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A Table of Notation

We provide a table of notation so that the proof section can be easily followed.

Symbol Explanation
m Variable to denote a base arm
G Variable to denote a group
S Variable to denote a super arm
St Variable to denote the chosen super arm at round t
Mt Set of base arms that are available at round t
Mt Number of base arms that become available at round t
Gt Set of feasible groups in round t
Gt,good Set of groups whose expected rewards are above their thresholds
St Set of feasible super arms in round t
S ′

t Set of super arms whose corresponding groups satisfy their thresholds
Ŝ ′

t Set of feasible super arms whose corresponding groups’ reward indices are above their thresholds
S Overall feasible set of super arms
X Context set
Xt Set of available contexts in round t
xt,m Context associated with base arm m
xt,G Context vector of base arms in G
xt,S Context vector of base arms in S
r(x) Random outcome of base arm with context x
f(x) Expected outcome of base arm with context x
η N (0, σ2I) independent observation noise
U(S, r1(xt,S)) Random super arm reward
u(S, f1(xt,S)) Expected super arm reward function
VG(r2(xt,G∩St

)) Random group reward
vG(f2(xt,G∩St

)) Expected group reward function
γt,G Threshold for group G at round t
ζ Trade-off parameter
it(xt,m) Index of base arm m at round t which is given to Oraclespr (reward index)
i′
t(xt,m) Index of base arm m at round t which is given to Oraclegrp (satisfying index)

γT Maximum information gain which is associated with the context arrivals X1, . . . ,XT

γN Maximum information gain given N base arm outcome observations
K Maximum possible number of base arms in a super arm

When we state that a ≥ b with a and b being vectors, we mean that every component of a is greater than or
equal to the corresponding component of b. This holds for other comparison operators as well. Also, we omit
G from vG and VG; and S from U(S, . . .) and u(S, . . .) when it is obvious from the context. In the definition
of S ′

t and Ŝ ′
t, the term corresponding groups means the groups that contain the base arms of the chosen super

arm.

B Additional Experimental Results

B.1 Changing Trade-off Parameter (ζ)

In this simulation we showcase the behavior of our algorithm for changing trade-off parameter (ζ) values.
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B.1.1 Setup

We use a synthetic setup where we generate the arm and group data needed for the simulation. Similar to
the main paper simulations, in each round t, we first sample the number of groups, |Gt|, from a Poisson
distribution with mean 50. Then, for each group we generate the contexts of the base arms in that group,
where the number of base arms is sampled from a Poisson distribution with mean 5. Each base arm has a
two-dimensional (2D) context that is sampled uniformly from [0, 1]2. Then, we sample the expected outcome
of each base arm of each group from a GP with zero mean and two squared exponential kernels, each given by

k(x, x′) = exp
(
− 1

2l2 ∥x− x′∥
)

,

where we set l = 0.5. Note that given that we run the simulation for T = 100 rounds, there will be an
expected number of 25000 arms and to sample a GP function with that many points we will need to compute
the Cholesky decomposition of a 625 million element matrix, which would be very resource-heavy. Instead,
we first sample 6000 2D contexts from [0, 1]2 and then sample the GP function at those points. Then, during
our simulation, we sample each base arm’s context x and corresponding expected outcome f(x) from the
generated sets. Finally, we set r(x) = f(x) + η, where η ∼ N (0, 0.12I2). We set the group reward, v, to be
the variance of the outcomes in the group and we set the threshold to be the 80% percentile of the group
rewards of all groups in all rounds of the simulation. We use a high percentile value to increase the difficulty
of the group thresholding, so that minimizing super arm regret does not necessarily yield minimizing group
regret. Finally, the super arm reward is the linear sum of the base arms.

