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Abstract. Diagnosing multiple sclerosis (MS) accurately is highly chal-
lenging due to symptom overlap with other demyelinating diseases. Here,
we present DemyeliNeXt, an explainable few-shot learning framework de-
signed to classify MS and other demyelinating diseases from MRI scans.
This framework employs a prototypical network with a 3D DenseNet-121
backbone and uses Deep SHAP for feature importance visualization. We
train our DemyeliNeXt on a dataset from African populations and we
test it for different datasets including MICCAI MSSEG2 public dataset.
Our findings demonstrate robust performance across diverse datasets
highlighting the model’s potential to enhance diagnosis accuracy and
generalizability in various clinical settings.
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1 Introduction

Multiple sclerosis (MS) is a complex neurological condition that is often mis-
diagnosed due to its symptom overlap with other conditions such as vasculitis
and vascular leukoencephalopathy. Studies indicate that over half of the patients
were misdiagnosed for a period exceeding three years [2,12]. Moreover, 70% of
these patients had been administered disease-modifying therapies (DMTs), and
31% suffered unnecessary morbidity due to the incorrect diagnosis and treatment
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[2,12]. This diagnostic challenge results in a prolonged time to achieve a definitive
diagnosis, often exceeding several months. Hence, accurate and timely diagnosis
is crucial for effective management and treatment planning in MS patients. Ad-
vanced imaging techniques and biomarker analyses are increasingly important
in differentiating MS from other similar presenting conditions, thereby reducing
diagnostic errors and improving patient outcomes. Machine learning provides a
robust approach for the analysis of medical images and the diagnosis of MS.

In this context, several studies have employed machine learning models for
MS classification. For instance, Wang et al. [15] employed a multi-layer convo-
lutional neural network (CNN) with data augmentation techniques to classify
MS. However, the model’s explainability remains unexplored. To address this
issue, Zhang et al. [17] proposed a classification model for MS subtypes based on
VGG19 [10] with global average pooling and utilized Grad-CAM++ [1] for model
explanation. While effective in performance and interpretability, this approach
did not account for the diversity of MS data, particularly by not comparing
it with other similar demyelinating diseases such as vasculitis. To rectify this
concern, Huang et al. [3] leveraged a Transformer-based model with a Multi-
ple Instance Learning (MIL) strategy to discriminate between MS and various
demyelinating diseases. The authors used Grad-CAM to visualize feature extrac-
tion through activation heatmaps. Nevertheless, their study did not incorporate
data from low-income countries, such as datasets from the African population.
This omission underscores a critical gap, as regional genetic and environmental
factors influence disease onset and progression [16]. These factors impact the
timeliness and accuracy of MS diagnosis, thereby potentially threatening the
patient’s life.

Additionally, the collection of MS and other demyelinating diseases data is
challenging due to the variability in disease presentation, limited patient avail-
ability, and the high cost of medical imaging. Therefore, the application of few-
shot learning is essential to leverage limited data effectively. Furthermore, a key
finding in MS identification is the presence of white matter lesions in the brain,
detectable via Fluid Attenuated Inversion Recovery (FLAIR) sequence of MRI.

This study focuses on distinguishing MS from other demyelinating diseases.
We introduce DemyeliNeXt, an explainable few-shot learning framework for the
classification of MS and other demyelinating diseases. Our approach employs a
prototypical network with a 3D DenseNet-121 backbone, which integrates spatial
information from FLAIR MR (Magnetic Resonance) images to classify them as
MS vs other demyelinating diseases (NON-MS). Additionally, the framework
provides model interpretability through the Deep SHAP model for visualizing
the most important features leading to the classification of the input MRI. The
primary contributions of our work are as follows:

1. Application of Few-Shot Learning: We apply few-shot learning for the de-
tection of multiple sclerosis (MS).

2. Emphasis on Explainability: Our method integrates explainability mecha-
nisms to enhance interpretability, making it more suitable for clinical set-
tings.
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3. Utilization of African 3D MRI Data: We trained our model using 3D MRI
data from African populations, which are often underrepresented in medical
datasets. By benchmarking our model against MICCAI MS public dataset,
we demonstrated its robust performance, thereby validating its generaliz-
ability across diverse populations.

