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Abstract

Why do many modern neural-network-based graph generative models fail to repro-
duce typical real-world network characteristics, such as high triangle density? In
this work we study the limitations of edge independent random graph models, in
which each edge is added to the graph independently with some probability. Such
models include both the classic Erdös-Rényi and stochastic block models, as well
as modern generative models such as NetGAN, variational graph autoencoders,
and CELL. We prove that subject to a bounded overlap condition, which ensures
that the model does not simply memorize a single graph, edge independent models
are inherently limited in their ability to generate graphs with high triangle and
other subgraph densities. Notably, such high densities are known to appear in
real-world social networks and other graphs. We complement our negative results
with a simple generative model that balances overlap and accuracy, performing
comparably to more complex models in reconstructing many graph statistics.

1 Introduction

Our work centers on edge independent graph models, in which each edge (i, j) is added to the graph
independently with some probability Pij ∈ [0, 1]. Formally,

Definition 1 (Edge Independent Graph Model). For any symmetric matrix P ∈ [0, 1]n×n let G(P )
be the distribution over undirected unweighted graphs where G ∼ G(P ) contains edge (i, j) inde-
pendently, with probability Pij . I.e., p(G) =

∏
(i,j)∈E(G) Pij ·

∏
(i,j)/∈E(G)(1− Pij).

Edge independent models encompass many classic random graph models. This includes the Erdös-
Rényi model, where for all i ̸= j, Pij = p for some fixed p ∈ [0, 1] [10]. It also includes the
stochastic block model where Pij = p if two nodes are in the same community and Pij = q if two
nodes are in different communities for some fixed p, q ∈ [0, 1] with q < p [29]. Other examples
include e.g., the Chung-Lu configuration model [5], stochastic Kronecker graphs [17].

Recently, significant attention has focused on graph generative models, which seek to learn a
distribution over graphs that share similar properties to a given training graph, or set of graphs. Many
algorithms parameterize this distribution as an edge independent model or closely related distribution.
E.g., NetGAN and the closely related CELL model both produce P ∈ [0, 1]n×n and then sample
edges independently without replacement with probabilities proportional to its entries, ensuring that
at least one edge is sampled adjacent to each node [3, 23]. Variational Graph Autoencoders (VGAE),
GraphVAE, Graphite, and MolGAN are also all based on edge independent models [16, 28, 8, 13].

Given their popularity in both classical and modern graph generative models, it is natural to ask:
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How suited are edge independent models to modeling real-world networks. Are
they able to capture features such as power-law degree distributions, small-world
properties, and high clustering coefficients (triangle densities)?

1.1 Impossibility Results for Edge Independent Models

In this work we focus on the ability of edge independent models to generate graphs with high triangle,
or other small subgraph densities. High triangle density (equivalently, a high clustering coefficient)
is a well-known hallmark of real-work networks [31, 25, 9] and has been the focus of recent work
exploring the power and limitations of edge-independent graph models [27, 4].

It is clear that edge independent models can generate triangle dense graphs. In particular, P ∈
[0, 1]n×n in Def. 1 can be set to the binary adjacency matrix of any undirected graph, and G(P ) will
generate that graph with probability 1, no matter how triangle dense it is. However, this would not be
a particularly interesting generative model – ideally G(P ) should generate a wide range of graphs. To
capture this intuitive notion, we define the overlap of an edge-independent model, which is closely
related to the overlap stopping criterion for training used in training graph generative models [3, 23].

Definition 2 (Expected Overlap). For symmetric P ∈ [0, 1]n×n let V (P )
def
= EG∼G(P )|E(G)| and

Ov(P )
def
=

EG1,G2∼G(P )|E(G1) ∩ E(G2)|
V (P )

.

That is, for any P ∈ [0, 1]n×n, Ov(P ) ∈ [0, 1] is the ratio of the expected number of edges shared
by two graphs drawn independently from G(P ) to the expected number of edges in a graph drawn
from G(P ). In one extreme, when P is a binary adjacency matrix, Ov(P ) = 1, and our generative
model has simply memorized a single graph. In the other, if Pij = p for all i ̸= j (i.e., G(P ) is
Erdös-Rényi), Ov(P ) = p. This is the minimum possible overlap when V (P ) = p ·

(
n
2

)
.

