3, which means r = 3/sqrt(3)
= sqrt(3). Okay, so the radius of the circle is sqrt(3).

Figure 5: An Example of solution reformation (part 1).
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Now, I need to find AC and BC. Since C is on the arc AB that’s 120 degrees, the angle at
the center is 120 degrees, so the arc AC and arc CB must add up to 120 degrees. But I don’t
know their individual measures yet. Wait, point C is a specific point on the arc AB, but I

don’t have more information about its position. Maybe I need to use point D and the given
lengths to find more information.

Point D is on AB such that AD = 2 and DB = 1, and DC = sqrt(2). So, triangle DBC has
sides DB = 1, DC = sqrt(2), and angle at D I don’t know yet.

Coordinates of A: (sqrt(3), theta)

Coordinates of B: (-sqrt(3)/2, 3/2)

Coordinates of C: (sqrt(2),1)

Using shoelace formula again:

Area = (1/2)|x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|

Plug in:

= (1/2)|sqrt(3)*(3/2 - 1) + (-sqrt(3)/2)*(1 - 0) + sqrt(2)*(0 - 3/2)|

= (1/2)|sqrt(3)*(1/2) - sqrt(3)/2 - 3*sqrt(2)/2|

= (1/2)| (sqrt(3)/2 - sqrt(3)/2) - 3*sqrt(2)/2 |

= (1/2)| 0 - 3*sqrt(2)/2 |

= (1/2)*(3*sqrt(2)/2)

= (3*sqrt(2))/4

Okay, so maybe it’s correct. The area of triangle ABC is (3*sqrt(2))/4.

Figure 6: An Example of solution reformation (part 2).
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You are a mathematical expert. The user will provide a math problem, a step-by-step solution
process, and the GT answer. First, you need to extract the short final answer from the GT
Answer. Then, carefully check the user’s step-by-step solution process and assign a score of
either 0 or 1 for each step.
You need to carefully examine the correctness of each step and provide a brief explanation. If
there is an error in the current solution step, such as a calculation error, a derivation error, or
a logical error, the score should be 0. If the current solution step is error-free, follow these
rules to assign a score:

1. Error Propagation: If there is an error in the preceding steps and the current step does
not a new problem-solving idea or perform a proper correction, the score should be 0.
For example, if STEP K contains an error, and STEP K+1 continues analyzing based on
STEP K’s error, then STEP K+1 is also considered incorrect, and the score should be 0.

2. Error Cessation: If there is an error in the preceding steps, but the current step
introduces a new, correct solution approach, the score should be 1. If the current step
corrects the error from the previous steps, the score should also be 1. For example,

• STEP K contains an error.
• STEP K+1 continues the analysis based on the error.
• STEP K+2 corrects the previous error or introduces a problem-solving idea.

In this case, STEP K and STEP K+1 should be scored as 0, and STEP K+2 should be
scored as 1.

3. Final Step: For the final step in the solution, if the answer obtained does not match the
short answer, the score should be 0. If it matches the short answer, the score should be
1.

Your response format should be in json format:
[

{
"STEP 0": 1(int),
"Reason": xxxx(str)

},
{

"STEP 1": 1(int),
"Reason": xxxx(str)

}
...

]

Note: When analyzing the solution process, it is important to remain objective and rational,
and not be misled by the description of the solution steps.

Figure 7: The prompt template for LLM judger.
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Problem: A cross-country team completed a training run, and each student’s performance
was measured. Evelyn ran 4.5 distance units in 1.25 time units. Briana ran 4 distance units in
2.5 time units. Carla ran 5.2 distance units in 4.25 time units. Debra ran 2.8 distance units in
5.6 time units. Angela ran 1.4 distance units in 6.8 time units. Based on these results, which
student had the second highest average speed?
Solution:

• Step 1

– Content: Okay, so I’ve got this cross-country team’s training run data. There are
five students: Evelyn, Briana, Carla, Debra, and Angela. Each has recorded their
distance and time. I need to figure out who has the second highest average speed.

– Score: 1.
– Reason: This step correctly introduces the problem, identifying the five students

(Evelyn, Briana, Carla, Debra, and Angela) and the need to determine who has the
second highest average speed.

• Step 2

– Content: First, I need to understand what average speed means. Average speed is
the total distance traveled divided by the total time taken. So, I need to look at each
student’s data and see how far they went and how long it took them. The data gives
me the distance traveled and time taken for each student.

– Score: 1.
– Reason: This step correctly explains that average speed is calculated by dividing

the total distance traveled by the total time taken.

• Step 3

– Content: Let’s start with Evelyn. She traveled 4.5 distance units in 1.25 time units.
Briana traveled 4 distance units in 2.5 time units. Carla traveled 5.2 distance units
in 4.25 time units. Debra traveled 2.8 distance units in 5.6 time units. Angela
traveled 1.4 distance units in 6.8 time.

