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Appendix

A Proof of Theorem 1

Proof. For any processed camera 𝑛 ∈ N , we define the Gramian
matrix and the number of effective feedbacks for camera 𝑛 up to
round 𝑡 , respectively, as follows:

𝑴𝑛,𝑡 =
∑︁
𝑗≤𝑡
𝑛 𝑗=𝑛

|K𝑗 |∑︁
𝑘=1

𝒙𝑚𝑘 , 𝑗𝒙
⊤
𝑚𝑘 , 𝑗

, 𝑇𝑛,𝑡 =
∑︁
𝑗≤𝑡
𝑛 𝑗=𝑛

|K𝑗 |

Subsequently, for any camera 𝑛 belonging to group index 𝑖 , denote

𝑴𝑖,𝑡 = 𝜁 𝐼𝑑 +
∑︁
𝑛∈𝐺𝑖

𝑴𝑛,𝑡 , 𝑇𝑖,𝑡 =
∑︁
𝑛∈𝐺𝑖

𝑇𝑛,𝑡 (1)

be the regularized Gramian matrix, and the frequency associated
with belonging group 𝐺𝑖 , respectively, incorporating the regular-
ization parameter 𝜁 > 0 up to round 𝑡 .

Consider the gradient function defined for any camera within
group 𝐺𝑖𝑡 at time 𝑡 as:

𝑔𝑖𝑡 ,𝑡 (𝜽 ) =
𝑡−1∑︁
𝑗=1

1{𝑛 𝑗 ∈ 𝐺𝑖𝑡 }
|K𝑗 |∑︁
𝑘=1

𝜇 (𝒙⊤𝑚𝑘 , 𝑗
𝜽 )𝒙𝑚𝑘 , 𝑗 .

Recall that 𝜽̂𝑖𝑡 , 𝑡 is identified as the unique solution of the equation:
𝑡−1∑︁
𝑗=1

1{𝑛 𝑗 ∈ 𝐺𝑖𝑡 }
|K𝑗 |∑︁
𝑘=1

(
𝑟𝑚𝑘 , 𝑗 − 𝜇 (𝒙⊤𝑚𝑘 , 𝑗

𝜽̂ 𝑖𝑡 ,𝑡 )
)
𝒙𝑚𝑘 , 𝑗 = 0.

Then, it is possible to express 𝑔𝑖𝑡 ,𝑡 (𝜽̂ 𝑖𝑡 ,𝑡−1), which captures the
cumulative response adjusted by the previous estimate of 𝜽 , as
follows: 𝑔𝑖𝑡 ,𝑡 (𝜽̂ 𝑖𝑡 ,𝑡−1) =

∑𝑡−1
𝑠=1 1{𝑛 𝑗 ∈ 𝐺𝑖𝑡 }

∑ |K𝑗 |
𝑘=1 𝑟𝑚𝑘 , 𝑗𝒙𝑚𝑘 , 𝑗 . This

formulation integrates the feedback up to round 𝑡 − 1, weighted
by the membership of the cameras in the group 𝐺𝑖𝑡 , to refine the
estimation of the parameter 𝜽 .

Next, we introduce a lemma that provides a theoretical guarantee
for the accuracy of the ridge regression estimate in approximating
the true weight vector of camera perspective influence. This lemma
is critical for understanding the bounds of estimation error in linear
models with ridge regression.
∗Work conducted during Zeyu Zhang’s visit to The Chinese University of Hong Kong.
†Xutong Liu is the corresponding author.

Lemma 1 (Theorem 1 in [5]). Consider a sequence of data points
(𝑥1, 𝑦1) , . . . , (𝑥𝑡 , 𝑦𝑡 ) are generated sequentially from a linear model
such that ∥𝑥𝑡 ∥ ≤ 1 for all 𝑡,E [𝑦𝑡 | 𝑥𝑡 ] = 𝜃⊤∗ 𝑥𝑡 for fixed but unknown
𝜃∗ with norm at most 1 , and

