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Supplementary Document
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A DISCUSSION ON MI MINIMIZATION

It was shown that minimizing the MI in (5) is equivalent to maximizing E log p
(
r(→)

)
+

E log
∣∣∣ ddy g(→) (y)

∣∣∣ (Zhang & Hyvärinen, 2009), where p is the assumed noise density. We find

this objective interpretable, since the first term, E log p
(
r(→)

)
, can be understood as the data fitting

term, and the second term, E log
∣∣∣ ddy g(→) (y)

∣∣∣, can be understood from an information-geometric
perspective (Daniušis et al., 2010). However, such equivalent form requires a known noise distribution
to calculate the log-likelihood. Some works (Ma et al., 2020; Uemura & Shimizu, 2020) have been
proposed to avoid this difficulty by using HSIC instead of MI.

B EXPERIMENTS ON MINIMIZING HSIC

In this section, we show the PNL model learning result by minimizing (12). We generated two
synthetic datasets from PNL model, Y = f2 (f1(X) + ε), and each contains 1000 data samples. The
data generation mechanisms are as follows (see Figure 4),

• Syn-1: f1(X) = X−1 + 10X, f2(Z) = Z3, X ∼ U(0.1, 1.1), ε ∼ U(0, 5),
• Syn-2: f1(X) = sin(7X), f2(Z) = exp(Z), X ∼ U(0, 1), ε ∼ N(0, 0.32).
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Figure 4: The ground truth transformations of f∗ and g∗ of Syn-1 (top) and Syn-2 (bottom).

We build different MLPs with the following configurations.

• Narrow deep MLP: the input and output are both one-dimensional; there are 9 hidden layers,
each with 5 neurons. The activation function is Leaky-ReLU.

• Wide over-parameterized MLP: the input and output are both one-dimensional; there is only
one single hidden layer with 9000 neurons. The activation function is Leaky-ReLU.

We use the default initialization method in PyTorch (Paszke et al., 2019), and make sure the exact
same initial weights for narrow/wide MLPs are used (i.e., the initializations for different datasets are
the same).

Optimization Setup: We set the batch size to be 32. We use Adam (Kingma & Ba, 2015) for the
optimization (the learning rates are 10−3 and 10−6 for narrow deep and wide over-parameterized
MLPs, respectively, while all other parameters are set by default).

We report the learning results in Figure 5. The learned transformations (see row 3 and row 4 in
Figure 5) deviates far away from the underlying functions, and are quite similar across datasets. The
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Figure 5: Visualization of the learned nonlinearities (trained solely with HSIC, under different
datasets and MLP configurations). From top to bottom, the convergence results, residual plot,
learned f , learned g, are plotted. Each column shows one specific configuration. None of them
learns meaningful nonlinearities, and the learned transformations are quite similar across datasets.

possible reason is that, the solutions were started from the same initialization and trapped at the local
minima near the initializations.

To verify whether such HSIC-based PNL learning algorithm is stable for causal discovery, we further
evaluate the AbPNL on the following dataset. We build 100 data pairs with different random seeds,
following the same mechanism, Syn-1, and each contains 1000 data samples. And we applied the
AbPNL (Uemura & Shimizu, 2020) with different initializations on each of those data pairs. The
results in Table 3 show that the causal discovery stableness for AbPNL is not satisfactory.

Table 3: Comparison of bivaraite causal discovery AUC on 100 realizations of Syn-1

Dataset ANM CDS IGCI RECI CDCI AbPNL ACE MC-PNL

Syn-1 0.495 1 0.528 1 1 0.281 1 1

C SYNTHETIC DATASETS FOR INDEPENDENCE TEST

In this section, we describe the synthetic data generation from PNL model for the independent test.
The data were generated from the following model, Y = f2 (f1(X) + ε) , X ∼ GMM, ε ∼ N(0, σ2

ε ),
where f1, f2 are randomly initialized monotonic neural networks (Wehenkel & Louppe, 2019) with 3
layers and 100 integration steps, and each layer contains 100 units. The cause termX is sampled from
a Gaussian mixture model as described in Lopez-Paz et al. (2017). The datasets were configured with
various noise levels and sample sizes. There are three different injected noise levels, σε ∈ {0.1, 1, 10},
and three different sample sizes, N ∈ {1000, 2000, 5000}. And under each configuration, we
generated 100 data pairs for evaluating the independence test accuracy.
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D A UNIVERSAL VIEW OF DEPENDENCE MEASURES