Our main result is that for any edge independent model with bounded overlap, G ∼ G(P ) cannot
have too many triangles in expectation. In particular:
Theorem 1 (Main Result – Expected Triangles). For a graph G, let ∆(G) denote the number of
triangles in G. Consider symmetric P ∈ [0, 1]n×n.

EG∼G(P ) [∆(G)] ≤
√
2

3
·Ov(P )3/2 · V (P )3/2.

As an example, consider the setting where the distribution generates sparse graphs, with V (P ) =
Θ(n). Theorem 1 shows that whenever Ov(P ) = o(1/n1/3), EG∼G(P )∆(G) = o(n) – i.e. the graph
is very triangle sparse with the number of triangles sublinear in the number of nodes. This verifies that
an Erdös-Rényi graph cannot achieve simultaneously linear number of edges (i.e., Ov(P ) = O(1/n)
) and super-linear number of triangles (i.e., Ov(P ) = Ω(1/n1/3)) under our proposed lens of viewing
generative models.

We extend Theorem 1 to give similar bounds for the density of squares and other k-cycles (Thm. 4),
as well as for the global clustering coefficient (Thm. 6). In all cases we show that our bounds are
tight – e.g., in the triangle case, there is indeed an edge independent model with EG∼G(P ) [∆(G)] =

Θ
(
Ov(P )3/2 · V (P )3/2

)
, matching the lower bound in Theorem 1.

1.2 Empirical Findings

Our theoretical results help explain why, despite performing well in a variety of other metrics, edge
independent graph generative models have been reported to generate graphs with many fewer triangles
and squares on average than the real-world graphs that they are trained on. Rendsburg et al. [23] test
a suite of these models, including their own CELL model and the related NetGAN model [3]. Of all
these models, when trained on the CORA-ML graph with 2,802 triangles and 14,268 squares, none is
able to generate graphs with more than 1,461 triangles and 6,880 squares on average. Similar gaps are
observed for a number of other graphs. Rendsburg et al. also report that the triangle count increases
as their notion of overlap (closely related to Def. 2) increases. Theorem 1 demonstrates that this
underestimation of triangle count, and its connection to overlap is inherent to all edge independent
models, no matter how refined a method used to learn the underlying probability matrix P .
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While our theoretical results bound the performance of any edge independent model, there may still be
variation in how specific models trade-off overlap and realistic graph generation. To better understand
this trade-off, we introduce two simple models with easily tunable overlap as baselines. One is based
on reproducing the degree sequence of the original graph; the other, which is even simpler, is based
on reproducing the volume. In both models, P is a weighted average of the input graph adjacency
matrix and a probability matrix of minimal complexity which matches either the input degrees or the
volume. In the latter case, to match just the volume, we simply use an Erdös-Rényi graph. In the
former case, to match the degree sequence, we introduce our own model, the odds product model;
this model is similar to the Chung-Lu configuration model [5], but, unlike Chung-Lu, is able to
match degree sequences of real-world graphs with high maximum degree. We find that these simple
baselines are often competitive with more complex models like CELL in terms of matching key graph
statistics, like triangle count and clustering coefficient, at similar levels of overlap.

1.3 Related Work

Existing impossibility results. Our work is inspired by that of Seshadhri et al. [27], which also
proves limitations on the ability of edge independent models to represent triangle dense graphs.
They show that if P = max(0,min(1, XXT )) where X ∈ Rn×k for k ≪ n and the max and
min are applied entrywise, then G ∼ G(P ) cannot have many triangles adjacent to low-degree
nodes in expectation. This setting arises commonly when P is generated using low-dimensional node
embeddings – represented by the rows of X . Chanpuriya et al. [4], show that in a slightly more general
model, where P = max(0,min(1, XY T )), this lower bound no longer holds – X,Y ∈ Rn×k can be
chosen so that P is the binary adjacency matrix of any graph with maximum degree upper bounded
by O(k) – no matter how triangle dense that graph is. Thus, even such low-rank edge independent
models can represent triangle dense graphs – by memorizing a single one. In the appendix, we prove
a similar result when P is generated from the CELL model of [23], which simplifies NetGAN [3].