{
𝑦𝑡 − 𝜃⊤∗ 𝑥𝑡

}
𝑡=1,2,... have 1-sub-Gaussian

tails. Let 𝑀𝑡 = 𝜁 𝐼 + ∑𝑡
𝑠=1 𝑥𝑠𝑥

⊤
𝑠 , 𝑏𝑡 =

∑𝑡
𝑠=1 𝑥𝑠𝑦𝑠 , and 𝛿 > 0. If 𝜃𝑡 =

𝑀−1
𝑡 𝑏𝑡 is the ridge regression estimator of 𝜃∗, then with probability

at least 1 − 𝛿 , for all 𝑡 ≥ 0,


𝜃𝑡 − 𝜃∗




𝑀𝑡

≤

√︄
𝑑 ln

(
1 + 𝑡

𝜁𝑑

)
+ 2 ln

1
𝛿
+
√︁
𝜁 .

Furthermore, we examine the determinant of the matrix 𝑴𝑡 and
its relationship with its eigenvalues and trace, leading to:

𝑑𝑒𝑡 (𝑴𝑡 ) ≤
(∑𝑑𝑖=1 𝜆𝑖

𝑑

)𝑑
=
( 𝑡𝑟𝑎𝑐𝑒 (𝑴𝑡 )

𝑑

)𝑑 ≤
( 𝑡 + 𝜁𝑑

𝑑

)𝑑
,

where 𝜆𝑖 , (𝑖 = 1, 2, . . . , 𝑑) denotes the eigenvalues of the matrix
𝑴𝑡 , 𝑡𝑟𝑎𝑐𝑒 (𝑴𝑡 ) denotes the trace of 𝑴𝑡 . By Lemma 1, combined

with the inequality: det
(
𝑴𝑖,𝑡

)
≤ 1
𝑑𝑑

(
trace(𝑴𝑖,𝑡 ) +

∑𝑡
𝑗=1 ∥𝑥𝑡 ∥

2
2

)𝑑
≤

(𝜁 + 𝑡/𝑑)𝑑 , for some 𝑗 ≤ 𝑡 (will be clarified later) with𝑴𝑖𝑡 , 𝑗 invert-
ible, with probability at least 1 − 𝛿 , we have:


𝑔𝑖𝑡 ,𝑡 (𝜽̂ 𝑖𝑡 ,𝑡 ) − 𝑔𝑖𝑡 ,𝑡 (𝜽 𝑖𝑡 )




2
𝑴−1

𝑖𝑡 ,𝑡

≤ 𝑇𝑖𝑡 , 𝑗𝜆min (𝑴𝑖𝑡 ,𝑡 )−1+𝑑 ln
𝑇𝑖𝑡 ,𝑡

𝑑
+2 ln 1

𝛿
,

Here, 𝜆min (𝑀) denotes the minimum eigenvalue of matrix𝑀 .
Leveraging the Lipschitz continuity and the properties of the first

derivative for the function 𝜇, 𝑔𝑖𝑡 ,𝑡 (𝜽̂ 𝑖𝑡 ,𝑡 ) −𝑔𝑖𝑡 ,𝑡 (𝜽 𝑖𝑡 ) ⪰ 𝑚𝜇𝑴𝑖𝑡 ,𝑡 , we
assert that the difference between the gradient functions evaluated
at the estimated and true parameter vectors is bounded by the
product of𝑚𝜇 and the matrix𝑴𝑖𝑡 ,𝑡 . Consequently, this relationship
yields the following inequality:

𝑚2
𝜇




𝜽̂ 𝑖𝑡 ,𝑡 − 𝜽 𝑖𝑡




2
𝑴𝑖𝑡 ,𝑡

≤ 𝑇𝑖𝑡 , 𝑗𝜆min (𝑴𝑖𝑡 ,𝑡 )−1 + 𝑑 ln
𝑇𝑖𝑡 ,𝑡

𝑑
+ 2 ln

1
𝛿
.