Actually the discussed dependence measures in Section 3.2 are all closely related to the mean
squared contingency introduced by (Rényi, 1959) and rediscovered due to its squared version called
squared-loss mutual information (SMI) (Suzuki et al., 2009),

SMI :=

∫∫
p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dxdy =

∫∫
p(x, y)

p(x)p(y)
p(x, y)dxdy − 1. (16)

When the density ratio DR(x, y) := p(x,y)
p(x)p(y) is constant 1 (namely X and Y are independent),

the SMI should be zero. To estimate the SMI, one can first approximate DR(x, y) by a surrogate
function DRθ(x, y) parameterized by θ. The optimal parameter θ̂ can be obtained via minimizing
the following squared-error loss JDR,

JDR(θ) :=

∫∫
(DRθ(x, y)−DR(x, y))

2
p(x)p(y)dxdy

=

∫∫
DRθ(x, y)2p(x)p(y)dxdy − 2

∫∫
DRθ(x, y)p(x, y)dxdy + Const.

(17)

Then the empirical SMI can be calculated as, ŜMI = 1
n

∑n
j=1 DRθ̂(xj , yj)− 1.

We show that, with different parameterizations of the density ratio, the resulting SMI will be equivalent
to different dependence measures, see Table 4.

Table 4: Connections between DR parameterization and dependence measure

Density ratio surrogate function DRθ(x, y) Corresponding dependence measure

DRθ(x, y) = 1 +
∑n
i=1 θiK (x, xi)L (y, yi) variant of LSMI (Sugiyama & Yamada, 2012)

DRθ(x, y) = 1 +
∑n
i=1

1
nK (x, xi)L (y, yi) HSIC (Gretton et al., 2005)

DRθ(x, y) = 1 +
∑m
i=1 fi(x)gi(y) m-mode HGR correlation (Wang et al., 2019)

DRθ(x, y) = 1 + f(x)g(y) 1 HGR correlation (Rényi, 1959)
1 When f, g are the linear combinations of random features, f(x) = αTφ(x), g(y) = βTψ(y), the corre-
sponding dependence measure will be RDC (López-Paz et al., 2013),

Sugiyama & Yamada (2012) proposed to approximate the density ratio by DRθ̂(x, y) =∑n
i=1 θ̂iK (x, xi)L (y, yi), where θ̂ has a closed-form solution via minimizing (17). After then, they

approximated the SMI using the empirical average of Equation (16), 1
n

∑n
j=1 DRθ̂(xj , yj)− 1 =

1
n

∑n
j=1

∑n
i=1 θ̂iK (x, xi)L (y, yi) − 1. It is shown that, the first term is actually the empirical

HSIC, when {θ̂i}ni=1 = 1
n . We argue that there is a flaw above, as when X and Y are independent,

both the SMI and HSIC score should be zero. A simple modification is to model the density ratio by
DRθ(x, y) = 1 +

∑n
i=1 θiK (x, xi)L (y, yi). The constant 1 here is to exclude all the independence

terms, and the rest ones should model the dependency only. This modification will not hurt the
quadratic form of JDR(θ), and maintains good interpretation. The SMI reduced to HSIC score, when
{θi}ni=1 = 1

n ,

We extend this idea to approximate the density ratio by DRθ(x, y) = 1 + f(x)g(y), where f, g are
zero mean and unit variance functions parameterized by θ, the resulting SMI will be equal to the
HGR maximal correlation. Similarly, the constant 1 will capture the independence part, and f(x)g(y)
will capture the dependencies.

Proposition 1. The density ratio estimation problem (17) is equivalent to the maximal HGR correla-
tion problem (7), when the density ratio is modeled in the form of DRθ(x, y) = 1 + f(x)g(y), and
f, g are restricted to zero mean and unit variance functions.
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Proof. We substitute DRθ̂(x, y) into Equation (17),

JDR(f, g) =

∫∫
(1 + f(x)g(y))2p(x)p(y)dxdy − 2

∫∫
(1 + f(x)g(y))p(x, y)dxdy + Const.

