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ABSTRACT

In the past few years, score-based generative models (SGMs) and diffusion models
have proven to be efficient methods for learning distributions and have been of
great practical significance. However, only a few lines of work are attempting to
understand the theoretical guarantees of such models, and only one recent work
Oko et al. (2023) focuses on the generalization abilities. In this work, we extend the
study of generalization in SGMs and look to answer how model complexity emerges
as a key player in the success of these models. For example, in other deep generative
models, such as Generative Adversarial Networks (GANs), it has been revealed
that the complexity of the discriminator set plays a crucial role in generalization.
We prove that when diffusion models are further refined by discriminators (Kim
et al., 2022a), the Integral Probability Metric (IPM) can be exactly represented
through strong duality. Our findings advocate for discriminator refinement of deep
generative models and, more specifically, unveil the generalization effect of using
regularized discriminators in this setting. This result validates existing work on
discriminator refinement to a great deal of generality. Therefore, our work provides
theoretical validation for existing practices, provides a notion of regularization for
SGMs, and contributes to the understanding of efficient distributional learning at
large.

1 INTRODUCTION

In the past few years, score-based generative models (SGMs) (Hyvärinen & Dayan, 2005; Vincent,
2011; Song & Ermon, 2019) have emerged as a popular method to efficiently learn distributions
for several different domains such as images (Chung & Ye, 2022; Batzolis et al., 2021; Ruiz et al.,
2023), text (Popov et al., 2021; Kim et al., 2022b), graph (Fan et al., 2023; Zhang et al., 2023) and
audio data (Serrà et al., 2022; Pascual et al., 2023; Richter et al., 2023; Wu, 2023; Qiang et al., 2023).
Some examples of this include the Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,
2020), along with the Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020a) that have
demonstrated success at a large scale such as DALL-E 2 (Ramesh et al., 2022).

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Nowozin et al., 2016) are a
similar line of work to learning distributions from data using a discriminator. It has been shown
that learning this discriminator for GANs admits a (weakly) dual problem (Husain et al., 2019),
which corresponds to learning an encoder, coinciding with the objective derived in Wasserstein
Autoencoders (WAE). However, the original motivation for discriminators in GANs is to guide a
generative model on regions of under-performance with the use of a critic, i.e., the discriminator.
Recently, there have been attempts to use discriminators to improve and refine SGMs in the same
sense, such as in (Kim et al., 2022a), which explicitly learns a density ratio and corrects the diffusion
model. It was shown that this combination of discriminator and score-based model achieves a
remarkable performance improvement.

Despite the practical success, the theoretical understanding of these generative models are not very
well understood at large. In the case of SGMs, the majority of results do not consider discriminator
intervention and prove convergence guarantees against observed data under various assumptions
(Chen et al., 2022; Lee et al., 2022; 2023; Li et al., 2023; De Bortoli, 2022). Recently, Oko et al.
(2023) considered the generalization performance and showed that SGMs with neural networks can
achieve minimax optimal rates under smoothness assumptions of the true density.
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Given the practical significance and considerable empirical benefits of discriminator-guided SGMs,
convergence and generalization in such settings remain mystified. In this work, we target this exact
problem. In particular, we generalize the algorithm presented in (Kim et al., 2022a) where one
learns a discriminator by minimizing a proper composite loss (derived from an f -divergence), which
recovers Kim et al. (2022a) in the setting of Jensen-Shannon (JS) divergence.

In order to prove these results, we revisit the duality structures existing in the GAN set-up, which
take the following form:

sup
h∈H

R(h) = inf
µ

L(µ), (1)

where H is the set of discriminators and µ is taken over all probability measures. We derive
conditions under which we can construct the optimal µ∗ and find that it corresponds exactly to the
refined generative model constructed in discriminator-guided diffusion models (Kim et al., 2022a).
This is rather striking, given that this link has not been explored previously.

Using this link, we prove an identity that quantifies the Integral Probability Metric (IPM) between the
refined diffusion model and data in terms of the gap between the original diffusion model and data,
along with an additional quantity that closes the discrepancy based on the choice of discriminator set:

IPM(P̂ , µH) = D(P̂ , µ)− IH(µ, µH), (2)

where P̂ is the data, µ the original model and µH the refined model. The first term D(P̂ , µ) can be
bounded by many existing lines of work such as in (Chen et al., 2022; Lee et al., 2022; 2023; Li et al.,
2023; De Bortoli, 2022), if we consider different assumptions. Thus, our work builds and extends
directly upon existing work. We furthermore decompose the term IH, and show that it increases when
H has more discriminative abilities.

Finally, we use identity to prove a generalization bound that reveals additional insights into how
refining a diffusion model can close the generalization gap if discriminatorsH are well regularized.
Our findings, therefore, advocate for discriminator refinement for deep generative models and validate
existing work on discriminator refinement to a great deal of generality. In summary, our technical
contributions come in three parts: Our contributions come in three Theorems, where the first two
concern DRO with IPMs (Section 3) and the third is an extension to understanding GANs (Section 4):
▷ (Theorem 1) A characterization of strong duality for the f -divergence that reveals the optimality of
refining generative models. This identity has interest outside the scope of this paper, as illustrated by
the connections to variational inference.
▷ (Theorem 3) An application to diffusion models, which shows how a general binary classifier
played with a proper composite loss can be used to construct a refined diffusion model that admits
theoretical convergence. We derive the choice of f such that the refined diffusion corresponds to the
framework of (Kim et al., 2022a).
▷ (Theorem 6) A study of generalization for refined diffusion models that unveils the importance of
using discriminators to close the gap in generalization, along with guidance for the specific choices.
This result parallels the discriminator-generalization trade-off other generative models, such as GANs,
enjoy.

2 RELATED WORK

We split our related work into two sections; first, we focus on results focused on duality and
discriminator studies in Generative Adversarial Networks (GANs), and then we turn to convergence
and theory results for score-based diffusion models.

GANs were developed in (Goodfellow et al., 2015) where a binary classification task was used
to improve GANs, corresponding to Jensen-Shannon divergence minimization. This result was
then generalized to f -divergences in (Nowozin et al., 2016; Nock et al., 2017). (Liu et al., 2017)
conducted the first convergence guarantees, showing that the learned distribution is indistinguishable
from the data distribution under the chosen set of discriminators. (Liu & Chaudhuri, 2018; Zhang
et al., 2017; Husain, 2020) then showed that the generalization abilities of GANs are related to the
complexity of the discriminator set. In particular, using a discriminator set that is too large will
yield poor generalization, whereas a set too small leads to under-discriminated models, hence a
discrimination-generalization tradeoff.

2



Under review as a conference paper at ICLR 2024

Theoretical guarantees surrounding the convergence of score-based generative models (SGMs)
largely consist of bounding the gap between the observed (finitely supported) data distribution
and the distribution induced by the discretized diffusion model under various divergences between
distributions. The majority of work assumes there exists a parametrized model that can approximate
the true score function sufficiently well enough. (Song et al., 2020b) consider the Kullback-Leibler
(KL) divergence and use Girsanov’s Theorem to bound this quantity for the non-discretized diffusion
model. (Lee et al., 2022) then consider the discretized diffusion model and under log-Sobolev
inequality (LSI) and smoothness of the true score provide convergence guarantees. Chen et al. (2022)
and Lee et al. (2023) prove convergence without the LSI aassumption. Another line of work assumes
the score function and parametrized approximation is bounded at each point and proves convergence
(De Bortoli et al., 2021), with improved results under the manifold assumption (De Bortoli, 2022).