From Lemma 1, denoting 𝜶 (𝑡, 𝛿) = 1
𝑚𝜇

√︃
8
𝜆̃
+ 𝑑 ln 𝑡

𝑑
+ 2 ln 1

𝛿
, we

can derive that the following inequality holds:���𝜇 (𝑥⊤
𝑚★

𝑡

𝜽 𝑖𝑡 ) − 𝜇 (𝒙⊤𝑚𝑡
𝜽 𝑖𝑡 )

��� ≤𝐿 


𝑥⊤
𝑚★

𝑡

𝜽 𝑖𝑡 − 𝒙⊤𝑚𝑡
𝜽 𝑖𝑡





≤ 2𝐿𝜶 (𝑇𝑖𝑡 ,𝑡−1, 𝛿)



𝒙𝑚𝑡




𝑴−1

𝑖𝑡 ,𝑡
.
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which confirms the accuracy of the estimated group index 𝑖𝑡 for
camera 𝑛𝑡 . Here,𝑚★

𝑡 represents the optimal model at round 𝑡 .
In the context of this analysis, let us consider a scenario where

for any 𝜔 > 0 and any𝑚 ∈ M𝑡 :

P𝑡 (𝜽𝑚 < −𝜔 | |M𝑡 |) ≤ 𝑒
− 𝜔2

2𝜎2 ,

where P𝑡 (·) is the shorthand for the conditional probability given
the size of the set M𝑡 . Given that

E𝑡 [(𝜽⊤𝒙𝑚,𝑡 )2 | |M𝑡 | = E𝑡 [𝜽⊤𝒙𝑚,𝑡𝒙⊤𝑚,𝑡𝜽 | |M𝑡 |]
≥ 𝜆min (E𝒙∼𝜌 [𝒙𝒙⊤]) ≥ 𝜆,

it follows that

P𝑡 ( min
𝑖=1,..., |M𝑡 |

(𝜽⊤𝒙𝑚,𝑡 )2 ≥ 𝜆 − 𝜔 | |M𝑡 |) ≥ (1 − 𝑒
− 𝜔2

2𝜎2 )𝐾 .

From this, we deduce that

E𝑡 [(𝜽⊤𝒙𝑚𝑡
)2 | |M𝑡 |] ≥ E𝑡 [ min

𝑚∈M𝑡

(𝜽⊤𝒙𝑚,𝑡 )2 | |M𝑡 |]

≥
∫ ∞

0
P𝑡 ( min

𝑚∈M𝑡

(𝜽⊤𝒙𝑚,𝑡 )2 ≥ 𝑥 | |M𝑡 |)𝑑𝑥

≥
∫ 𝜆

0
(1 − 𝑒

− (𝜆−𝑥 )2
2𝜎2 )𝐾𝑑𝑥 ≜ 𝜆̃

This establishes a lower bound, 𝜆̃, on the expected squared projec-
tion of 𝜽 onto the feature vectors 𝒙𝑚,𝑡 for any𝑚 inM𝑡 ,

By Claim 1 of [17], Lemma 7, 8 of [39], for each camera 𝑛, for
all 𝑇𝑛,𝑡 ≥ 1024

𝜆̃2
ln 512𝑑

𝜆̃2𝛿
, 𝜆min (𝑴𝑛,𝑡 ) ≥ 𝑇𝑛,𝑡 𝜆̃/8 with high probability.

Thus with high probability, for the belonging group index 𝑖 , we
have: 


𝜽̂𝑛,𝑡 − 𝜽𝑛





𝑴𝑖,𝑡

≤ 1
𝑚𝜇

√︄
8
𝜆̃
+ 𝑑 ln

𝑇𝑛,𝑡

𝑑
+ 2 ln

1
𝛿




𝜽̂𝑛,𝑡 − 𝜽𝑛



 ≤

√︂
8
𝜆̃
+ 𝑑 ln 𝑇𝑛,𝑡

𝑑
+ 2 ln 1

𝛿

𝑚𝜇

√︃
𝜆̃𝑇𝑛,𝑡 /8

.