2 Proposed Method

In this section, we explain the key building blocks of our proposed DemyeliNeXt
architecture for explainable MS identification from other demyelinating diseases.
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Fig. 1. DemyeliNeXt Pipeline. (A) Preprocessing MRI scans: includes skull stripping,
bias correction normalization, and FLAIR MRI smoothing. (B) Data splitting into
support and query sets. (C) Training a prototypical network with 3D DenseNet-121
backbone. (D) Model testing on unseen MRIs with explanations provided using Deep
SHAP.

2.1 Architecture overview

In this study, we introduce DemyeliNeXt, a four-stage pipeline designed for the
classification of multiple sclerosis (MS) and other demyelinating diseases from
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MRI scans, while also providing model interpretability. Figure 1 illustrates the
first stage (Section 2.2), which involves a preprocessing pipeline for FLAIR MRI
scans. Here, raw FLAIR images are normalized, while noise and artifacts are
reduced. In the second stage, the MRI scans are divided into training, validation,
and testing sets. Each set contains a support set (S) with labeled examples
to update model parameters and a query set (Q) with unlabeled examples for
performance evaluation.

The third stage (Section 2.3) involves training a 3D DenseNet-based (DenseNet-
121) [4] prototypical network to classify the preprocessed MRIs. The training
process utilizes N tr training tasks, each comprising Nshots support examples for
model weight updates and Nquery query examples for performance assessment.
In the final stage, we employ Deep SHAP [7] to approximate the model for inter-
pretability. Deep SHAP, inspired by DeepLIFT [9], assigns importance scores to
each input feature by propagating neuron contributions backward through the
network. These scores are based on the difference from a reference input, known
as the "baseline" or "background" input, representing a typical or neutral state
for the input features. The importance scores are computed via the combination
of the model’s weights, the actual input and the baseline input. After training the
explainer, we use the model and explainer to predict and interpret new examples
of MS and other demyelinating diseases during inference.

2.2 Preprocessing Pipeline

We begin our preprocessing pipeline by anonymizing DICOM MRI scans, con-
verting them to NIfTI format. This process removes patient metadata and con-
solidates each volume into a single file. Next, we perform skull stripping using the
ROBEX algorithm [5] to eliminate non-brain tissues. We then apply bias field
correction using the N4ITK algorithm [14] to remove low-frequency intensity
non-uniformities. Following this, we normalize MRI intensities to a range of 0 to
1. We reduce the noise using a Gaussian filter. Finally, we reorient the images
to the "IPL" (Inferior, Posterior, Left) orientation, resample them to isotropic
voxels, and resize them to a standard format.

2.3 Few shot learning

Prototypical network. Prototypical Networks (ProtoNet) [11] seek to find a
metric space in which samples from the same class are close to one another. This
approach makes the model particularly useful in settings with limited labeled
data. Based on the prototype concept [11], the model depicts each class using
the mean of its embedded support set S. Prototypical Networks then determine
query samples Q based on their proximity to these prototypes. To generate the
image embeddings, we use a 3D DenseNet-121 [4] as a backbone. We employed
Euclidian distance for our ProtoNet to calculate the distance between the sup-
port samples and query samples. We create dataset episodes using a sampler
that follows uniform distribution to load data from the dataset for each label.
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Loss function We use binary cross-entropy loss:

L = − [y log(p) + (1− y) log(1− p)] (1)

where y and p are the MS label and the predicted probability of MS from the
model respectively. We use ADAM [6] as an optimizer with step LR scheduler
to decay the learning rate.

