Table 1. SPEAR reconstruction of the inputs to first linear layer of a VGG16 network on 100 IMAGENET batches of size b=20. We report the mean absolute error (MAE) of the reconstruction, the percentage of successful reconstructions (Acc(%)), and the median number of iterations taken (Median $n_{\rm iter}$).

MAE	Acc(%)	Median n_{iter}	
1.30×10^{-6}	100	10000	

Table 2. Comparison between the reconstructions of the inputs to different linear layers l ($1 \le l \le 6$) of a network with total of L=6 layers and width m=400 on 100 TINYIMAGENET batches of size b=20. We report the mean absolute error (MAE) of the reconstruction, the percentage of successful reconstructions (Acc(%)), and the median number of iterations taken (Median $n_{\rm iter}$).

\overline{l}	MAE	Acc(%)	Median n_{iter}	
1	$1.06\!\times\! 10^{-6}$	100	36100000	
2	1.33×10^{-6}	100	31600000	
3	1.67×10^{-6}	100	84100000	
4	2.80×10^{-6}	99	181100000	
5	$3.04\!\times\! 10^{-6}$	83	840600000	

Figure 1. A random sample of 6 images from the batch whose reconstruction is at the $10^{\rm th}$ PSNR percentile for a set of 100 batch reconstructions on L=6, m=200 fully connected network and batches of size b=20 from the TINYIMAGENET dataset. We show SPEAR reconstruction (top), and compare them to the ground truth (bottom).

Figure 2. A random sample of 6 images from the batch whose reconstruction is at the $50^{\rm th}$ PSNR percentile for a set of 100 batch reconstructions on L=6, m=200 fully connected network and batches of size b=20 from the TINYIMAGENET dataset. We show SPEAR reconstruction (top), and compare them to the ground truth (bottom).

Table 3. Comparison between the reconstructions of Geiping et al. [1] and a version of SPEAR that relies on the Geiping et al. reconstructions to choose which matrices L_A to subsample when applying Theorem 3.3. We report the results on 10 TINYIMAGENET batches for L=6 layer fully connected networks with two different widths m. We report percentage of successful reconstructions (Acc(%)) and the average PSNR for correctly recovered images (PSNR Rec) and all images (PSNR All).

Method	b	m	Acc(%)	PSNR All	PSNR Rec
Geiping et al. [1]	50	400	100	26.5	26.5
SPEAR - ours	50	400	100	124.5	124.5
Geiping et al. [1]	100	2000	100	32.8	32.8
SPEAR - ours	100	2000	60	81.5	119.9

Figure 3. A random sample of 6 images from the batch whose reconstruction is at the $90^{\rm th}$ PSNR percentile for a set of 100 batch reconstructions on L=6, m=200 fully connected network and batches of size b=20 from the TINYIMAGENET dataset. We show SPEAR reconstruction (top), and compare them to the ground truth (bottom).