
Published as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL FOR “UNIVERSAL HU-
MAN MOTION LATENT SPACE FOR PHYSICS-BASED
CONTROL”

Zhengyi Luo1,2 Jinkun Cao2 Josh Merel1 Alexander Winkler1 Jing Huang1

Kris Kitani1,2 ∗ Weipeng Xu1 ∗

1Reality Labs Research, Meta; 2Carnegie Mellon University
https://zhengyiluo.github.io/PULSE/

A Introduction 1

B Details about PHC+ 2

B.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

B.2 Action and Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

B.3 Model Architecture and Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . 3

C Details about PULSE 3

C.1 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

C.2 Comparison to Training Scratch without Distillation . . . . . . . . . . . . . . . . . 3

C.3 Comparison to Other Latent Formulation (VQ-VAE, Spherical) . . . . . . . . . . . 4

C.4 Downstream Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A INTRODUCTION

In this document, we include additional details about our method that are omitted from the main
paper due to the page limit. In Sec.B, we include additional details about PHC+ and our modifica-
tions made to imitate all motion from a large-scale dataset. In Sec.C, we include additional details
about our method, PULSE, such as architecture, training details, and downstream task configurations
etc.All code and models will be released for research purposes.

Extensive qualitative results are provided on the project page as well as in the supplementary zip (the
zipped version is of lower video resolution to fit the upload size). As motion is best seen in videos,
we highly encourage the readers to view them to better understand the capabilities of our method.
Specifically, we evaluate motion imitation and fail-state recovery capabilities for PHC+ and PULSE
after online distillation and show that PULSE can largely retain the abilities of PHC+. Then, we
show long-formed motion generation result sampling from the PULSE’ s prior and decoder. Sam-
pling from PULSE, we can generate long-term, diverse and human-like motions, and we can vary
the variance of the input noise to control the behaviors of random generation. We also compare
with SOTA kinematics-based method, HuMoR, and show that while HuMoR can generate unnat-
ural motions, ours are regulated by the laws of physics and remain plausible. Compared to SOTA
physics-based latent space(ASE and CALM), our random generation appears more diverse. Finally,
we show visualization for downstream tasks for both generative and estimation/tracking tasks and
compare them with SOTA methods.

∗Equal Advising.
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Figure 1: Visualization of issues in the AMASS dataset. Here we show sequences with corrupted poses, large
penetration, and discontinuity. In the second row, the red and yellow mesh are 1 frame apart in 120Hz MoCap.

Table 1: Hyperparameters for PHC+ and Pulse. σ: fixed variance for policy. γ: discount factor. ϵ:
clip range for PPO. α: coefficient for Lregu. β: coefficient for LKL.

Method Batch Size Learning Rate σ γ ϵ wjp wjr wjv wjω # of samples

PHC+ 3072 2× 10−5 0.05 0.99 0.2 0.5 0.3 0.1 0.1 ∼ 1010

Batch Size Learning Rate α β Latent size # of samples

PULSE 3072 5× 10−4 0.005 0.01 → 0.001 32 ∼ 109

B DETAILS ABOUT PHC+

B.1 DATA CLEANING

We perform a failure case analysis and identified two main sources of imitation failure. First, we
have dynamic motion, such as cartwheeling and consecutive back flips. Another, often overlooked,
is that MoCap sequences can still have a large discontinuity and penetration due to failures in the
MoCap optimization procedure or the fitting process (Loper et al., 2014). After filtering out human-
object interaction data following UHC (Luo et al., 2021), we found additional corrupted sequences
in PHC’s training data that have a large discontinuity or penetration. In Fig.1, we visualize some
of the sequences we have identified and removed from the training data. Since we use the random
state initialization proposed by DeepMimic (Peng et al., 2018), sampling frames that have large
penetration could lead to the humanoid “flying off” from the ground as the physics simulation applies
a large ground reactionary force. Naively adjusting the height of the sequence based on penetration
could lead to floating sequences or discontinuity. Frames that have large discontinuities could lead
to imitation failure or humanoid learning bad behavior to anticipate large jumps between frames.
We remove these sequences and obtain 11313 training and 138 testing motion suitable for motion
imitation training and testing, which we will release with the code and models.

B.2 ACTION AND REWARDS

Our action space, state, and rewards follow the specifications of the PHC paper. Specifically, the ac-
tion at specifies the target for the proportional derivative (PD) controller on each of the 69 actuators.
The target joint is set to qd

t = at and the torque applied at each joint is τ i = kp◦(at − qt)−kd◦q̇t.
Joint torques are capped at 500 N-m. For the motion tracking reward, we use:

rt = 0.5rg-imitation
t + 0.5ramp

t + renergy
t ,

rg-imitation
t = wjpe

−100∥p̂t−pt∥ + wjre
−10∥q̂t⊖qt∥ + wjve

−0.1∥v̂t−vt∥ + wjωe
−0.1∥ω̂t−ωt∥,

(1)
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Table 3: Ablations on training PULSE from scratch using RL (no distillation).