2.4 Explainability with Deep SHAP

Deep SHAP [7] approximates explanations for deep neural network models using
SHAP (SHapley Additive exPlanations) values to quantify feature importance.
This method integrates concepts from a deep learning explanation technique
called DeepLIFT [9] that uses Shapley values [8]. We apply Deep SHAP to in-
terpret our trained 3D DenseNet-based ProtoNet model using preprocessed MRI
scans from the testing dataset. This approach creates a simplified explanation
model, assessing the importance of each voxel in our testing MRIs, visualized
through feature importance plots.

2.5 Model inference and explanation

After training and evaluating the model, we perform inference on unseen exam-
ples where we pass them to the explainer to check the used feature importance
of the model on the classification of the new examples.

3 Results and discussion

In this section, we provide a quantitative evaluation of our model on three dis-
tinct datasets and we display the findings of the used Deep SHAP.

3.1 Employed datasets

In this work, we utilized three labeled datasets, summarized in Table 1. We
trained, validated, and tested using a set that comprises 182 FLAIR MRI scans
from 121 patients with multiple sclerosis (MS) and other demyelinating diseases
(NON-MS). The dataset was split randomly and patient-wise into three different
sets as follows: 70% for training, 15% for validation and 15% for testing. This
dataset is sourced from the radiology department at CHU Fattouma Bourguiba
Monastir (FBM), Tunisia. It includes 3D and axial scans: 91 scans from 52 MS
patients and 91 scans from 69 patients with other demyelinating diseases such
as vasculitis and vascular leukopathy.

We tested our model on a set containing 91 FLAIR MRI scans from 36 MS
patients, obtained from the MRI center of CHU Sahloul Sousse (SS), Tunisia.
Additionally, we used 80 3D FLAIR MRI scans from 40 patients in the MIC-
CAI 2021 MS Segmentation Challenge (MSSEG-2) as a benchmark dataset. We
randomly sampled data from each set to create episodes consisting of a support
set and a query set. Prior to training, gamma correction was applied to all scans
using γ = 2.5. No further data augmentation was performed.
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Table 1. Datasets statistics

Source Number of patients Number of scans Age Gender
CHU FBM, Tunisia MS: 52 MS: 91 21-63 MS: 22M/30F

NON-MS: 69 NON-MS: 91 NON-MS: 19M/50F
CHU SS, Tunisia 36 MS 91 NA 4M/32F
MSSEG-2 40 MS 80 NA NA

3.2 Experimental settings.

Parameter settings For model training, we used an ADAM optimizer [6] with
a learning rate of 0.001. We applied learning rate decay for every single step by
0.1 using a step scheduler. We employed dropout with 20% rate. As for Deep
SHAP explainer training, we adopted 90 background examples. We trained our
model and our explainer on the Nvidia RTX 3090 GPU.

Hyperparameter Settings We conducted three distinct training experiments
using 2-way (K = 2) classification. Validation was performed with 100 episodes
(Nval = 100) every 500 training episodes. Testing was also conducted with 100
episodes. Each training lasted for 1000 episodes. Detailed hyperparameters for
each experiment are listed below:

– Experiment A: Trained with 5 examples in both support and query sets
(Nshots = 5, Nquery = 5).

– Experiment B: Trained with 3 examples in both support and query sets
(Nshots = 3, Nquery = 3).

– Experiment C: Trained with 1 example in both support and query sets
(Nshots = 1, Nquery = 1).

– Test 1: We used the saved model from Experiment A to test on 91 scans
from CHU SS MS dataset and on 13 scans from CHU FBM NON-MS test
set.

– Test 2: We used the saved model from Experiment A to test on 80 scans
from MSSEG-2 and on 13 scans CHU FBM NON-MS test set.

3.3 DemyeliNeXt evaluation

Table 2 shows the classification accuracy, precision, recall, specificity, and F1
scores for the different experiments detailed in Section 3.2. Across all experi-
ments, Test 2, which involved training on an African dataset and testing on a
combination of African and European datasets, achieved the highest classifica-
tion accuracy. This result may indicate that our model has the ability to gener-
alize well across different populations despite the differences in socio-economic
conditions between the subjects in each of the datasets.