When𝑇𝑛,𝑡 ≥ 512𝑑
(𝛾𝑞 )2𝜆 ln

|N |
𝛿

with Lemma 10 in [39], we have: 𝜶 (𝑇𝑛,𝑡 ,𝛿)
𝑚𝜇

√︃
𝜆̃𝑇𝑛,𝑡 /8

<
𝛾𝑞
4 . According to Lemma 1 in [66], these conditions are satis-

fied with a probability of at least 1 − 𝛿 , for 𝛿 in the interval (0, 1),
provided that the time 𝑡 meets or exceeds

𝑡 ≥4|N |max

{
512𝑑
(𝛾𝑞)2𝜆̃

ln
|N |
𝛿

,
256
𝜆̃2

ln
32𝑑
𝜆̃2𝛿

}
+ 16|N | ln 4|N |𝑇

𝛿
=: 𝑇𝑞,0,

(2)

With this, we can show that AxiomVision will group all the cam-
eras correctly after 𝑇𝑞,0. Let 𝛼 = 16

√
𝑑

𝜆̃𝑚𝜇

and use 𝑖 (𝑛) to denote the

index of group camera𝑛 belongs to (i.e.,𝑛 ∈ 𝐺𝑖 (𝑛) ). First, ifAxiomVi-
sion deletes the edge (𝑛, ℓ), then camera 𝑛 and camera ℓ belong to
different ground-truth groups, i.e., ∥𝜽𝑛 − 𝜽 ℓ ∥2 > 0. This is because
by the deletion rule of the algorithm, the concentration bound, and
triangle inequality, ∥𝜽𝑛 − 𝜽 ℓ ∥2 ≥




𝜽̂𝑛,𝑡 − 𝜽̂ ℓ,𝑡




2
−


𝜽 𝑖 (ℓ ) − 𝜽 ℓ,𝑡




2 −



𝜽 𝑖 (𝑛) − 𝜽𝑛,𝑡



2 > 0. Second, we show that if ∥𝜽𝑛 − 𝜽 ℓ ∥ ≥ 𝛾𝑞 , Ax-

iomVision will delete the edge (𝑛, ℓ), where the dispersion condi-
tion in Eq. (3) implies that if the condition of deleting edge in Eq.
(7) is met, then cameras 𝑛, ℓ indeed belong to different ground-
truth groups. This is because if ∥𝜽𝑛 − 𝜽 ℓ ∥ ≥ 𝛾𝑞 , then by the tri-
angle inequality, and




𝜽̂𝑛,𝑡 − 𝜽 𝑖 (𝑛)




2
<

𝛾𝑞
4 ,




𝜽̂ ℓ,𝑡 − 𝜽 𝑖 (ℓ )




2
<

𝛾𝑞
4 ,

𝜽𝑛 = 𝜽 𝑖 (𝑛) , 𝜽 ℓ = 𝜽 𝑖 (ℓ ) , we have



𝜽̂𝑛,𝑡 − 𝜽̂ ℓ,𝑡





2
≥ ∥𝜽𝑛 − 𝜽 ℓ ∥ −


𝜽̂𝑛,𝑡 − 𝜽 𝑖 (𝑛)





2
−



𝜽̂ ℓ,𝑡 − 𝜽 𝑖 (ℓ )





2
> 𝛾𝑞−

𝛾𝑞
4 −𝛾𝑞4 =

𝛾𝑞
2 . Note that the

threshold 𝛽 (𝑓 (𝑇𝑛𝑡 ,𝑡−1) + 𝑓 (𝑇ℓ,𝑡−1)) in Eq. (7) is designed in accor-
dance with the theoretical framework [17]. Moreover, Algorithm 1
reinstates the fully connected graph visual model as detailed in Line
11. This adjustment ensures that, when applied across all cameras,
the derived groupings are precise.

Once AxiomVision successfully groups all cameras accurately,
it follows that the discrepancy between the estimated parameter
vector 𝜽̂ 𝑖𝑡,𝑡−1 for group 𝑖𝑡 at time 𝑡 − 1 and the true parameter
vector 𝜽𝑛𝑡 for camera 𝑛𝑡 is bounded by the norm induced by the
matrix 𝑴𝑖𝑡 ,𝑡−1:




𝜽̂ 𝑖𝑡 ,𝑡−1 − 𝜽𝑛𝑡





𝑴𝑖𝑡 ,𝑡−1

≤ 𝜶 (𝑇𝑖𝑡 ,𝑡−1, 𝛿) ≤ 𝜶 (𝑇, 𝛿) . (3)

Then, applying the Cauchy-Schwarz inequality, we obtain:

���𝒙⊤𝑚𝑡

(
𝜽̂ 𝑖𝑡 ,𝑡−1 − 𝜽𝑛𝑡

)���
≤ ∥𝑥 ∥𝑴−1

𝑖𝑡 ,𝑡−1




𝜽̂ 𝑖𝑡 ,𝑡−1 − 𝜽𝑛𝑡





𝑴−1

𝑖𝑡 ,𝑡−1
≤ 𝜶 (𝑇, 𝛿)∥𝑥 ∥𝑴−1

𝑖𝑡 ,𝑡−1
.