B.1.2 Results

We run our algorithm using five different values of ζ, linearly spaced between 0.001 and 0.999. Figure 5 shows
the final super arm and group regret of each ζ run (i.e., the cumulative regrets at the end of the simulation).
First, notice a trade-off between super arm and group regret. As one increases, the other decreases. This
is expected because to minimize group regret, groups with arms whose outcomes are spread out and have
high variance must be picked, but to minimize super arm regret, groups with high outcomes must be picked.
Second, as ζ increases, the super arm regret increases while the group regret decreases. This is because the
variance of the indices given to the first oracle (i′), which determines which groups pass their thresholds,
decreases as ζ approaches 1. Thus, the larger ζ is, the stricter the first oracle is. Conversely, the smaller ζ is
the laxer the first oracle and the stricter the second oracle, which determines which super arm to play.
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Figure 5: Final super arm and group regret for different trade-off parameter, ζ, values
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C Proofs

C.1 Auxiliary Proofs

In this part, we will prove results that will be used in the proofs of the theorems in the paper.

Throughout this section, we take j ∈ {1, 2}. We denote by rjJt−1K the vector of base arm outcome observations
made until the beginning of round t, where

rjJt−1K = [rT
j (x1,S1), . . . , rT

j (xt−1,St−1)]T .

For any t ≥ 1, the posterior distribution of fj(x) given the observation vector rjJt−1K is
N (µjJt−1K(x), (σjJt−1K(x))2), for any x ∈ Xt. In our analysis, we will resort to the following Gaussian
tail bound

P
(
|fj(x)− µjJt−1K(x)| > (

√
βt)σjJt−1K(x)

∣∣∣rjJt−1K

)
≤ 2 exp

(
−βt

2

)
for βt ≥ 0 . (3)

The following lemma shows that the base arm indices upper bound the expected outcomes with high
probability.
Lemma 1. (Lemma 1 of (Nika et al., 2021)) Fix δ ∈ (0, 1), and set βt := 2 log (Mπ2t2/3δ). Let Fj := {∀t ≥
1,∀x ∈ Xt : |fj(x)− µjJt−1K(x)| ≤ (

√
βt)σjJt−1K(x)}. We have P(Fj) ≥ 1− δ.

Now, we state that the modified indices upper bound the expected base arm outcomes with high probability
under the events Fj .
Lemma 2. The following arguments hold under F1 ∩ F2.

it(x) ≥ f1(x),∀t ≥ 1, ∀x ∈ Xt

i′
t(x) ≥ f2(x),∀t ≥ 1, ∀x ∈ Xt . (4)

Proof. Fix t ≥ 1 and x ∈ Xt. Under event F1, we have the following chain of inequalities

f1(x)− µ1Jt−1K(x) ≤ (
√

βt)σ1Jt−1K(x)

f1(x)− µ1Jt−1K(x) ≤ 1
1− ζ

(
√

βt)σ1Jt−1K(x) (5)

f1(x) ≤ µ1Jt−1K(x) + 1
1− ζ

(
√

βt)σ1Jt−1K(x) = it(x) .

Proceeding in the same fashion for event F2 , we obtain

f2(x)− µ2Jt−1K(x) ≤ 1
ζ

(
√

βt)σ2Jt−1K(x) (6)

f2(x) ≤ µ2Jt−1K(x) + 1
ζ

(
√

βt)σ2Jt−1K(x) = i′
t(x) ,

where equation 5 and equation 6 follow from the fact that 1
1−ζ ≥ 1 and 1

ζ ≥ 1 when ζ ∈ [0, 1].

Next, we show that the set of feasible super arms whose corresponding groups satisfy their thresholds is a
subset of the set of feasible super arms whose groups’ reward indices are above their thresholds. We later use
this result in Lemma 5.
Lemma 3. Fix δ ∈ (0, 1). The following argument holds under the event F2 when the group reward function
v satisfies the monotonicity assumption given in Assumption 1.

S ′
t ⊆ Ŝ ′

t, ∀t ≥ 1.
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Proof. For any St and for all G we have:

St ∈ S ′
t ⇐⇒ v(f2(xt,G∩St)) ≥ γt,G (7)
⇐⇒ v(f2(xt,G∩St))− γt,G ≥ 0
=⇒ v(i′

t(xt,G∩St))− γt,G ≥ 0 (8)
⇐⇒ St ∈ Ŝ ′

t (9)

where equation 7 follows from the definition of S ′
t, equation 8 follows from the inequality that v(i′

t(xt,G∩St
)) ≥

v(f2(xt,G∩St
)). Since i′

t(xt,G∩St
) ≥ f2(xt,G∩St

) under the event F2 and v is monotone by assumption, this
inequality is valid. Lastly, equation 9 follows from the fact that Oraclegrp is an exact oracle and will return
the groups where v(i′

t(xt,G∩St
)) > γt,G. As this reasoning is true for any St, we indicate that S ′

t ⊆ Ŝ ′
t.