Our results show that this trade-off between the ability to capture triangle density and memorization
is inherent – even without any low-rank constraint, edge independent models with low overlap simply
cannot represent graphs with high triangle or other small subgraph density.

It is well understood that specific edge independent models, e.g., Erdös-Rényi graphs, the Chung-Lu
model, and stochastic Kronecker graphs, do not capture many properties of real-world networks,
including high triangle density [31, 22]. Our results can be viewed as a generalization of these
observations, to all edge independent models with low overlap. Despite the limitations of classic
models, edge independent models are still very prevalent in today’s literature on graph generative
models. Our more general results make clear the limitations of this approach.

Non-independent models. While edge independent models are very prevalent in the literature,
many important models do not fit into this framework. Classic models include the Barabási–Albert
and other preferential attachment models [2], Watts–Strogatz small-world graphs [31], and random
geometric graphs [6]. Many of these models were introduced directly in response to shortcomings of
classic edge independent models, including their inability to produce high triangle densities

More recent graph generative models include GraphRNN [32] and a number of other works [19, 20].
Our impossibility results do not apply to such models, and in fact suggest that perhaps they may be
preferable to edge independent models, if a distribution over graphs with high triangle density is
desired. A very interesting direction for future work would be to prove limitations on broad classes of
non-independent models, and perhaps to understand exactly what type of correlation amongst edges
is needed to generate graphs with both low overlap 1and hallmark features of real-world networks.

2 Impossibility Results for Edge Independent Models

We now prove our main results on the limitations of edge independent models with bounded overlap.
We start with a simple lemma that will be central in all our proofs.

Lemma 2. For any symmetric P ∈ [0, 1]n×n, ∥P∥2
F

2 ≤ Ov(P ) · V (P ) ≤ ∥P∥2F .
1We note that for non-edge independent models, the measure of overlap as defined earlier should be adapted

to take into account the order (permutation) of the vertices in the final graph. In particular, the overlap in this
case should be the maximum value of it over any permutation of the vertex set.

3



Proof. Let I[(i, j) ∈ G] be the 0, 1 indicator random variable that an edge (i, j) appears in the
graph G. Ov(P ) · V (P ) = EG1,G2∼G(P )|E(G1) ∩ E(G2)|. By linearity of expectation and the
independence of G1 and G2 we have,

Ov(P ) · V (P ) = EG1,G2∼G(P )

∑
i≤j

I[(i, j) ∈ G1] · I[(i, j) ∈ G2] =
∑
i≤j

P 2
ij .

The bound follows since P is symmetric. Note that the lower bound ∥P∥2
F

2 ≤ Ov(P ) · V (P ) is an
equality if P is 0 on the diagonal – i.e., there is no probability of self loops.

2.1 Triangles

Lemma 2 connects Ov(P ) · V (P ) to ∥P∥2F and in turn the eigenvalue spectrum of P since ∥P∥2F =∑n
i=1 λi(P )2, where λ1(P ), . . . , λn(P ) ∈ R are the eigenvalues of P . The expected number of

triangles in G ∼ G(P ) can be written in terms of this spectrum as well, allowing us to relate overlap
to this expected triangle count, and prove our main theorem (Theorem 1), restated below.

Theorem 1. For a graph G, let ∆(G) denote the number of triangles in G. Consider symmetric
P ∈ [0, 1]n×n.

EG∼G(P ) [∆(G)] ≤
√
2

3
·Ov(P )3/2 · V (P )3/2.

Proof. By linearity of expectation,

EG∼G(P ) [∆(G)] =
1

6

n∑
i=1

n∑
j=1

n∑
k=1

Pr [(i, j) ∈ E(G) ∩ (j, k) ∈ E(G) ∩ (k, i) ∈ E(G)]

=
1

6

n∑
i=1

n∑
j=1

n∑
k=1

PijPjkPki =
1

6
tr(P 3) =

1

6

n∑
i=1

λi(P )3. (1)

Letting λ1(P ) denote the largest magnitude eigenvalue of P , we can in turn bound

tr(P 3) ≤ |λ1(P )| ·
n∑

i=1

λi(P )2 = |λ1(P )| · ∥P∥2F .

Since |λ1(P )| ≤ ∥P∥F , this gives via Lemma 2

tr(P 3) ≤ ∥P∥3F ≤ 2
√
2 ·Ov(P )3/2 · V (P )3/2.