By setting 𝛿 = 1/𝑇 , with probability at least 1−1/𝑇 , for each camera
𝑛𝑡 with the selected visual model𝑚𝑡 under query 𝑞, the following
holds: ���𝒙⊤𝑚𝑡

(
𝜽̂ 𝑖𝑡 ,𝑡−1 − 𝜽𝑛𝑡

)��� ≤ 𝛼 ∥𝒙 ∥𝑴−1
𝑖𝑡 ,𝑡−1

. (4)

This establishes a confidence interval that bridges the gap between
group-based visual model selection and individual selection.

The analysis of instantaneous regret, 𝑅𝑒𝑔𝑡 , at any given round 𝑡
for the selected visual model𝑚𝑡 under visual task 𝑞, allows us to
assess the immediate loss due to the choice of model at that round.
For 𝑡 ≥ 𝑇𝑞,0, the instantaneous regret is given by:

𝑅𝑒𝑔𝑡 =𝜇 (𝑥⊤𝑚★
𝑡

𝜽𝑛𝑡 ) − 𝜇 (𝒙⊤𝑚𝑡
𝜽𝑛𝑡 )

≤2𝜶𝐿(𝑇𝑖𝑡 ,𝑡−1, 𝛿)


𝒙𝑚𝑡




𝑴−1

𝑖𝑡 ,𝑡−1
≤ 2𝛼𝐿



𝒙𝑚𝑡




𝑴−1

𝑖𝑡 ,𝑡−1
.

(5)

Aggregating all instant regrets under visual task 𝑞 into a total
regret 𝑅𝑒𝑔(𝑇𝑞), and applying the Cauchy-Schwarz inequality for
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summation over all rounds, we derive:

𝑅𝑒𝑔(𝑇𝑞) = E

𝑇𝑞,0∑︁
𝑡=1
E𝑡 (𝑅𝑒𝑔𝑡 )

 + E


𝑇𝑞∑︁
𝑡=𝑇𝑞,0+1

E𝑡 (𝑅𝑒𝑔𝑡 )


≤ 𝑇𝑞,0 +
𝑇𝑞∑︁

𝑡=𝑇𝑞,0+1
𝐿min

{
2, 2𝛼



𝒙𝑚𝑡




𝑴−1

𝑖𝑡 ,𝑡−1

}
(𝑎)
≤ 𝑇𝑞,0 + 2𝛼

𝑔𝑞∑︁
1

√√√√√
𝑇𝑞

𝑇𝑞∑︁
𝑡=𝑇𝑞,0+1

min{1,


𝒙𝑚𝑡



2
𝑴−1

𝑖𝑡 ,𝑡−1
}

(𝑏 )
≤ 𝑇𝑞,0 + 2𝛼𝐿

√︄
2𝑔𝑞𝑑𝑇 log

(
1 + 𝑇

𝜁𝑑

)
,

(6)

where 𝑔𝑞 denotes the number of ground-truth camera groups under
visual task 𝑞 and (a) is due to the Cauchy-Schwarz inequality, (b)
is by Lemma 11 in [5]. Furthermore, in the event of failure, which
occurs with a probability of at most 𝛿 , the regret remains constant.

□

B Extended Experiments

B.1 Effect of Camera Angles on Model Selection

(a) Camera A (b) Camera B (c) Camera C

Figure 1: The same object from different perspectives.

Fig. 1 demonstrates how the perception of the same object changes
from different camera angles. Camera A, positioned at a greater
distance and higher angle, provides an overview perspective, po-
tentially altering the perception of size and shape due to increased
distance and angle, thereby necessitating a more complex object
detection algorithm. On the other hand, Camera C captures the
object at a low angle and close range, clearly revealing details,
which allows for the use of a more lightweight object detection
algorithm. These variations in perspective significantly impact how
surveillance or computer vision systems detect and recognize ob-
jects, underscoring the influence of different camera angles on the
selection of visual models.