None of these results, however, consider discriminator-intervened diffusion models such as in (Kim
et al., 2022a). Our work shows that the Integral Probability Metric (IPM) distance between the data
and refined diffusion model is equal to the discrepancy between the original diffusion model and data,
which any of the above results can bound. Therefore, our result extends and builds upon existing
convergence guarantees.

3 PRELIMINARIES

Notation We use Ω to denote a compact Polish space and denote Σ as the standard Borel σ-algebra
on Ω, R denotes the real numbers and N natural numbers. We use F (Ω,R) to denote the set of all
bounded and measurable functions mapping from Ω into R with respect to Σ, B(Ω) to be the set of
finite signed measures and the set P(Ω) ⊂ B(Ω) will denote the set of probability measures. For
any random variable X, we use L(X) to denote the law of X. Let N (µ,Σ) denote the d-dimensional
Gaussian distribution with mean µ ∈ Rd and covariance matrix Σ. For any proposition I , the
Iverson bracket is JI K = 1 if I is true and 0 otherwise. We say a set of functions H is convex
if λh + (1 − λ)h′ ∈ H for all h, h′ ∈ H and λ ∈ [0, 1]. For a function h ∈ F (Ω,R) and metric
c : Ω×Ω→ R, the Lipschitz constant of h (w.r.t c) is Lipc(h) = supω,ω′∈Ω |h(ω)− h(ω′)| /c(ω, ω′)
and ∥h∥∞ := supω∈Ω |h(ω)|. For any set of functionsH ⊆ F (Ω,R), we use co (H) to denote the
closed convex hull ofH and use ∥H∥ = suph∈H ∥h∥∞ as the maximum bound for all functions in
H.

Diffusion Models We adapt notation from (Oko et al., 2023). For some time-stamp T ∈ N, we
define (Bt)[0,T ] and βt : [0, T ] → R to denote d-dimensional Brownian motion and a weighting
function. The forward process is defined as

dXt = −βtXtdt+
√
2βtdBt, X0 ∼ P̂N , (3)

where P̂n =
∑n

j=1 δxj is the empirical distribution over observed n samples {xi}ni=1. This process
is referred to as the Ornstein-Uhlenbeck (OU) process whose transition density corresponds to
Xt | X0 ∼ N (mtX0, σ

2
t Id) where mt = exp

(
−
∫ t

0
βsds

)
, and σ2

t = 1 − exp
(
−2

∫ t

0
βsds

)
.

Denoting by Pt = L(Xt), we can construct the reverse SDE process under mild conditions on P̂N :

dYt = βT−t (dYt + 2∇ log pT−t(Yt)) dt+
√
2βT−tdBt, dY0 ∼ PT . (4)

In practice, since we do not have access to the score function log pT−t(Yt), we approximate this with
a neural network sϑ(X, t) for X ∈ Ω and t ∈ [0, T ] and ϑ is a learnable parameter. A Euler-Maruyama
scheme is used to discretize the SDE into K different steps (τk)Kk=1 where τ0 = 0 and τK = T and
the resulting process is

dŶt = βT−t

(
dŶt + 2sϑ(X, T − t)

)
dt+

√
2βT−tdBt. (5)

Generative Adversarial Losses We begin this section by first defining two important divergences
between distributions: the f -divergence and Integration Probability Metrics (IPMs). Let f : R →
(−∞,∞] be a convex lower semi-continuous function such that f(1) = 0. The f -divergence between
two probability measures µ, ν ∈ P(Ω) is defined as If (µ : ν) := EX∼ν

[
f
(

dµ
dν (X)

)]
, if µ ≪ ν

(existence of Radon-Nikodym derivative) otherwise If (µ : ν) = +∞. The f function is often
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referred to as the generator of If . On the other hand, for a given set of functionsH ⊆ F (Ω,R), the
IPM is defined as

dH(µ, ν) = sup
h∈H
{EX∼µ[h(X)]− EX∼ν [h(X)]} (6)

The general adversarial loss we consider is that adapted from the generative adversarial networks
literature (Liu et al., 2017; Zhang et al., 2017). Let f : R → (−∞,∞] be a convex lower semi-
continuous function such that f(1) = 0 and letH ⊆ F (Ω,R) denote a set of bounded and measurable
functions. We define a distance between distributions µ, ν ∈P(Ω) to be of the form

Df,H(ν, µ) := sup
h∈H
{EX∼ν [h(X)]− EX∼µ[f

⋆ ◦ h(X)]} , (7)

where f⋆(t) = supt′∈dom f (t · t′ − f(t′)) is the Fenchel conjugate of f . Note that Df,H can be
viewed as a weaker divergences compared to f -divergences and IPMs noting that f⋆(t) ≥ t and so

Df,H ≤ dH and Df,H ≤ If . (8)

Moreover, if H is chosen large enough then Df,H coincides with If for any optimal h∗ ∈ H in
equation 7. The divergence Df,H has been of great interest in the GAN community most notably
appearing as the f -GAN objective (Nowozin et al., 2016), along with other theoretical studies such
as in Liu et al. (2017); Liu & Chaudhuri (2018); Husain et al. (2019); Husain (2020).

The divergence Df,H is tied to binary classification in Savage’s theory of properness (Savage, 1971).
Let Y = {−1, 1} and define a joint distribution P(X,Y) such that Y ∈ Y with P(X | Y = −1) =
µ(X), P(X | Y = +1) = ν(X) and P(Y = −1) = P(Y = 1) = 1/2. We then define a loss function
ℓf : Y × [0, 1]→ R, with an invertible link Ψ : (0, 1)→ R set to be Ψ(z) := f ′(z/(1− z)):

ℓf (−1, z) = −f ′
(

Ψ−1(z)

1−Ψ−1(z)

)
ℓf (+1, z) = f⋆

(
f ′

(
Ψ−1(z)

1−Ψ−1(z)

))
. (9)

We then have the following connection

inf
h∈H

E(X,Y)∼P [ℓf (Y, h(X))] = −
1

2
Df,H(µ, ν). (10)

Losses defined in equation 9 are not any kind of losses: they are proper composite (Nock et al.,
2017), i.e. they elicit Bayes prediction as an optimal predictor, composite meaning using Ψ to link
real-valued prediction to class probabilities. In words, ifH is chosen large enough then Df,H is also
proportional to the loss of Bayes rule, encoded in some h∗ ∈ H in equation 10.

4 STRONG DUALITY FOR ADVERSARIAL LOSSES

In this section, we revisit the primal-dual relationship in GANs and prove a stronger result in the
context of denoising diffusion models. Let ν ∈P(Ω) denote the data distribution we are interested
in learning. First we recall the duality result Liu & Chaudhuri (2018); Husain et al. (2019) where if
H is convex and closed under additive constants then

Df,H(ν, µ) = inf
µ∈P(Ω)

(dH(ν, µ) + If (µ : µ)) . (11)

Under various settings, the optimization over µ was shown to coincide with the optimization over an
encoder function in Husain et al. (2019) where the dH is a reconstruction loss, and If is a regularizer
however there is no characterization of µ beyond this. We now present the first result in this direction.