AMASS-Train* AMASS-Test*

Distill Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓
✗ 72.0% 76.7 52.8 3.5 8.0 32.6% 98.4 79.4 9.9 16.2
✓ 99.8 % 39.2 35.0 3.1 5.2 97.1% 54.1 43.5 7.0 10.3

where rg-imitation
t is the motion imitation reward, ramp

t is the discriminator reward, and renergy
t an

energy penalty. rg-imitation
t measures the difference between the translation, rotation, linear velocity,

and angular velocity of the 23 rigid bodies in the humanoid. ramp
t . ramp

t is the Adversarial Motion
Prior (AMP) reward (Peng et al., 2021), provided by a discriminator trained on the AMASS dataset.
The energy penalty renergy

t is −0.0005 ·
∑

j∈ joints |µjωj |2 where µj and ωj correspond to the joint
torque and the joint angular velocity, respectively. The energy penalty Fu et al. (2022) regulates the
policy and prevents high-frequency jitter.

B.3 MODEL ARCHITECTURE AND ABLATIONS

All primitives and composers in PHC + are a 6 layer MLP with units [2048, 1536, 1024, 1024,
512, 512] and SiLU activation. We find that changing the activation from ReLU (Fukushima, 1975;
Nair & Hinton, 2010) to SiLU (Hendrycks & Gimpel, 2016) provides a non-trivial boost in tracking
performance. Combining with larger networks (from 3 layer MLP to 6 layer), we use only three
primitives to learn fail-state recovery and achieve a success rate of 100%. To study the effect of
the new activation function and the progressive training procedure, we perform ablation studies
on the training of a single primitive P (not the full PHC + policy) using the proposed changes.

Table 2: Ablations on PHC+’s primitive P training.
Progressive: refers to whether Q̂hard is updated during
the primitive training (rather than waiting until conver-
gence and initialize a new primitive).

AMASS-Test

Activation Progressive Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓
SiLU ✗ 92.0% 43.0 29.2 6.7 8.9

ReLU ✓ 97.8% 44.4 32.8 6.9 9.1
SiLU ✓ 98.5% 39.0 28.1 6.7 8.5

Each primitive is trained for 3 × 109 samples.
From Table 2, we can see that comparing Row
(R1) and R3, the new progressive training pro-
cedure improves the success rate by a large
amount, showing that P’s capacity is not fully
utilized if Q̂hard is not formed and updated dur-
ing each P’s training. When comparing R2
and R3, we can see that changing the activa-
tion function from ReLU to SiLU improves the
tracking performance and improves Empjpe. Ta-
ble.1 reports the hyperparameters we used for
training.

C DETAILS ABOUT PULSE

C.1 TRAINING PROCEDURE

We train πPULSE using the training procedure we used to train a primitive P(0) in PHC+, where we
progressively form Q̂hard while training the policy. Since πPULSE and πPHC+ share the same state
and action space, we query πPHC+ at training time to perform online distillation. We anneal the
coefficient β of LKL from 0.01 to 0.001 starting from 2.5 × 109 to 5 × 109 samples. Afterward, β
remains the same. We report our hyperparameters for training πPULSE in Table. 1.

C.2 COMPARISON TO TRAINING SCRATCH WITHOUT DISTILLATION

One of our main contributions for PULSE is the using online distillation to learn πPULSE, where
the latent space uses knowledge distilled from a trained imitator, PHC+. While prior work like
MCP (Peng et al., 2019) demonstrated the possibility of training such a policy from scratch (using
RL without distillation), we find that using the variational information bottleneck together with the
imitation objective creates instability during training. We hypothesize that random sampling for the
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variational bottleneck together with random sampling for RL leads to noisy gradients. In Table 3,
we report the result of motion imitation from training from scratch. We can see that the training
using RL does not converge to a good imitation policy after training for more than 1×1010 samples.

C.3 COMPARISON TO OTHER LATENT FORMULATION (VQ-VAE, SPHERICAL)

In our earlier experiments, we studied other forms of latent space such as a spherical latent space,
similar to ASE (Peng et al., 2022), or a vector quantized latent space, similar to NCP (?). For spher-
ical embedding, we use the same encoder-decoder structure as in PULSE and use a 32-dimensional
latent space normalized to the unit sphere. For a vector-quantized motion representation, we follow
Liu et al. (2021); Van Den Oord et al. (2017) and use a 64-dimensional latent space divided into 8
partitions, using a dictionary size of 64. Dividing the latent space into partitions increases the repre-
sentation power combinatorially (Liu et al., 2021) and is more effective than a larger dictionary size.
Although through distillation, each of these representations could reach a high imitation success rate
and MPJPE (spherical: 100% Succ and 28.1 Eg-mpjpe, VQ: 99.8 % Succ and 36.5 Eg-mpjpe), both lose
the ability to serve as a generative model: random samples from the latent space do not generate
coherent motion. In NPC, an additional prior needs to be learned. The quantized latent space also
introduces artifacts, such as high-frequency jitter, since the network is switching between discrete
codes. We visualize this artifact in our supplement site’s last section.