Detail:

S ′
t := {S ∈ St : ∀(G ∈ Gt), vG(f2(xt,G∩S)) ≥ γt,G}.
Ŝ ′

t := {S ∈ St : ∀G ∈ Gt, S ∩G ∈ Gt,good}
Gt,good := {G′ ⊆ G | G ∈ Gt and vG(i′

t(xt,G′)) ≥ γt,G′}

i′
t(xt,m) := µ2Jt−1K(xt,m) + 1

ζ
(
√

βt)σ2Jt−1K(xt,m).

Next, we upper bound the group regret in terms of the posterior variances of base arms. Note that group
regret is incurred when a selected group’s expected reward is below its threshold whereas its index is above.
Therefore, whenever a group G incurs group regret in round t, then v(f2(xt,G∩St)) < γt,G < v(i′

t(xt,G∩St))
must happen. This observation plays a key role in the analysis of the next lemma. Moreover, we use the
notation x̃t,k to denote the context of the kth base arm in G∩St at round t for convenience, unless otherwise
stated.
Lemma 4. Fix t ≥ 1, and consider G ∈ Gt. The following argument holds under the event F2:

[γt,G − v(f2(xt,G∩St
))]+ ≤

(
ζ + 1

ζ

)
B
√

βt

|G∩St|∑
k=1

|σ2Jt−1K(x̃t,k)| . (10)

Proof. [γt,G − v(f2(xt,G∩St))]+ > 0 implies that v(f2(xt,G∩St)) < γt,G and v(i′
t(xt,G∩St)) ≥ γt,G. Therefore,

whenever G incurs group regret it holds that v(f2(xt,G∩St
)) < γt,G ≤ v(i′

t(xt,G∩St
)).

0 < γt,G − v(f2(xt,G∩St
)) < v(i′

t(xt,G∩St
))− v(f2(xt,G∩St

))
0 < [γt,G − v(f2(xt,G∩St

))]+ < v(i′
t(xt,G∩St

))− v(f2(xt,G∩St
))

≤ BG∩St

|G∩St|∑
k=1

|i′
t(x̃t,k)− f2(x̃t,k)| (11)

≤ BG∩St

|G∩St|∑
k=1

|µ2Jt−1K(x̃t,k)− f2(x̃t,k)|+ BG∩St

|G∩St|∑
k=1

∣∣∣∣1ζ√βtσ2Jt−1K(x̃t,k)
∣∣∣∣

(12)

≤
(

ζ + 1
ζ

)
B(
√

βt)
|G∩St|∑

k=1
|σ2Jt−1K(x̃t,k)| , (13)

where equation 11 follows from the Lipschitz continuity of v; equation 12 follows from the definition of index
and the triangle inequality; for equation 13 we use Lemma 1 and the definition of B.
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Next, we upper bound the gap of a selected super arm in round t (aka simple regret) in terms of the posterior
variances of base arms. Hereafter, we use the notation xt,k to denote the context xt,st,k

of the kth selected
base arm st,k at round t for convenience, unless otherwise stated. Note that S∗

t ∈ arg maxS∈S′
t
u(f1(xt,S)) is

the optimal super arm in round t.