B.2 Accuracy-Bandwidth Trade-off

As illustrated in Fig. 2, our system adeptly achieves a balance be-
tween two pivotal metrics—accuracy and bandwidth—through an
online visual model selection process based on the tiered edge-
cloud architecture. In comparison, both EAMU and Chameleon
limit themselves to relatively uniform visual models which result
in either compromised accuracy or excessive bandwidth consump-
tion. Conversely, by setting combinatorial accuracy thresholds of
𝑇ℎ = 0.7, 0.8, 0.9 under various bandwidth scenarios respectively,
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Figure 2: Accuracy v.s. the

normalized bandwidth.
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Figure 3: Accuracy under

varying bandwidth.

AxiomVision consistently achieves higher accuracywith lower band-
width usage. This efficiency allows for the conservation of band-
width resources without sacrificing accuracy.

B.3 Accuracy with Bandwidth Variability

Fig. 3 depicts the behavior of video feeds over a 60-second span, sub-
ject to dynamic and varied bandwidth conditions at ENs. Notably,
Fig. 3 highlights how AxiomVision dynamically adjusts its selection
of visual models in response to a surge in bandwidth availability
between 20 and 40 seconds. This adjustment enables the adoption of
more resource-demanding visual models, resulting in a significant
boost in accuracy. Such adaptability demonstrates AxiomVision’s
exceptional responsiveness to changes in bandwidth. For detailed
changes in accuracy for the four specific visual tasks as bandwidth
varies, please refer to Table 1-4.

B.4 Ablation Study on Different Parameters

Fig. 4 and Fig. 5 present a detailed comparative analysis on both
fixed and adjustable perspective cameras, illustrating the perfor-
mance of our proposed system, AxiomVision, against Dual-MS
across four distinct visual tasks. This thorough comparison, con-
ducted over a wide range of parameter settings, ensures a com-
prehensive evaluation of the system’s capabilities. Notably, the
superior accuracy and consistent performance of AxiomVision un-
derscore its robustness and adaptability to various environmental
conditions.
B.5 Visual Model Deployment Analysis

We continue to explore deployment strategies for visual models
within edge-cloud architectures. Specifically, we categorize the de-
ployed visual models into three levels: simple, medium-complexity,
and complex visual models. The simple and medium-complexity
models are deployed at the ENs, while the complex models are de-
ployed in the cloud. This comprehensive tiering strategy for visual
model deployment is named AxiomVision (multi-level). In the main
text, we also introduce a deployment strategy that includes only two
levels of models, referred to as Dual-MS. Here, we explore the com-
parison between different dual-level models and multi-level models.
Specifically, we have explored the advantages and disadvantages of
models resulting from different selection methods.

First, we introduce a dual-level deployment strategy that incor-
porates only the simple and medium-complexity models, referred
to as AxiomVision (bi-level1). As shown in Fig. 6(a)-(c), we initially
assessed the impact of these two deployment strategies on accuracy.
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Table 1: Accuracy under varying bandwidth for classification.

Time (s) 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Accuracy 0.922 0.922 0.924 0.916 0.920 0.918 0.920 0.921 0.919 0.913 0.925 0.930 0.928 0.931 0.933
Bandwidth (Mbps) 0.407 0.365 0.365 0.267 0.232 0.203 0.147 0.161 0.168 0.098 0.168 0.182 0.175 0.196 0.224

Table 2: Accuracy under varying bandwidth for counting.

Time (s) 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Accuracy 0.923 0.923 0.929 0.921 0.920 0.926 0.960 0.962 0.965 0.969 0.967 0.928 0.898 0.902 0.890
Bandwidth (Mbps) 1.024 1.270 1.228 1.094 1.144 1.144 1.508 1.768 1.789 1.726 1.628 1.186 0.779 0.954 0.730

Table 3: Accuracy under varying bandwidth for detection.