– Score: 1.
– Reason: Correctly lists all the data points given in the problem: Evelyn (4.5

distance units in 1.25 time units), Briana (4 distance units in 2.5 time units), Carla
(5.2 distance units in 4.25 time units), Debra (2.8 distance units in 5.6 time units),
and Angela (1.4 distance units in 6.8 time units).

• Step 4

– Content: To find average speed, I need to calculate the total distance each ran and
the total time it took, then divide distance by time. Based on the given data, it
seems like each student maintained a constant speed since we only have their final
distance and time measurements.

– Score: 1.
– Reason: This step correctly explains the approach to calculate average speed by

dividing distance by time for each student.

Figure 8: An example of an annotation result from the LLM judger (part 1).
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• Step 5

– Content: So, for Evelyn, from time 0 to 1.25 units, she went from 0 to 4.5 units,
so her speed would be 4.5 divided by 1.25. Let me calculate that: 4.5 / 1.25 = 3.6
units per time unit. Similarly, Briana went from 0 to 4 units in 2.5 time units, so
her speed is 4 / 2.5 = 0.625 units per time unit.

– Score: 0.
– Reason: This step incorrectly calculates Briana’s speed, 4/2.5=1.6.

• Step 6

– Content: Carla went from 0 to 5.2 units in 4.25 time units, so her speed is 5.2 /
4.25 = approximately 1.225 units per time unit. Debra went from 0 to 2.8 units in
5.6 time units, so her speed is 2.8 / 5.6 = 0.5 units per time unit. Angela went from
0 to 1.4 units in 6.8 time units, so her speed is 1.4 / 6.8 ≈ 0.205 units per time unit.
So, comparing these speeds, Evelyn has the highest average speed at 3.6 units per
time unit, second is Carla at 1.225, then Briana at approximately 0.625, Debra at
0.5, and finally Angela at approximately 0.205.

– Score: 0.
– Reason: Based on the incorrect calculation results in Step 5, the ranking is

performed. This step is also considered incorrect.

• Step 7

– Content: Wait a minute, but I should make sure I’m interpreting the data correctly.
Maybe these numbers represent different aspects of the run. If these numbers
represent the entire run, then the distance would be the total distance traveled, and
the time would be the total time taken. Let’s double-check: Evelyn is 3.6, Briana is
0.625, Carla is approximately 1.225, Debra is 0.5, Angela is 0.205. Since 3.6 >
1.225 > 0.625 > 0.5 > 0.205, then the second should be Carla.

– Score: 0.
– Reason: Based on the incorrect calculation results from Step 5, the ranking is

performed incorrectly.

• Step 8

– Content: Wait, let’s recheck to prevent mistakes. For Evelyn: 4.5 / 1.25, or 4.5 /
(5/4) = 4.5 * (4/5) = (4.5 * 4)/5 = 18/5 = 3.6, yes. For Briana: 2.5 / 4 = 25/40 =
0.625, yes. For Carla: 5.2 / 4.25 ≈ 1.2235, yes. For Debra: 2.8 / 5.6 = 0.5, yes.
Angela: 1.4 / 6.8 ≈ 0.205, yes. The calculations are correct, and the order seems
correct.

– Score: 0.
– Reason: When calculating Briana’s average speed, the numerator and denominator

are reversed.

Figure 9: An example of an annotation result from the LLM judger (part 2).
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• Step 9

– Content: Wait, wait, is the calculation really correct? Let’s analyze carefully. 4.5 /
1.25 = 3.6 — that’s okay. But 4 / 2.5 = 0.625? That’s wrong — 2.5 should not be
greater than 4. 4 / 2.5 = 1.6 units per time unit, not 0.625 like I incorrectly
calculated before! So the correct ordering of speeds is: 3.6 (Evelyn) > 1.6 (Briana)
> 1.224 (Carla) > 0.5 (Debra) > 0.206 (Angela).

– Score: 1.
– Reason: Correctly recalculates and verifies all average speeds: Evelyn (3.6), Briana

(1.6), Carla (1.225), Debra (0.5), and Angela (0.205). Properly rank them in
descending order and correctly identify that Briana has the second highest average
speed.

• Step 10

– Content: To confirm, let’s list the average speeds again: Evelyn: 4.5 / 1.25 = 3.6,
Briana: 4 / 2.5 = 1.6, Carla: 5.2 / 4.25 ≈ 1.225, Debra: 2.8 / 5.6 = 0.5, Angela:
1.4 / 6.8 ≈ 0.205, So, ordering them: 3.6 (Evelyn), 1.6 (Briana), 1.225 (Carla), 0.5
(Debra), 0.2059 (Angela). Therefore, the second highest is Briana with
approximately 1.6.

– Score: 1.
– Reason: Provides a final confirmation of the calculations and ranks, correctly

stating that the second highest average speed belongs to Briana.

• Step 11

– Content: Ha, I know the final answer, the student with the second highest average
speed is Briana. Final answer: Briana

– Score: 1.
– Reason: Correctly states the final answer as Briana.

Figure 10: An example of an annotation result from the LLM judger (part 3).
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