Theorem 1 Let f : R → (−∞,∞] be a strictly convex lower semi-continuous and differentiable
function with f(1) = 0 and let H be convex and closed under addition. Denote by h∗ ∈ H as the
optimal solution of the primal problem in equation 11. Assuming f ′−1 (t) ≥ 0 for all t ∈ dom(f⋆),
consider a distribution µH whose Radon-Nikodym derivative with respect to µ is

dµH

dµ
(·) = f ′−1 (h∗(·)) . (12)

Then µH is an optimal solution to equation 11.
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When the distribution µ admits a Lebesgue density, we can write µH = µ · f ′−1(h∗). Moreover, in
order to sample from µH, one can derive the score function, which by virtue of the above Theorem is

∇ logµH = ∇ logµ+∇ log
(
f ′−1 (h∗(·))

)
. (13)

Since in diffusion models, we approximate the score function ∇ logµ, the extra term
∇ log

(
f ′−1 (h∗(·))

)
can be considered the refinement. Note that this refinement term must first

require finding h∗ in the optimization of Df,H, which is equivalent to a binary classification problem.
We thus refer to this refined distribution µH as the discriminator-guided diffusion model.

While we aim to apply this Theorem to discriminator-guided diffusion models, it boasts a more
considerable generality beyond this application. For example, in a somewhat trivialized setting where
H is selected to be minimal, this Theorem recovers results of Variational Inference, which are of
independent interest.

Example 1 (Variational Inference) In the setting of f(t) = t log t, the duality in equation 11
recovers the Evidence Lower Bound (ELBO) that commonly appears in Variational Inference (VI)
(Knoblauch et al., 2019; Husain & Knoblauch, 2022). To see this, we have a data-dependent
loss function L : Θ → R where Θ is the parameter space of models, then we construct H =
{−L+ b : b ∈ R} as the minimal set satisfying convexity and closure under addition. Noting that
f⋆(t) = exp(t− 1) for the choice of KL-divergence, the duality then becomes

sup
b∈R

(Eν [−L] + b− Eµ[exp (−L+ b− 1)]) = inf
µ

(Eν [−L]− Eµ[−L] + KL(µ, ν)) (14)

=⇒ sup
b∈R

(b− Eµ[exp (−L+ b− 1)]) = inf
µ

(Eµ[L] + KL(µ, ν)) (15)

=⇒ logEµ [exp (−L)] = inf
µ

(Eµ[L] + KL(µ, ν)) , (16)

which is precisely the ELBO as presented in VI where µ is referred to as the posterior and µ is the
prior distribution. When applying Theorem 1, we note that h∗ = −L− log (Eµ [exp (−L− 1)]) (see
Appendix for more details) then the optimal distribution µH as per Theorem 1 is

µH =exp (−L− log (Eµ [exp (−L− 1)])− 1) · µ (17)
= µ · exp (−L) /Eµ[−L], (18)

which is exactly the generalized Bayesian posterior.

In the above, the optimal h∗ amounts to solving for a constant b due to the choice ofH. If we select
H to be a set of parametrized discriminators then with f(t) = t log t, the refined distribution µH

simplifies to

µH = µ · exp(h∗)/Eµ[h
∗], (19)

which corresponds to an exponential family whose base measure is µ and sufficient statistic h∗ (the
cumulant is defined from the denominator). It should be noted that a related work (Cranko & Nock,
2019) boosts densities via discriminators using the form of equation 19. We now move onto the case
where picking f corresponds to h∗ being the cross-entropy minimized discriminator, deriving exactly
the framework of Kim et al. (2022a).

Example 2 (Refined Generative Models (Kim et al., 2022a)) In the setting of f(t) = t log t−(t+
1) log(t+1)+2 log 2, if we defineH = {log ηθ : ηθ : Ω→ [0, 1], θ ∈ Θ}, where ηθ is a parametrized
model giving a softmax score such a neural network. The duality then becomes

Df,H(ν, µ) = 2 log 2− inf
θ∈Θ

(Eν [− log (ηθ)] + Eµ[− log (1− ηθ)]) , (20)

which corresponds to binary cross-entropy minimization. Considering that f ′−1(t) = exp t
1−exp t , the

refined distribution µH simplifies to

dµH

dµ
=

ηθ∗

1− ηθ∗
, (21)

where θ∗ is the optimal parameter from equation 20.
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It is rather striking that the work of Kim et al. (2022a) finds exactly the distribution on which strong
duality occurs. In the next section, we revisit this example with the notation of diffusion models,
elucidating the link. We summarize the general finding in the form of identity in this Theorem.

Theorem 2 Let f : R → (−∞,∞] be a strictly convex lower semi-continuous and differentiable
function with f(1) = 0. Denote by h∗ ∈ H as the optimal solution to equation 11, µH defined in
equation 12 . If f ′−1 (t) ≥ 0 for all t ∈ dom(f⋆) then we have

dH
(
ν, µH)

= Df,H (ν, µ)− If
(
µH : µ

)
. (22)

5 CONVERGENCE AND GENERALIZATION BOUNDS FOR DIFFUSION

In the context of diffusion models, the distribution ν = P̂0 =
∑n

i=1 δxi where {xi}ni=1 is the i.i.d
data xi ∼ P for some population distribution P ∈ P(Ω). As defined in Section 3, we denote
by P̂t = L(Xt) as the law of the SDE followed by a simple Ornstein-Uhlerbeck process. For a
given function sϑ : Ω× R→ Ω that approximates the score function, and a discretization scheme
0 = τ0, . . . , τK−1 = T , we define the process with k = 0, . . . ,K and t ∈ [τk, τk+1]:

YH,ϑ
t = dYH,ϑ

t + 2sϑ

(
YH,ϑ
t , τk

)
+ 2∇ log

(
f ′−1

(
h∗τk+1

(
YH,ϑ
t

)))
+
√
2dBt, (23)

YH,ϑ
0 ∼ γd (24)

where γd is a prior distribution, typically taken to be a d-dimensional Gaussian distribution and
h∗t is the corresponding optimal discriminator from Theorem 2 when ν = P̂T−t and µ = L(Yϑ

t ).
The function sϑ is a neural network approximating the score function. In the setting of f(t) =
t log t− (t+ 1) log(t+ 1) + 2 log 2, this is the process used to generate samples from discriminator-
guided denoised diffusion model (Kim et al., 2022a). We therefore denote the model distribution
as µH

T,ϑ = L
(
YH,ϑ
T

)
. We are now ready to present Theorem 2 in the context of denoised diffusion

models.