Combining this bound with (1) completes the theorem.

The bound of Theorem 1 is tight up to constants, for any possible value of Ov(P ). The tight example
is when P is simply an Erdös-Rényi graph.

Theorem 3 (Tightness of Expected Triangle Bound). For any γ ∈ (0, 1], there exists a symmetric
P ∈ [0, 1]n×n with Ov(P ) = γ and EG∼G(P )[∆(G)] = Θ(γ3/2 · V (P )3/2).

Proof. Let Pij = γ for all i ̸= j. We have V (P ) = γ ·
(
n
2

)
and Ov(P ) · V (P ) = γ2 ·

(
n
2

)
Thus,

Ov(P ) = γ. Further, by linearity of expectation,

EG∼G(P )[∆(G)] = γ3 ·
(
n

3

)
= Θ(γ3 · n3) = Θ(γ3/2 · V (P )3/2).

We note that another example when Theorem 1 is tight is when P is a union of a fixed clique on
Θ(γ · n) nodes and an Erdös-Rényi graph with connection probability 1/n on the rest of the nodes.
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2.2 Squares and Other k-cycles

We can extend Thm. 1 to bound the expected number of k-cycles in G ∼ G(P ) in terms of Ov(P ).
Theorem 4 (Bound on Expected k-cycles). For a graph G, let Ck(G) denote the number of k-cycles
in G. Consider symmetric P ∈ [0, 1]n×n.

EG∼G(P ) [Ck(G)] ≤ 2k/2

2k
·Ov(P )k/2 · V (P )k/2.

Proof. For notational simplicity, we focus on k = 4. The proof directly extends to general k. C4(G)
is the number of non-backtracking 4-cycles in G (i.e. squares), which can be written as

EG∼G(P ) [C4(G)] =
1

8
·

n∑
i=1

∑
j∈[n]\i

∑
k∈[n]\{i,j}

∑
ℓ∈[n]\{i,j,k}

PijPjkPkℓPℓi.

The 1/8 factor accounts for the fact that in the sum, each square is counted 8 times – once for each
potential starting vector i and once of each direction it may be traversed. For general k-cycles this
factor would be 1

2k . We then can bound

EG∼G(P ) [C4(G)] ≤ 1

8
·
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
ℓ∈[n]

PijPjkPkℓPℓi =
1

8
· tr(P 4).

For general k-cycles this bound would be EG∼G(P ) [Ck(G)] ≤ 1
2k tr(P k). This in turn gives

EG∼G(P ) [Ck(G)] ≤ 1

2k
· |λ1(P )|k−2 · ∥P∥2F ≤

1

2k
∥P∥kF ≤

2k/2

2k
Ov(P )k/2 · V (P )k/2,

where the last bound follows from Lemma 2. This completes the theorem..

It is not hard to see that Theorem 4 is also tight up to a constant depending on k for any overlap
γ ∈ (0, 1], also for an Erdös-Rényi graph with connection probability γ.
Theorem 5 (Tightness of Expected k-cycle Bound). For any γ ∈ (0, 1], there exists P ∈ [0, 1]n×n

with Ov(P ) = γ and EG∼G(P )[Ck(G)] = Θ
(

γk/2·V (P )k/2

k!

)
.

2.3 Clustering Coefficient

Theorem 1 shows that the expected number of triangles generated by an edge independent model is
bounded in terms of the model’s overlap. Intuitively, we thus expect that graphs generated by the
edge independent model will have low global clustering coefficient, which is the fraction of wedges
in the graph that are closed into triangles [31].
Definition 3 (Global Clustering Coefficient). For a graph G with ∆(G) triangles, no self-loops, and
node degrees d1, d2, . . . , dn, the global clustering coefficient is given by

C(G) =
3∆(G)∑n

i=1 di(di − 1)
.

We extend Theorem 1 to give a bound on EG∼G(P ) [C(G)] in terms of Ov(P ). The proof, given in
Appendix A, is related, but more complex due to the

∑n
i=1 di(di − 1) in the denominator of C(G).

Theorem 6 (Bound on Expected Clustering Coefficient). Consider symmetric P ∈ [0, 1]n×n with
zeros on the diagonal and with V (P ) ≥ 2n.