Time (s) 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Accuracy 0.913 0.912 0.910 0.906 0.907 0.942 0.979 0.972 0.978 0.976 0.880 0.835 0.845 0.830 0.843
Bandwidth (Mbps) 1.515 1.593 1.501 1.431 1.557 1.985 2.540 2.392 2.526 2.441 1.256 0.702 0.898 0.695 0.716

Table 4: Accuracy under varying bandwidth for aggregation.

Time (s) 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Accuracy 0.824 0.823 0.827 0.823 0.822 0.855 0.870 0.871 0.869 0.865 0.871 0.835 0.790 0.786 0.792
Bandwidth (Mbps) 0.316 0.351 0.379 0.316 0.358 0.631 0.772 0.821 0.751 0.673 0.765 0.519 0.168 0.210 0.210
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Figure 4: Comparative analysis of AxiomVision performance on fixed perspectives with different parameters.
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Figure 5: Comparative analysis of AxiomVision performance on adjustable perspectives with different parameters.

The results indicate that AxiomVision (multi-level) outperforms Ax-
iomVision (bi-level1) across various object detection tasks, demon-
strating higher accuracy. Additionally, we considered bandwidth
factors, taking into account a trade-off between accuracy and cost,
denoted as 𝑎 − 𝜂𝑏, where 𝑎 and 𝑏 represent normalized accuracy

and bandwidth, respectively, and 𝜂 = 0.5 is a weighted unit con-
version parameter. Fig. 6(d)-(f) reveals that although AxiomVision
(bi-level1), by not requiring the scheduling of complex cloud-based
visual models, saves bandwidth resources, its inability to handle
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Figure 6: Comparison of AxiomVision with multi deployment levels; AxiomVision (bi-level) with the first and second levels.
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Figure 7: Comparison of AxiomVision with multi deployment levels; AxiomVision (bi-level) with the first and third levels.
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Figure 8: Comparison of AxiomVision with multi deployment levels; AxiomVision (bi-level) with the second and third levels.

tasks requiring high accuracy results in lower overall accuracy,
making the overall trade-off less favorable.

Secondly, we explored another dual-level visual model deploy-
ment scheme, namely deploying only simple and complex models,
designated as AxiomVision (bi-level2). Fig. 7(a)-(c), compared to
AxiomVision (multi-level), AxiomVision (bi-level2), due to covering
only simple and complex models, may more frequently invoke com-
plex visual models, thus exhibiting higher accuracy under certain
conditions. However, as shown in Fig. 7(d)-(f), AxiomVision (bi-
level2) leads to higher resource consumption due to the omission of
medium-complexity models. In contrast, AxiomVision (multi-level)
can adopt medium-complexity models for tasks of medium com-
plexity, ensuring ideal accuracy while efficiently saving bandwidth
resources. Therefore, when evaluating the trade-off between ac-
curacy and bandwidth, the multi-level visual model deployment
strategy demonstrates significant advantages.

Finally, we examined the deployment scheme of the dual-level
visual model, termed AxiomVision (bi-level3), which incorporates
medium-complexity and complex models. As illustrated in Fig. 8(a)-
(c), unlike the AxiomVision (multi-level) approach, AxiomVision
(bi-level3) eschews the use of simple models and this modification
enhances accuracy. However, it is worth noting that AxiomVision
(multi-level) also achieved the threshold targets. However, when we
take into account a trade-off between accuracy and execution time,
denoted as 𝑎 − 𝛾𝑒 , where 𝑎 and 𝑒 represent normalized accuracy
and time, respectively, and 𝛾 = 0.2 is a weighted unit conversion
parameter. As shown in Fig. 8(d)-(f), when evaluating the trade-off

between accuracy and execution time, the multi-level visual model
deployment strategy demonstrates significant advantages.

In summary, AxiomVision (bi-level) cannot simultaneously en-
sure and balance the three metrics of accuracy, bandwidth, and ex-
ecution time. In contrast, AxiomVision (multi-level), when properly
structured, can achieve better results in all three metrics. Through
the discussions above, we provide deeper insights into the effective
deployment of visual models, and demonstrate that the multi-level
deployment strategy has outstanding adaptability to visual tasks of
varying complexities—capable of maintaining high accuracy, low
latency and resource consumption, presenting an optimal solution.
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