Theorem 3 Let f : R → (−∞,∞] be a strictly convex lower semi-continuous and differentiable
function with f(1) = 0. If f ′−1 (t) ≥ 0 for all t ∈ dom(f⋆) then it holds

dH

(
P̂0, µ

H
T,ϑ

)
= Df,H

(
P̂0,L

(
Yϑ
T

))
− If

(
µH
T,ϑ : L

(
Yϑ
T

))
. (25)

This identity tells us that the gap (in IPM) between the refined model µH
T,ϑ and data distribution P̂0 is

precisely equal to the gap between the original SGM model without refinement Df,H

(
P̂0,L

(
Yϑ
T

))
minus the difference in refinement If

(
µH
T,ϑ : L

(
Yϑ
T

))
. We split the next part of this section into

discussing these two terms.

First, note that Df,H

(
P̂0,L

(
Yϑ
T

))
can readily be upper bounded in various ways using recent

results with competing assumptions. This is attributed to the fact that Df,H lower bounds both
the f -divergence If and the IPM dH (8). Therefore, we can inherit results for the reverse-KL
divergence (f(t) = − log t) (Lee et al., 2023) or Total Variation (f(t) = |t− 1| (Chen et al., 2022),
both showing fast rates of convergence. Alternatively, we can upper bound via the IPMs and take
Df,H

(
P̂0,L

(
Yϑ
T

))
≤ suph∈H Lip(h) ·W1

(
P̂0,L

(
Yϑ
T

))
where Lip(h) is the Lipschitz constant of

h and W1 is the 1-Wasserstein distance. In this setting, (Oko et al., 2023) shows that µ approximates
ν at a minimax optimal rate for the 1-Wasserstein distance, however the term suph∈H Lip(h) reveals
an interesting trade-off on the complexity ofH.

We now present an additional analysis by taking the assumptions of Chen et al. (2022), which are
considered to be minimal:

Assumption 1 For all t ≥ 0, X 7→ ∇ log P̂t(X) is L-Lipschitz.

Assumption 2 The second moment of P̂0 is bounded: m2
2 := EX∼P̂0

[
∥X∥2

]
<∞.
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Assumption 3 for all k = 0, . . . ,K, there exists a constant εϑ > 0 such that

EX∼P̂τk

[∥∥∥sϑ(X, τk)−∇ log P̂τk(X)
∥∥∥2] ≤ ε2ϑ (26)

Under these assumptions, we have the following bound.

Theorem 4 Let f : R → (−∞,∞] be a strictly convex lower semi-continuous and differentiable
function with f(1) = 0. Denote by ∆T : Ω → P(Ω) as the forward diffusion process after T
steps and # the push-forward operator. Assume that ∥H∥ := suph∈H ∥h∥∞ < ∞ and Ω = Rd.
For k = 1, . . . ,K, set τk = kT/K (with τ0 = 0) with s = T/K as the stepsize, we have under
Assumptions 1-3

Df,H

(
P̂0,L

(
Yϑ
T

))
≤ ∥H∥ ·

(
1− exp

(
−
(
ε2ϑ + L2ds+ L2m2

2s
2
)
T
))

+ If
(
∆T#P̂0 : γd

)
.

(27)

This analysis follows the standard Girsanov’s change of measure result utilized in (Chen et al.,
2022; Oko et al., 2023) where the first term corresponds to the error incurred by approximating
the score function εϑ and discretization error appearing with the key difference here being the
term If

(
∆T#P̂0 : γd

)
which appears due to the general choice of f . In particular, when f(t) =

t log t is chosen to correspond to the KL divergence, then this term decays exponentially with T
by the exponential convergence of Uhlerbeck-Ornstein processes studied in (Bakry et al., 2014,
Theorem 5.2.1). Moreover, if f is chosen such that there exists some strictly increasing function
ψf : R → R with If ≤ ψf (KL) then we can guarantee convergence trivially by connecting
the exponential convergence in KL divergence. In fact, we show in Lemma 4 that when f(t) =
t log t−(t+1) log(t+1)+2 log 2 then we directly have If ≤ KL giving us the required convergence.
We show that we can relate f -divergences to the KL divergence.

Lemma 1 Suppose f : R → (−∞,∞] is a strictly convex differentiable lower semi-continuous
function with f(1) = 0 and denote by ∆T : Ω→P(Ω) as the forward diffusion process after T steps.

Let rT = d(∆T#P̂0)/dγd be the Radon-Nikodym derivative then we have If
(
∆T#P̂0 : γd

)
≤

supX∈Ω |f ′ (rT (X))| ·
√
KL

(
∆T#P̂0: γd

)
.

In this result, we can thus see that convergence of the forward diffusion process in If is as fast as
the KL divergence except for an extra term that depends on the density ratio rT . Indeed, we assume
that as T gets large, then rT → 1. We now move onto the second refinement term from Theorem 3:
If
(
µH
T,ϑ : L

(
Yϑ
T

))
. Note that this quantity is subtracted from the total gap and is positive. In order

to better understand this gain, we reparametrize it into a 1-dimensional integral: suppose the classifier
decomposes with the natural composite link: h∗ = f ′(ηh∗/(1− ηh∗)) where ηh∗ : Ω→ [0, 1] is the
class probability estimate.

Theorem 5 Let f : R → (−∞,∞] be a strictly convex lower semi-continuous and differentiable
function with f(1) = 0. Denote by h∗ ∈ H as the optimal discriminator and µH

T,ϑ such that
dµH

T,ϑ/dµ = f ′−1(h∗) be the optimal solutions to equation 11 . If f ′−1 (t) ≥ 0 for all t ∈ dom(f⋆)
then we have

If
(
µH
T,ϑ : L

(
Yϑ
T

))
=

∫ 1

0

f

(
t

1− t

)
dρh∗(t) (28)

where µϑ
T = L

(
Yϑ
T

)
and ηh∗ is such that h∗ = f ′(ηh∗/(1− ηh∗)) and ρh∗ := ηh∗#µ

ϑ
T .

In order to understand this quantity, note that ρh∗ corresponds to the regions in [0, 1] where the
classifier predicts µϑ

T to be. Let us consider the case of binary-cross entropy corresponding to (Kim
et al., 2022a) where f(t) = t log t− (t+ 1) log(t+ 1) + 2 log 2. The expression then simplifies to∫ 1

0

(
t

1− t
log t+ log(1− t) + 2 log 2

)
dρh∗(t). (29)

7
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Recalling that ηh∗(X) corresponds to the class probability estimation of a point X ∈ Ω belonging to
the class P̂0 (as opposed to µϑ

T ), we can say that ifH is rich enough to classify between P̂0 and µϑ
T

then ηh∗ is close to 0 on the support of µϑ
T and thus ρh∗(t) is concentrated around 0, thereby increasing

the above expression to f(0) = 2 log 2, the maximal possible value for If
(
µH
T,ϑ : L

(
Yϑ
T

))
. On

the other hand, if the best classifier ηh∗ is unable to classify the two classes, then ηh∗ → 1/2 (a
random classifier) and thus the above expression tends to f(1) = 0. Therefore, the gain in refinement
can be understood by the discriminative abilities ofH, and a richer choice forH will lead to more
improvement. We will see in what follows how this forms a trade-off with generalization.