Lemma 5. Given round t ≥ 1, let S∗
t = {s∗

t,1, . . . , s∗
t,|S∗

t |} denote the optimal super arm in round t. Then,
the following argument holds under the event F1:

α · u(f1(xt,S∗
t
))− u(f1(xt,St)) ≤

(
2− ζ

1− ζ

)
B′
√

βt

|St|∑
k=1
|σ1Jt−1K(xt,k)| (14)

Proof. We define Ht = arg maxS∈Ŝ′
t
u(it(xt,S)). Given that event F1 holds, we have:

α · u(f1(xt,S∗
t
))− u(f1(xt,St)) ≤ α · u(it(xt,S∗

t
))− u(f1(xt,St)) (15)

≤ α · u(it(xt,Ht))− u(f1(xt,St)) (16)
≤ u(it(xt,St))− u(f1(xt,St)) (17)

≤ B′
|St|∑
k=1
|it(xt,k)− f1(xt,k)| (18)

≤ B′
|St|∑
k=1
|µ1Jt−1K(xt,k)− f1(xt,k)|+ B′

|St|∑
k=1

∣∣∣∣ 1
1− ζ

(
√

βt)σ1Jt−1K(xt,k)
∣∣∣∣ (19)

≤
(

2− ζ

1− ζ

)
B′
√

βt

|St|∑
k=1
|σ1Jt−1K(xt,k)| , (20)

where equation 15 follows from monotonicity of u and the fact that f1(xt,s∗
t,k

) ≤ it(xt,s∗
t,k

), for k ≤ |S∗
t |

(Lemma 2); equation 16 follows from the definition of Ht and the fact that S ′
t ⊆ Ŝ ′

t on event F2 (Lemma
3), in other words, maxS∈Ŝ′

t
u(it(xt,S)) ≥ maxS∈S′

t
u(it(xt,S)) since S ′

t ⊆ Ŝ ′
t; equation 17 holds since St is

the super arm chosen by the α-approximation oracle; equation 18 follows from the Lipschitz continuity of u;
equation 19 follows from the definition of index and the triangle inequality; for equation 20 we use Lemma 1.

Before proving our theorems, we prove our last lemma which enables us to have our regrets bounds in terms
of the information gain. We note that both of our oracles are deterministic and our algorithm doesn’t give
any extra randomization.

Lemma 6. (Lemma 3 of (Nika et al., 2021)) Let zt := xt,St be the vector of selected contexts at time t ≥ 1.
Given T ≥ 1, we have:

Ij

(
rj(z[T ]); fj(z[T ])

)
≥ 1

2(σ−2λ∗(K) + 1)

T∑
t=1

|St|∑
k=1

σ−2σ2
jJt−1K

(xt,k) ,

where z[T ] = [z1, . . . , zT ]T is the vector of all selected contexts until round T and λ∗ is the maximum eigenvalue
of matrix (ΣJt−1K(z[T ]))T

t=1.
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C.2 Proof of Theorem 1

From Lemma 4 we have:

Rg(T ) =
T∑

t=1

∑
G∈G̃t

[γt,G − v(f2(xt,G∩St
))]+

≤
(

ζ + 1
ζ

)
B
√

βT

T∑
t=1

∑
G∈Gt

|G∩St|∑
k=1

|σ2Jt−1K(x̃t,k)|

≤
(

ζ + 1
ζ

)
B
√

βT

T∑
t=1

|St|∑
k=1
|σ2Jt−1K(xt,k)| , (21)

using the fact that
√

βt is monotonically increasing in t. Also, we changed the notation of x̃t,k with xt,k as
we are summing through all the base arms in St in equation 21. We have:

R2
g(T ) ≤

(
ζ + 1

ζ

)2
B2βT

 T∑
t=1

|St|∑
k=1
|σ2Jt−1K(xt,k)|

2

(22)

≤
(

ζ + 1
ζ

)2
B2βT T

T∑
t=1

 |St|∑
k=1
|σ2Jt−1K(xt,k)|

2

(23)

≤
(

ζ + 1
ζ

)2
B2βT T

T∑
t=1
|St|

|St|∑
k=1

(
σ2Jt−1K(xt,k)

)2 (24)

≤
(

ζ + 1
ζ

)2
B2βT TK

T∑
t=1

|St|∑
k=1

(
σ2Jt−1K(xt,k)

)2

≤
(

ζ + 1
ζ

)2
B2βT TKσ2

T∑
t=1

|St|∑
k=1

σ−2 (σ2Jt−1K(xt,k)
)2 (25)

≤ 2(σ−2λ∗(K) + 1)
(

ζ + 1
ζ

)2
B2βT TKσ2I

(
r2(z[T ]); f2(z[T ])

)
(26)

≤ C1(K)KβT Tγ2T , (27)

where for equation 23 and equation 24 we have used the Cauchy-Schwarz inequality twice; in equation 25 we
just multiply by σ2 and σ−2; equation 26 follows from Lemma 6 and for equation 27 we use the definition of
γ2T . Taking the square root of both sides we obtain our desired result.