= 1 + 2E(f(X))E(g(Y )) + var(f(X))var(g(Y ))− 2− 2E(f(X)g(Y )) + Const.

Then it is not hard to see, minf,g J
DR(f, g), subject to E(f) = E(g) = 0, var(f) = var(g) = 1, is

equivalent to the maximal HGR correlation problem (7) .

Proposition 2. The density ratio estimation problem (17) is equivalent to the Soft-HGR problem (9),
when the density ratio is modeled in the form of DRθ(x, y) = 1 + f(x)g(y), and f, g are restricted
to zero mean functions.

We further note that the above density ratio estimation can be regard as a truncated singular value
decomposition DRθ̂(x, y) = 1+

∑m
i=1 fi(x)gi(y), wherem = 1. When lettingm > 1 and imposing

zero mean and unit variance constraints on all fi and gi, the corresponding JDR minimization problem
is equivalent to solving the m-mode HGR maximal correlation (Wang et al., 2019; Lee, 2021).

Definition 3 (m-mode HGR maximal correlation). Given 1 ≤ m ≤ min{|X |, |Y|}, the m-mode
maximal correlation problem for random variables X ∈ X , Y ∈ Y is,

(f∗,g∗) , arg max
f :X→Rm,g:Y→Rm

E[f(X)]=E[g(Y )]=0,

E[f(X)fT(X)]=E[g(Y )gT(Y )]=I

E
[
fT(X)g(Y )

]
, (18)

where f = [f1, f2, . . . , fm]
T
,g = [g1, g2, . . . , gm]

T are referred as the maximal correlation func-
tions.

E RANDOM FEATURE GENERATION

We generate the random features as described in López-Paz et al. (2013). The generation process has
the following two steps: copula transformation (optional) and random nonlinear projection.

Step 1. Copula transformation. We first estimate the empirical cumulative distribution of both X
and Y by,

PXn (x) :=
1

n

n∑
i=1

I (xi ≤ x) , PYn (y) :=
1

n

n∑
i=1

I (yi ≤ y) .

Then we can apply the empirical copula transformation to data samples {(xi, yi)}ni=1, uXi = PXn (xi)
and uYi = PYn (yi), where the marginals UX and UY follow uniform distribution U(0, 1).

Step 2. Random nonlinear projection. We design a k-dimensional random feature vector φ(x) =
[sin(w1x + b1), · · · , sin(wkx + bk)]T , where wi, bi ∼ N(0, s2). The random feature matrix Φ ∈
Rk×n is stacked as,

Φ(x; k, s) :=

 sin (w1x1 + b1) · · · sin (w1xn + b1)
...

...
...

sin (wkx1 + bk) · · · sin (wkxn + bk)

 .

One can replace the xi here by uXi from the first step to form the random feature matrix. Similar
procedures can be applied to y as well to generate Ψ. The number of random Fourier features k is
user-defined, which is typically chosen from a few tens to a few thousands (Rahimi & Recht, 2008;
Theodoridis, 2015). In our experiments, we set k = 30 and s = 2.
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F ON THE OPTIMIZATION OF PROBLEM (14)

F.1 SUBPROBLEM: EQUALITY CONSTRAINED QUADRATIC PROGRAMMING

To simplify the notation, we rewrite the sub-problem into the following form,

min
x∈Rn

f(x) := 1
2x

TAx− bTx,
s.t. vTx = c.

(19)

With the KKT conditions, one can find the unique optimal solution x∗ by solving the following linear
system, (

A v
vT 0

)
︸ ︷︷ ︸

=:KKT

(
x∗

λ∗

)
=

(
b
c

)
, (20)

when the KKT matrix is non-singular. In our setting, we can choose Φ and Ψ properly to make
ΦΦT and ΨΨT positive definite, or add a small positive definite perturbation matrix εI , such that the
unique optimum would be obtained. Besides, the sub-problem is of smaller size and easy to solve.

F.2 LANDSCAPE STUDY WITH HESSIAN

To simplify the notation, we rewrite

J(α,β;A,B,C,D,E) = αTAαβTBβ −αTCβ +αTDα+ βTEβ, (21)

where,

A = 1
2n2 ΦΦT ,

B = ΨΨT ,
C = 1

nΦΨT + λ
(n−1)2 ΦHKxxHΨT ,

D = λ
(n−1)2 ΦHKxxHΦT ,

E = λ
(n−1)2 ΨHKxxHΨT .