In order to proceed, we first define an important quantity that often counters the discriminative
abilities of H: the Rademacher complexity. Let R denote the uniform distribution over {−1,+1}
then for a class of functionsH ⊆ F (Ω,R) and distribution P , the Rademacher complexity (Bartlett
& Mendelson, 2002) is

Rn(H) := Eζ∼Rn,X∼Pn

[
sup
h∈H

1

n

n∑
i=1

ζih(Xi)

]
, (30)

where Rn and Pn are distributions over n-tuples. The Rademacher complexity is a cornerstone
in many generalization studies, specifically dominating supervised learning; however, it has also
appeared in unsupervised learning domains and generative models such as in (Zhang et al., 2017).
We refer the reader to (Liang, 2016) for a more comprehensive analysis of this quantity for different
choices of model complexity. We now link the Rademacher complexity of our discriminator set used
for refinementH to the gap between the refined diffusion model and data distribution.

Theorem 6 Let f : R → (−∞,∞] be a strictly convex lower semi-continuous and differentiable
function with f(1) = 0. Suppose f ′−1 (t) ≥ 0 for all t ∈ dom(f⋆) and let P denote the population
distribution of P̂0 such that each xi ∼ P i.i.d. It then holds that

dH
(
P, µH

T,ϑ

)
≤ Df,H

(
P̂0,L

(
Yϑ
T

))
− If

(
µH
T,ϑ : L

(
Yϑ
T

))
+ Rn(H) + 2 ∥H∥ ·

√
1

2n
ln

(
1

δ

)
,

(31)

with probability at least 1− δ.

In light of the above results, it is clear that the choice ofH is important. On the one hand, we should
pick H to be as large as possible since the IPM on the left-hand side will be more discriminative
as a discrepancy between P and µH

T,ϑ. Additionally, it is seen from Theorem 5, convergence and
overfitting to P̂0 is encouraged with more discriminative choices of H. On the other hand, we see
that we pay a price of the Rademacher complexityRn(H), which along with Theorem 3, suggests a
well-regularized choice ofH. This discussion parallels the discrimination-generalization trade-off
previously studied in the context of GANs, such as in Zhang et al. (2017); Husain (2020). Note that
for the left-hand side to be discriminative enough, we only require a choice of H that is dense in
the space F (Ω,R) while also being able to control Rn(H). An example choice of H is the set of
1-Lipschitz functions whereRn(H) = O(n1/d).

In addition to the above, the term Df,H

(
P̂0,L

(
Yϑ
T

))
is indeed the optimal (eventually Bayes) risk

classification loss under the proper composite loss derived by f as mentioned in the preliminaries.
Thus, the generalization bound itself resembles that of classical learning theory where the empirical
classification risk appears in the upper bound (Bartlett & Mendelson, 2002).

6 CONCLUSION

We study discriminator-guided diffusion models with a prescribed discriminator set H. In order
to prove our result, we revisit the primal-dual link in GANs and extend results in that direction,
characterizing the exact distribution under which strong duality holds. This result allows us to
quantify exactly the Integral Probability Metric (IPM) between the data and discriminator-guided
diffusion model distribution, leading us to characterize the generalization abilities of such models.

8
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In particular, our results advocate using regularized discriminators and refining diffusion models to
close the gap in generalization.

Some ways to extend this work include a tighter analysis for the term Df,H

(
P̂0,L

(
Yϑ
T

))
which we

bounded by either the IPM or f -divergence to utilize existing results. This term, however, is smaller
and weaker than both these divergences; therefore, a tighter analysis can reveal a faster convergence
rate. Additionally, since our framework recovers the binary cross entropy refinement from Kim et al.
(2022a), we can derive loss functions beyond this case. Since our goal was to prove the link to strong
duality, we leave the implementation of refined diffusion models with general proper composite
losses as the subject for future work

REFERENCES

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to Statistical Learning The-
ory. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-28650-9. doi: 10.1007/
978-3-540-28650-9 8. URL https://doi.org/10.1007/978-3-540-28650-9_8.

Jean Bretagnolle and Catherine Huber. Estimation des densités: risque minimax. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 47:119–137, 1979.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated mri. Medical
image analysis, 80:102479, 2022.

Zac Cranko and Richard Nock. Boosted density estimation remastered. In International Conference
on Machine Learning, pp. 1416–1425. PMLR, 2019.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Ky Fan. Minimax theorems. Proceedings of the National Academy of Sciences of the United States
of America, 39(1):42, 1953.

Wenqi Fan, Chengyi Liu, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and Qing Li. Gen-
erative diffusion models on graphs: Methods and applications. arXiv preprint arXiv:2302.02591,
2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

9

https://doi.org/10.1007/978-3-540-28650-9_8


Under review as a conference paper at ICLR 2024

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Hisham Husain. Distributional Robustness with IPMs and links to Regularization and GANs.
Advances in Neural Information Processing Systems, 33, 2020.

Hisham Husain and Jeremias Knoblauch. Adversarial interpretation of bayesian inference. In
International Conference on Algorithmic Learning Theory, pp. 553–572. PMLR, 2022.

Hisham Husain, Richard Nock, and Robert C Williamson. A primal-dual link between gans and
autoencoders. In Advances in Neural Information Processing Systems, pp. 413–422, 2019.

Hisham Husain, Borja Balle, Zac Cranko, and Richard Nock. Local differential privacy for sampling.
In International Conference on Artificial Intelligence and Statistics, pp. 3404–3413. PMLR, 2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Dongjun Kim, Yeongmin Kim, Wanmo Kang, and Il-Chul Moon. Refining generative process with
discriminator guidance in score-based diffusion models. arXiv preprint arXiv:2211.17091, 2022a.

Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
for robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2426–2435, 2022b.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. Generalized variational inference:
Three arguments for deriving new posteriors. arXiv preprint arXiv:1904.02063, 2019.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for general
data distributions. In International Conference on Algorithmic Learning Theory, pp. 946–985.
PMLR, 2023.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards faster non-asymptotic convergence for
diffusion-based generative models. arXiv preprint arXiv:2306.09251, 2023.

Percy Liang. Cs229t/stat231: Statistical learning theory (winter 2016), 2016.

Shuang Liu and Kamalika Chaudhuri. The inductive bias of restricted f-gans. arXiv preprint
arXiv:1809.04542, 2018.

Shuang Liu, Olivier Bousquet, and Kamalika Chaudhuri. Approximation and convergence properties
of generative adversarial learning. In Advances in Neural Information Processing Systems, pp.
5545–5553, 2017.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847–5861, 2010.

Richard Nock, Zac Cranko, Aditya K Menon, Lizhen Qu, and Robert C Williamson. f-gans in
an information geometric nutshell. In Advances in Neural Information Processing Systems, pp.
456–464, 2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in Neural Information Processing Systems,
pp. 271–279, 2016.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution
estimators. arXiv preprint arXiv:2303.01861, 2023.