From Lemma 5 we have:

Rs(T ) = α

T∑
t=1

opt(ft)−
T∑

t=1
u(f1(xt,St))

≤
(

2− ζ

1− ζ

)
B′
√

βT

T∑
t=1

|St|∑
k=1
|σ1Jt−1K(xt,k)| , (28)

using the fact that
√

βt is monotonically increasing in t. We have:

R2
s(T ) ≤

(
2− ζ

1− ζ

)2
(B′)2βT

 T∑
t=1

|St|∑
k=1
|σ1Jt−1K(xt,k)|

2

(29)
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The middle steps are the same as equation 23-equation 26 except that we have
(

2−ζ
1−ζ

)2
(B′)2βT instead of(

ζ+1
ζ

)2
B2βT as the constant multiplier. Also, we use σ1 instead of σ2. Hence, the last steps are modified as:

R2
s(T ) ≤ 2(σ−2λ∗(K) + 1)

(
2− ζ

1− ζ

)2
(B′)2βT TKσ2I

(
r1(z[T ]); f1(z[T ])

)
≤ C2(K)KβT Tγ1T ,

Taking the square root of both sides we obtain our desired result. Finally, in order to obtain the total regret
we use:

R(T ) = ζRg(T ) + (1− ζ)Rs(T )

≤
(

ζ
√

C1(K) + (1− ζ)
√

C2(K)
)√

βT KTγT

where γT = max{γ1T , γ2T }. In order to eliminate the ζ dependence we modify this expression as follows:

R(T ) ≤
(

ζ

√
2B2(ζ + 1

ζ
)2(λ∗(K) + σ2) + (1− ζ)

√
2(B′)2(2− ζ

1− ζ
)2(λ∗(K) + σ2)

)√
βT KTγT (30)

=
(

ζ

|ζ|
√

2B2(ζ + 1)2(λ∗(K) + σ2) + 1− ζ

|1− ζ|
√

2(B′)2(2− ζ)2(λ∗(K) + σ2)
)√

βT KTγT

=
(√

2B2(ζ + 1)2(λ∗(K) + σ2) +
√

2(B′)2(2− ζ)2(λ∗(K) + σ2)
)√

βT KTγT (31)

=
√

2(λ∗(K) + σ2)
(
|B||ζ + 1|+ |B′||2− ζ|

)√
βT KTγT

=
√

2(λ∗(K) + σ2)
(

B(ζ + 1) + B′(2− ζ)
)√

βT KTγT (32)

≤
√

2(λ∗(K) + σ2)
(

2B + 2B′
)√

βT KTγT (33)

=
√

C(K)βT KTγT .

where equation 30 follows from writing the expressions of C1 and C2 to the required places; equation 31
follows from ζ ∈ [0, 1]; equation 32 follows from the assumptions that B > 0 and B′ > 0 and also from
ζ ∈ [0, 1] and equation 33 comes from writing the maximizing ζ values in ζ + 1 and 2− ζ.

C.3 Proof of Theorem 2

The proof is the same as that of Theorem 2 of (Nika et al., 2021).

C.4 Proof of Theorem 3

We first state an auxiliary fact that will be used in the proof (for a proof see (Williams & Vivarelli, 2000)).
Fact 1. The predictive variance of a given context is monotonically non-increasing (i.e., given x ∈ X and
the vector of selected samples [x1, . . . , xN+1], we have σ2

N+1(x) ≤ σ2
N (x), for any N ≥ 1).

The proof of Theorem 3 easily follows from Theorem 2 and this fact.

C.5 Proof of Corollary 1

This is a direct application of the explicit bounds on γT given in Theorem 5 of (Srinivas et al., 2012) to the
bound we obtained in Theorem 3. For the Matérn kernel, we have used the tighter bounds from (Vakili et al.,
2020).
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