C.4 DOWNSTREAM TASKS

Each generative downstream task policy πtask is a three-layer MLP with units [2048, 1024, 512].
For VR controller tracking, we use a six-layer MLP of units [2048, 1536, 1024, 1024, 512, 512].
The value function has the same architecture as the policy. All tasks are optimized using PPO. For
simpler tasks (speed, reach, strike), we train for ∼ 2×109 samples. For the complex terrain traversal
task, the policy converges after ∼ 1 × 1010 samples. The strike, speed, and reach tasks follow the
definition in ASE (Peng et al., 2022), while the following trajectory task follows PACER Rempe
et al. (2023). VR controller tracking task follows QuestSim Winkler et al. (2022).

Speed. For training the x-direction speed task, the random speed target is sampled between 0 m/s ∼
5m/s (the maximum target speed for running in AMASS is around 5m/s). The goal state is defined
as sg-speed

t ≜ (dt, vt)) where dt is the target direction and vt is the linear velocity the policy should
achieve at timestep t. The reward is defined as rspeed = abs(vt − vt

0) where vt
0 is the humanoid’s

root velocity.

Strike. For strike, since we do not have a sword, we substitute it with “strike with hands”. The
objective is to knock over the target object and is terminated if any body part other than the right
hand makes contact with the target. The goal state sg-strike

t ≜ (xt, ẋt)) contains the position and
orientation xt as well as the linear and angular velocity ẋt) of the target object in the agent frame.
The reward is rstrike = 1−uup ·ut where uup is the global up vector and ut is the target’s up vector.

Reach. For the reach task, a 3D point ct is sampled from a 2-meter box centered at (0, 0, 1), and
the goal state is sg-reach

t ≜ (ct)). The reward for reaching is the difference between the humanoid’s
right hand and the desired point position rreach = exp(−5∥pt

right hand − ct∥22).

Trajectory Following on Complex Terrains . The humanoid trajectory following on complex
terrain task, used in PACER (Rempe et al., 2023), involves controlling a humanoid to follow random
trajectories through stairs, slopes, uneven surfaces (Rudin et al., 2021), and to avoid obstacles. We
follow the setup in P and train policy πtask(zt|sp

t , s
g-terrain
t ), sg-terrain

t ≜ (ot, τ1:T ) where ot represents
the height map of the humanoid’s surrounding, and τt+10 is the next 10 time-step’s 2D trajectory
to follow. The reward is computed as rterrain

t = exp(−2∥pt
(0) − τt∥) − 0.0005 ·

∑
j∈ joints |µj q̇j |2

where the first term is the trajectory following the reward and the second term an energy penalty.
Random trajectories are generated procedurally, with a velocity between [0, 3]m/s and acceleration
between [0, 2] m/s2. The height map ot is a rasterized local height map of size ot ∈ R32×32×3,
which captures a 2m × 2m square centered at the humanoid. We do not consider any shape variation
or human-to-human interaction as in PACER. Different from PACER, which relies on an additional
adversarial reward to achieve realistic and human-like behavior, our framework policy does not rely
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on any additional reward but can still solve this challenging task with human-like movements. We
hypothesize that this is a result of sampling from the pre-learned prior, where human-like motor
skills are easier to sample than unnatural ones.

VR Controller Tracking. Tracking VR controllers is the task of inferring full-body human mo-
tion from the three 6DOF poses provided by the VR controllers (headset and two hand controllers).
Following QuestSim (Winkler et al., 2022), we train this tracking policy using synthetic data. Essen-
tially, we treat the humanoid’s head and hand positions as a proxy for headset and controller posi-
tions. One can view the VR controller tracking task as an imitation task, but with only three joints to
track, with the goal state being: sg-vr

t ≜ (θ̂vr
t+1⊖θt

vr, p̂vr
t+1−pt

vr, v̂vr
t+1−vt, ω̂

vr
t −ωvr

t , θ̂
vr
t+1, p̂

vr
t+1)

where the superscript vr refers to selecting only the head and two hands joints. During training, we
use the same (full-body) imitation reward to train the policy. We use the same progressive training
procedure for training the tracking policy.
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