10



Under review as a conference paper at ICLR 2024

Santiago Pascual, Gautam Bhattacharya, Chunghsin Yeh, Jordi Pons, and Joan Serrà. Full-band
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A APPENDIX

A.1 NOTATION

We will be invoking general convex analysis on the space F (Ω,R), in the same fashion as Liu &
Chaudhuri (2018), noting that F (Ω,R) is a Hausdorff locally convex space (through the uniform
norm). We use B(Ω) to denote the denote the set of all bounded and finitely additive signed
measures over Ω (with a given σ-algebra). For any set D ⊆ B(Ω) and h ∈ F (Ω,R), we use
σD(h) = supν∈D ⟨h, ν⟩ and δD(ν) = ∞ · Jν /∈ DK to denote the support and indicator functions
such as in Rockafellar (1970). We introduce the conjugate specific to these spaces

Definition 1 (Rockafellar (1968)) For any proper convex function F : F (Ω,R)→ (−∞,∞), we
have for any µ ∈ B(Ω) we define

F ⋆(µ) = sup
h∈F(Ω,R)

(∫
Ω

hdµ− F (h)
)

and for any h ∈ F (Ω,R) we define

F ⋆⋆(h) = sup
µ∈B(Ω)

(∫
Ω

hdµ− F ⋆(µ)

)
.

Theorem 7 (Zalinescu (2002) Theorem 2.3.3) If X is a Hausdorff locally convex space, and F :
X → (−∞,∞] is a proper convex lower semi-continuous function then F ⋆⋆ = F .

We also define the Frechet normal cone (or prenormal cone) of a prescribed setH ⊆ F (Ω,R) is

NH(h) :=

{
µ′ ∈ B(Ω) : lim sup

H⊆(h′)→h

⟨µ′, h′ − h⟩
∥h′ − h∥

≤ 0

}
, (32)

where the ⟨·, ·⟩ is the operator linking the two dual spaces. in this case of F (Ω,R) and B(Ω) is
⟨h, µ⟩ = EX∼µ[h(X)]

A.2 PROOF OF THEOREM 1

We begin by defining the objective

L (h,Q) = Eν [h]− EQ[h] + If (Q : µ). (33)

Note that since L is upper semicontinuous concave in h and lower semicontinuous convex in Q, we
have by Ky Fan’s minimax Theorem (Fan, 1953) and (Liu & Chaudhuri, 2018, Lemma 27):

sup
h∈H

inf
Q∈P(Ω)

L (h,Q) = inf
Q∈P(Ω)

sup
h∈H

L (h,Q). (34)

Lemma 2 For any function h ∈ F (Ω,R), we have

L (h, µh) = inf
Q∈P(Ω)

L (h,Q), (35)

where µh is a probability measure such that the Radon-Nikodym derivative satisfies

dµh

dµ
= f ′−1(h− λh), (36)

where λh is a constant such that Eµ[f
′−1(h− λh)] = 1.

Proof First note Q must be absolutely continuous with respect to µ since it is a requirement of If
being finite. We can therefore re-parametrize Q as Q = r · µ where Eµ[r] = 1. We also require
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r ≥ 0 however for now, we will show our assumptions on f can alleviate this. The optimization can
thus be rewritten as

Eν [h]− EQ[h] + If (Q : µ) (37)
= Eν [h]− Eµ [r · h] + Eµ[f(r)] + λ(Eµ[r]− 1) (38)
= Eν [h] + Eµ [−r · h+ f(r) + λ(r − 1)] . (39)

We differentiate the objective w.r.t r, and set the derivative to 0, which yields:

0 = −h∗ + f ′(r) + λ (40)

=⇒ r = f ′−1 (h∗ − λ) . (41)

Differentiating with respect to λ yields Eµ[r] = 1 which can be satisfied if we set λ = λ. Next, note
that the assumption f ′−1(t) ≥ 0 guarantees this solution satisfies r ≥ 0. Thus, the optimal density
satisfies

dµh

dµ
= f ′−1(h− λh). (42)

Note that

L (h, µh) = Eν [h]− EQ[h] + If (Q : µ) (43)

= Eν [h]− Eµ

[
h ·

(
f ′−1(h− λh)

)]
+ Eµ

[
f
(
f ′−1(h− λh)

)]
(44)

= Eν [h− λh]− Eµ

[
(h− λh) ·

(
f ′−1(h− λh)

)]
+ Eµ

[
f
(
f ′−1(h− λh)

)]
(45)

= Eν [h− λh]− Eµ [f
⋆ ◦ (h− λh)] . (46)

If we denote by R(h) = Eν [h]− Eµ[f
⋆ ◦ h], we are able to write

sup
h∈H

R(h− λh) = sup
h∈H

L (h, µh) (47)

= sup
h∈H

inf
Q∈P(Ω)

L (h,Q) (48)

= sup
h∈H

(Eν [h]− Eµ[f
⋆ ◦ h]) (49)

= sup
h∈H

R(h). (50)

Hence the optimal solution h∗ specified in the theorem statement can be decomposed into the form
h∗ = h̃+ λh̃ for some h̃ ∈ H. Now we will show that µh̃ is in the optimal solution to

R(Q) := dH(ν,Q) + If (Q : µ) (51)
= sup

h∈H
L (h,Q) (52)

In order to proceed, we will define an auxillary objective:

J(h) = Eν [h]− Eµh̃
[h] + δH(h). (53)

This objective corresponds to the inner IPM term insideR. We require the following lemma to aid us
in decomposingR(µh̃).

Lemma 3 The function h∗ ∈ H maximizes J(h).

Proof Note that by definition, h∗ maximizes the functional

Jf (h) = Eν [h]− Eν [f
⋆ ◦ h] + δH(h). (54)

Thus, if we take the subgradient of −Jf and apply (Penot, 2012, Theorem 2.97), the following holds
via optimality of h∗

0 ∈ −dν + (f⋆)′(h∗)dµ+ NH(h∗), (55)
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where h∗ := h∗ + λ. We apply the same result to −J to yield a condition on the optimizer h:

h minimizes − J(h) (56)
⇐⇒ 0 ∈ −dν + dµh̃ + NH(h) (57)

⇐⇒ 0 ∈ −dν + dµf ′−1(h∗) + NH(h) (58)
(1)⇐⇒ 0 ∈ −dν + (f⋆)′(h∗)dµ+ NH(h), (59)

where (1) is due to the fact when f is strictly convex we have (f⋆)′ = (f ′)−1. Finally, note that if
we set h = h∗, the condition is met by optimality condition specified in equation 55.

Putting all the above together, we are able to write

inf
Q∈P(Ω)

R(Q) ≤ R(µh̃) (60)

= dH(ν, µh̃) + If (µh̃ : µ) (61)
= sup

h∈F(Ω)

J(h) + If (µh̃ : µ) (62)

= sup
h∈F(Ω)

J(h) + Eµ

[
f
(
f ′−1 (h∗)

)]
(63)

(1)
= J(h∗) + Eµ

[
f
(
f ′−1 (h∗)

)]
(64)

= Eν [h
∗]− Eµ[f

−1(h∗)h∗] + Eµ

[
f
(
f ′−1 (h∗)

)]
(65)

= Eν [h
∗]− Eµ

[
f−1(h∗)h∗ − f

(
f ′−1 (h∗)

)]
(66)

(2)
= Eν [h

∗]− Eµ [f
⋆ ◦ h∗] (67)

≤ sup
h′∈H

(Eν [h
′]− Eµ [f

⋆ (h′)]) (68)

(3)
= inf

Q∈P(Ω)
R(Q), (69)

where (1) is via the optimality of h∗ via Lemma 3, (2) is by definition of f⋆, and (3) is via primal-
duality as specified in equation 11. Finally, note that µh̃ = µH by the construction of h̃.