(22)

And the corresponding Hessian is

∇2J(α,β) =

(
2AβTBβ + 2D AαβTB − C
BTβαTA− CT 2BαTAα+ 2E

)
. (23)

Now we are able to verify the property of the critical points via checking their Hessians numerically.

One obvious critical point is the all zero vector 0. From our experiments, the Hessian at 0 is mostly
indefinite, as long as the convex regularization term λ is not too huge, which means 0 is a saddle
point. In practice, the algorithm rarely converges to 0.

G FINE-TUNE WITH BANDED LOSS / UNIVERSAL HSIC

In the PNL model, the injected noise are assumed to be independently and identically distributed.
Thus, the residual plot should forms a "horizontal band". We design a banded residual loss to
fine-tune the models as follows. The data samples are separated into b bins {x(i),y(i)}bi=1 according
to the ordering of X , and we expect the residuals in those bins Resi = f(x(i))− g(y(i)) to have the
same distribution, see Figure 6. To this end, we adopt the empirical maximum mean discrepancy
(MMD) (Gretton et al., 2012) as a measure of distribution discrepancy. The banded residual loss
is defined as band(MMD) :=

∑b
i=1 M̂MD(Resi,Resall), where Resall = f(x) − g(y). Then we

append this µ-penalized banded loss to Problem (14) as,

min
α,β

J(α,β) + µ · band(MMD), s.t. αTΦ1 = βTΨ1 = 0. (24)
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Figure 6: The construction of banded residual loss.

The above banded residual loss involves MMD, which is highly non-convex and brings difficulties
to the optimization. We used the projected gradient descent with momentum to optimize the loss
function. The residual plot shows a band shape, see top row in Figure 7.
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Figure 7: Fine-tuning with the banded residual loss.

We also show the results of fine-tuning by enlarging the penalty (to λ = 10000) HSIC term with
universal Gaussian RBF kernel in Figure 8.

Definition 4 (Universal Kernel (Gretton et al., 2005)). A continuous kernel k(·, ·) on a compact
metric space (X , d) is called universal if and only if the RKHS F induced by the kernel is dense in
C(X ), the space of continuous functions on X , with respect to the infinity norm ‖f − g‖∞.
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Figure 8: Fine-tuning with the HSIC-RBF loss.

H ADDITIONAL CONVERGENCE RESULTS

In this section, we show the convergence results on Syn-1 as well.
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Figure 9: The Algorithm 1 converges on Syn-1. We plot the snapshots of the feature transformations
f at training epochs [0, 5, 10, 20], under 15 random initializations (indicated by colors). Upper:
λ = 0, most initializations converge to local minimizers (symmetry: (α,β) 7→ (aα, a−1β)). Lower:
λ = 5, most initializations converge to two local minimizers (symmetry: (α,β) 7→ −(α,β)).

I ON THE CHOICE OF λ

We tried seven different values for λ, and report the AUC scores on the PNL-A-unif dataset with
different noise levels. We found that the MC-PNL is suitable to use in the small noise regime. We also
found that for the data with small noise, smaller λ is preferred; and for the data with large injected
noise, larger λ is preferred.
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Figure 10: The detailed AUC scores vs. λ under five noise levels on PNL-A-unif data.

J DETAILED DATA DESCRIPTIONS

In this section, we describe the datasets in detail.

Gene Datasets:

For D4-S1, D4-S2A, D4-S2B, D4-S2C, we used the preprocessed data in Duong & Nguyen (2022) 1.
D4-S1 contains 36 variable pairs with 105 samples in each pair; D4-S2A, D4-S2B, D4-S2C contains
528, 747, and 579 variable pairs respectively, and each pair contains 210 samples.

The GSE57872 dataset is built on Patel et al. (2014), in which the data has continuous values.
Following Choi et al. (2020), we first screen out 657 gene pairs that have corresponding labels in the
TRRUST database (Han et al., 2017). The gene contains many repeated values. we examined each
gene pair and deleted those repeated expression values.

1https://github.com/baosws/CDCI
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