In contrast, Experiment C and B, which utilized one, and three shots and
queries, respectively, demonstrated the lowest performance. This indicates that
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Table 2. Experiments results

Experiments/Tests Accuracy MS NON-MS Precision Recall Specificity F1
specific specific score
Accuracy Accuracy

A: 5 shots 5 queries
(Dataset: CHU FBM) 78.8% - - 0.75 0.87 0.71 0.8
B: 3 shots 3 queries
(Dataset: CHU FBM) 63.83% - - 0.62 0.72 0.56 0.67
C: 1 shot 1 query
(Dataset: CHU FBM) 65.0% - - 0.64 0.68 0.62 0.66
Test 1:
5 shots 5 queries
(Dataset:
CHU SS MS
+ CHU FBM NON-MS) 75.5% 68.6% 82.4% 0.8 0.69 0.82 0.74
Test 2:
5 shots 5 queries
(Dataset:
MSSEG-2
+ CHU FBM NON MS) 87.8% 85% 90.6% 0.9 0.85 0.91 0.87

reducing the number of shots below a certain threshold adversely affects model
accuracy. These findings suggest that while reducing shots can decrease com-
putational demands, maintaining an adequate number of shots is critical for
reliable performance (see experiment A). In particular, one could generally rec-
ommend using the model trained in Experiment A as a guide for practitioners
in balancing computational efficiency with diagnosis accuracy for MS.

Figure 2 illustrates the explanation of our model backbone on unseen MS
and NON-MS examples with lesion annotation. The plot highlights the features
utilized by our trained ProtoNet model for classification that are explained by the
Deep SHAP method. We evaluated the explainer results using the key diagnostic
features outlined in the McDonald criteria [13], which include lesion size, number
of lesions, lesion location, lesion contrast, and lesion shape. The Deep SHAP
explainer seems to identify some of the key features for classification , specially
the lesions in MS example (Fig.2 B). However, one should note that there is a
risk that the included features in the explanation could be deemed irrelevant to
clinicians.

Limitations and future studies. Despite the promising results, Demye-
liNeXt has a few limitations that warrant further investigation. For instance, our
approach currently utilizes only FLAIR MRI scans; incorporating other imaging
modalities like T1-weighted and T2-weighted MRIs could potentially enhance
diagnostic accuracy. While Deep SHAP provides some level of explainability,
the clinical relevance of the highlighted features remains uncertain, indicating
a need for further refinement. In future studies, we aim to benchmark against
state-of-the-art methods. We will also focus on expanding the dataset to in-
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A B

Fig. 2. Deep SHAP Explanation of MS and NON-MS Examples. A: Explanation of
NON-MS example. B: Explanation of MS example. For each of the subfigures (A
and B), the left panel displays an annotated MRI section of a patient with a NON-
MS demyelinating disease (A) and a patient with MS disease (B). The center panel
highlights the features identified by our model for classifying the case as NON-MS
using Deep SHAP. The right panel shows the features identified for classification as
MS using Deep SHAP. Lesions’ locations are highlighted with orange rectangles across
all panels. For the two right hand side panels, blue indicates the features excluded by
the model, while red shows the important features for each class

clude diverse minority populations, integrating multimodal imaging techniques,
as well as developing more clinically relevant explainability methods with their
evaluation.

4 Conclusion

In this study, we introduced DemyeliNeXt, an explainable few-shot learning
framework designed for the classification of multiple sclerosis (MS) and other
demyelinating diseases in an African population. By incorporating the Deep
SHAP model, we provided visual explanations for the model’s decisions, enhanc-
ing its interpretability. Our findings, derived from MRI data of underrepresented
African populations, demonstrate that this approach can generalize effectively to
non-African datasets. Although the classification accuracy decreases with fewer
shots, the method remains computationally efficient and can aid practitioners in
improving diagnostic accuracy. In future work, we aim to extend our framework
by including more minority populations and integrating additional neuroimaging
modalities, thereby enhancing the generalizability and robustness of our model.
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