A.3 PROOF OF THEOREM 2

Since µh̃ achieves the strong duality, we have equality:

Df,H = dH(ν, µh̃) + If (µh̃ : µ) (70)

=⇒ dH
(
ν, µh̃

)
= Df,H (ν, µ)− If

(
µh̃, µ

)
(71)

A.4 PROOF OF THEOREM 4

For any timestep T > 0, let ∆T : Ω→P(Ω) denote the forward diffusion process dictated by the
Ornstein-Uhlerbeck process and let

←−
∆T be the reverse process. Furthermore, let

←−
Sϑ be the process

after following the DDPM algorithm at T steps. We then have

P̂0 =
←−
∆T#∆T#P̂0 (72)

L(Yϑ
T ) =

←−
Sϑ#γd. (73)
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We then have

Df,H

(
P̂0,L

(
Yϑ
T

))
(74)

= Df,H

(←−
∆T#∆T#P̂0,

←−
Sϑ#γd

)
(75)

= inf
µ∈P(Ω)

(
dH

(←−
∆T#∆T#P̂0, µ

)
+ If

(
µ :
←−
Sϑ#γd

))
(76)

≤ dH
(←−
∆T#∆T#P̂0,

←−
Sϑ#∆T#P̂0

)
+ If

(←−
Sϑ#∆T#P̂0 :

←−
Sϑ#γd

)
(77)

(1)

≤ ∥H∥ · TV
(←−
∆T#∆T#P̂0,

←−
Sϑ#∆T#P̂0

)
+ If

(←−
Sϑ#∆T#P̂0 :

←−
Sϑ#γd

)
(78)

(2)

≤ ∥H∥ · TV
(←−
∆T#∆T#P̂0,

←−
Sϑ#∆T#P̂0

)
+ If

(
∆T#P̂0 : γd

)
(79)

(3)

≤ ∥H∥ ·
(
1− exp

(
−KL

(←−
∆T#∆T#P̂0 :

←−
Sϑ#∆T#P̂0

)))
+ If

(
∆T#P̂0 : γd

)
(80)

(4)

≤ ∥H∥ ·
(
1− exp

(
−
(
ε2 + L2ds+ L2m2

2s
2
)
T
))

+ If
(
∆T#P̂0 : γd

)
, (81)

where (1) is due to the fact that dH ≤ ∥H∥ · TV, (2) is via the data processing inequality of
f -divergences, (3) is by (Bretagnolle & Huber, 1979, Lemma 2.1), and (4) is via (Chen et al., 2022,
Theorem 9) under the assumptions.

A.5 PROOF OF LEMMA 1

Using the variational form of f -divergence, we know the witness is attained at w∗ = f ′(rT ) using
(Nguyen et al., 2010), let ∥w∗∥ = supX∈Ω |f ′(rT (X))| :

If (∆T#P̂0 : γd) = sup
w:Ω→dom(f⋆)

(
E∆T #P̂0

[w]− Eγd
[f⋆ ◦ w]

)
(82)

= E∆T #P̂0
[w∗]− Eγd

[f⋆ ◦ w∗] (83)

(1)

≤ E∆T #P̂0
[w∗]− Eγd

[w∗] (84)

= ∥w∗∥ ·
(
E∆T #P̂0

[
w∗

∥w∗∥

]
− Eγd

[
w∗

∥w∗∥

])
(85)

≤ ∥w∗∥ · sup
h:∥h∥≤1

(
E∆T #P̂0

[h]− Eγd
[h]

)
(86)

(2)

≤ ∥w∗∥ ·
√

KL
(
∆T#P̂0 : γd

)
, (87)

where (1) is due to the fact that f⋆(t) = supt′ (t · t′ − f(t′)) ≥ t− f(1) = t and (2) is via Pinsker’s
inequality.

A.6 PROOF OF THEOREM 3

We apply Theorem 2 to the diffusion setting which yields the result.
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A.7 PROOF OF THEOREM 5

For brevity, let µ := L
(
Yϑ
T

)
and recalling ρh∗ = ηh∗#µ, which defines a distribution over [0, 1]. We

can then write

If = EX∼µ

[
f
(
f ′−1 (h∗(X))

)]
(88)

= EX∼µ

[
f

(
f ′−1

(
f ′

(
ηh∗(X)

1− ηh∗(X)

)))]
(89)

= EX∼µ

[
f

(
ηh∗(X)

1− ηh∗(X)

)]
(90)

= Et∼ρh∗

[
f

(
t

1− t

)]
(91)

=

∫ 1

0

f

(
t

1− t

)
dρh∗(t). (92)

A.8 PROOF OF THEOREM 6

Using a standard application of McDiarmind’s inequality such as in (Bousquet et al., 2004, Lemma 5)
and (Zhang et al., 2017, Theorem 3.1), we have

dH(P, P̂0) ≤ Rn(H) + 2 ∥H∥ ·

√
1

2n
ln

(
1

δ

)
, (93)

with probability 1− δ. Thus, we have

dH
(
P, µH

T,ϑ

)
= sup

h∈H

(
EP [h]− EµH

T,ϑ
[h]

)
(94)

≤ sup
h∈H

(
EP [h]− EP̂0

[h] + EP̂0
[h]− EµH

T,ϑ
[h]

)
(95)

≤ sup
h∈H

(
EP [h]− EP̂0

[h]
)
+ sup

h∈H

(
EP̂0

[h]− EµH
T,ϑ

[h]
)
. (96)

The first term can be bounded by equation 93 and the second term can be decomposed via Theorem 3.

A.9 DERIVATION FOR EXAMPLE 1

We focus on the setting described for Variational Inference where we will show that

sup
b∈R

(b− Eµ[exp (−L+ b− 1)]) = logEµ [exp (−L)] . (97)

First we set M = Eµ [exp(−L− 1)] then note that

b− Eµ[exp (−L+ b− 1)] = b− ebEµ[exp (−L− 1)] (98)

= b− ebM. (99)

Differentiating this objective with respect to b yields the optimal b is b∗ = − logM .

A.10 PROOF OF EXAMPLE 2

We first derive the conjugate of f(t):

f⋆(t) = sup
t′

(t · t′ − f(t′)) (100)

= sup
t′

(t · t′ − t′ log(t′) + (t′ + 1) log(t′ + 1)− 2 log 2) (101)

=

{
−2 log 2− log(1− exp(t)) if t < 0

∞ if t ≥ 0.
(102)
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Therefore, we have

Df,H(ν, µ) = sup
h∈H

(Eν [h]− Eµ[f
⋆ ◦ h]) (103)

= sup
θ∈Θ

(Eν [log(ηθ)]− Eµ[f
⋆ ◦ (log(ηθ))]) (104)

= sup
θ∈Θ

(Eν [log(ηθ)] + Eµ[log(1− ηθ)]) + 2 log 2 (105)

= − inf
θ∈Θ

(Eν [− log(ηθ)] + Eµ[− log(1− ηθ)]) + 2 log 2. (106)

A.11 ADDITIONAL RESULTS

Lemma 4 For any µ, ν ∈ P(Ω), if f(t) = t log t − (t + 1) log(t + 1) + 2 log 2, we have that
If (µ : ν) ≤ KL(µ : ν).

Proof Let fKL(t) = t log t and fexcess(t) = 2 log 2− (t+ 1) log(t+ 1) then we have

If (µ : ν) = Eν [f(dµ/dν)] (107)
= Eν [fKL(dµ/dν) + fexcess(dµ/dν)] (108)
= Eν [fKL(dµ/dν)] + Eν [fexcess(dµ/dν)] (109)
(1)

≤ Eν [fKL(dµ/dν)] + fexcess (Eν [(dµ/dν)]) (110)
= Eν [fKL(dµ/dν)] + fexcess (1) (111)
= Eν [fKL(dµ/dν)] , (112)

where (1) is via Jensen’s inequality, noting that fexcess is concave.

The main duality result requires H to be closed under additive constants however we look to
generalizing this, to get a better understanding of how this plays a role in discriminator guidance. We
first consider a variant of Lemma 2 that relaxes the constraint of Q being a probability measure and
even f ′−1(t) ≥ 0.

Lemma 5 Let f : R→ (−∞,∞] be a lower semi-continuous convex function with f(1) = 0. For a
fixed h ∈ F (Ω,R), we have

µh ∈ arg inf
µ∈B(Ω)

L (h,Q) =⇒ dµh

dµ
= f ′−1(h). (113)

Proof Similar to the proof of Lemma 2, we can reparametrize Q with r: Q = r · µ however we have
no other restriction on r. Thus, we have:

L (Q,µ) = Eν [h]− Eµ[r · h] + Eµ[f(r)], (114)

and differentiating with respect to r and setting the derivative to zero yields:

0 = −h+ f ′(r) (115)

=⇒ r = f ′−1(h). (116)

Furthermore, we have that

sup
h∈H

inf
Q∈B(Ω)

L (h, µ) = sup
h∈H

inf
µ∈B(Ω)

{Eν [h]− EQ[h] + If (Q : µ)} (117)

= sup
h∈H

{
Eν [h]− sup

µ∈B(Ω)

{EQ[h]− If (Q : µ)}

}
(118)

(1)
= sup

h∈H
{Eν [h]− Eµ[f

⋆ ◦ h]} , (119)
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where (1) is due to the fact that Eµ[f
⋆ ◦ h] is the Legendre-Fenchel dual of Q 7→ If (Q : µ). In order

to see this, note thatQ 7→ If (Q : µ) is proper, convex and lower semicontinuous and thus by Theorem
7, it suffices to show Q 7→ If (Q : µ) is the Legendre-Fenchel dual of h 7→ K (h) := Eµ[f

⋆ ◦ h]:
K ⋆(Q) = sup

h∈F(Ω,R)
{EQ[h]−K (h)} (120)

= sup
h∈F(Ω,R)

{EQ[h]− Eµ[f
⋆ ◦ h]} (121)

(1)
= If (Q : µ), (122)

where (1) is due to the variational formulation of If (Nguyen et al., 2010). Note that we do not require
H to be closed under additive constants, the only caveat is that the set B(Ω) is not compact, meaning
that we cannot apply a minimax theorem to get strong duality. However under the assumption of the
existence of a compact set, we can get the result forH that are not additive.

Assumption 4 Let f : R→ (−∞,∞] be a lower semi-continuous convex function with f(1) = 0.
For any set of functionsH ⊆ F (Ω,R), suppose there exists a convex compact set B ⊆ B(Ω) such
that P(Ω) ⊂ B and {

µh :
dµh

dµ
= f ′−1(h)

}
⊂ B. (123)

One way of having such an assumption satisfied is if each µh satisfies µh(Ω) ≤ 1 then B can be the
unit ball in B(Ω) which is compact under the vague topology by the Banach-Alaoglu theorem. Note
that if we pickH to be parametrized in the propoer composite loss framework (Savage, 1971):

H =

{
f ′

(
ηθ

1− ηθ

)
: θ ∈ Θ

}
, (124)

where θ 7→ ηθ ∈ [0, 1] is an arbitrarily parametrized function such as a deep neural network then we
have

µh(Ω) ≤ 1 ⇐⇒ Eµ

[
ηθ

1− ηθ

]
≤ 1. (125)

Since ηθ is the class probability estimate of a point to be not in the support of µ (since we discriminate
between µ and ν), we can expect the parametrized models to mostly satsify this property. Under this
assumption, we have a generalized duality.

Theorem 8 Let f : R→ (−∞,∞] be a lower semi-continuous convex function with f(1) = 0. For
any set of convex functionsH ⊆ F (Ω,R), suppose there exists B from the above Assumption, then
we have

sup
h∈H
{Eν [h]− Eµ[f

⋆ ◦ h]} = inf
Q∈B
{dH(ν,Q) + I(Q : µ)} . (126)

Proof Note that from equation 122 we have

sup
h∈H
{Eν [h]− Eµ[f

⋆ ◦ h]} = sup
h∈H

{
Eν [h]− sup

Q∈B(Ω)

{EQ[h]− If (Q : µ)}

}
(127)

= sup
h∈H

inf
Q∈B(Ω)

{Eν [h]− EQ[h] + If (Q : µ)} (128)

(1)
= sup

h∈H
inf
Q∈B
{Eν [h]− EQ[h] + If (Q : µ)} (129)

(2)
= inf

Q∈B
sup
h∈H
{Eν [h]− EQ[h] + If (Q : µ)} (130)

= inf
Q∈B
{dH(ν,Q) + I(Q : µ)} , (131)

where (1) is due to the fact that B contains the optimal measure by Lemma 5 and (2) is due to the fact
that sinceH and B are convex and B is compact, we are able to apply Ky Fan’s minimax Theorem
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(Fan, 1953) in the same way as (Liu & Chaudhuri, 2018, Lemma 27).

Putting this Theorem to use, we have that

sup
h∈H
{Eν [h]− Eµ[f

⋆ ◦ h]} = inf
Q∈B
{dH(ν,Q) + I(Q : µ)} ≤ inf

Q∈P(Ω)
{dH(ν,Q) + I(Q : µ)} .

(132)

Note that this inequality becomes tight whenH is large enough to be closed under addition however
the optimal refined measure appearing in the optimization problem still satisfies the form

dµH

dµ
= f ′−1(h∗), (133)

where h∗ is the optimal function from the dual problem. The only difference here is that the measure
µH may not necessarily be a probability measure. Thus in practice, ifH is not closed under addition,
it is intuitive to compute f ′−1(h∗) and normalize it as a heuristic.

We now consider deriving the full framework for f(t) = t log t, the KL-divergence. In this case,
note that f is still strictly convex, with f ′−1(t) ≥ 0. Next, note that f⋆(t) = exp(t − 1), thus the
discriminator task is

Df,H = sup
h∈H

(Eν [h]− Eµ[exp(h− 1)]) , (134)

and the final refined distribution will be:

µH = µ · exp(h∗)/Eµ[h
∗]. (135)

We note that boosted density estimation algorithms have been developed using discriminators in
combination with the expression in (Cranko & Nock, 2019; Husain et al., 2020; Soen et al., 2020).
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