EG∼G(P ) [C(G)] = O

(
Ov(P )3/2 · n
V (P )1/2

)
.

Thus, to have a constant clustering coefficient for a graph with O(n) edges in expectation, we need
Ov(P ) = Ω(1/n1/3). Note that the requirement of V (P ) ≥ 2n is very mild – it means that the
expected average degree is at least 1.

As with our triangle bound, Theorem 6 is tight when G(P ) is just an Erdös-Rényi distribution.
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Theorem 7 (Tightness of Expected Clustering Coefficient Bound). For any γ ∈ (0, 1], there exists

P ∈ [0, 1]n×n with zeros on the diagonal, Ov(P ) ≤ γ and EG∼G(P )[C(G)] = Θ
(

γ3/2·n
V (P )1/2

)
.

Proof. Let Pij = γ for all i ̸= j. We have V (P ) = γ ·
(
n
2

)
= Θ(γn2) and Ov(P ) = γ. Additionally,

E[∆(G)] = Θ(γ3 · n3), and, if n is large enough with respect to γ, with very high probability,∑n
i=1 di(di − 1) ≤

∑n
i=1 d

2
i = O(γ2n3). This gives:

EG∼G(P )[C(G)] = Θ(γ) = Θ

(
γ3/2 · n
γ1/2 · n

)
= Θ

(
γ3/2 · n
V (P )1/2

)
.

3 Baseline Edge Independent Models

We now shift from proving theoretical limitations of edge independent models to empirically evaluat-
ing the tradeoff between overlap and performance for a number of particular models. Given an input
adjacency matrix A ∈ {0, 1}n×n, these generative models produce a P ∈ [0, 1]n×n, samples from
which should match various graph statistics of A, such as the triangle count, clustering coefficient,
and assortativity. At the same time, P should ideally have lower overlap so that the model does not
just memorize the original graph. We propose two simple generative models as baselines to more
complicated existing models – in both the level of overlap is easily tuned. Our first baseline, the odds
product model, is based on just matching the degree sequence of A; more simple still, the second
baseline computes P as a linear function of A, just matching its volume.

Odds product model. In this model, each node is assigned a logit ℓ ∈ R, and the probability of
adding an edge between nodes i and j is Pij = σ(ℓi + ℓj), where σ is the logistic function. We fit the
model by finding a vector ℓ ∈ Rn of logits, with one logit for each node, such that the reconstructed
network has the same expected degrees (i.e. row and column sums) as the original graph. We note
that this model can be seen as a special case of the MaxEnt [7] and random-effects [21, 14, 15]
models. In the context of directed graphs, ℓi has been called the expansiveness or popularity of node
i [12].

For adjacency matrix A ∈ {0, 1}n×n, we denote its degree sequence by d = A1 ∈ Rn, where 1 is
the all-ones vector of length n. Similarly, the degree sequence of the model is d̂ = P1. We pose
fitting the model as a root-finding problem: we seek ℓ ∈ Rn such that the degree errors are zero, that
is, d̂− d = 0. We use the multivariate Newton-Raphson method to solve this root-finding problem.
To apply Newton-Raphson, we need the Jacobian matrix J of derivatives of the degree errors with
respect to the entries of ℓ. Since d does not vary with ℓ, these derivatives are exactly ∂d̂i

∂ℓj
. Letting δij

be 1 if i = j and 0 otherwise (i.e. the Kronecker delta), we compute in Appendix A,

∂d̂i

∂ℓj
= Pij (1− Pij) + δij

∑
k∈[n]

Pik (1− Pik) .

In Algorithm 1, we provide pseudocode for the fully Jacobian matrix J and for implementing Newton-
Raphson method to compute P . We do not have a proof that Algorithm 1 always converges and
produces ℓ which exactly reproduces in the inut degree sequence. However, the algorithm converged
on all test cases, and proving that it always converges would be an interesting future direction.

Our odds product model can be viewed as a variant of the Chung-Lu configuration model [5], which is
also based on degree sequence matching. However, but our model comes without a certain restriction
on the maximum degree: in Chung-Lu, it is assumed that the degrees of all nodes are bounded above
by the square root of the volume of the graph, that is, di ≤

√
V (A) for all nodes i. Given this

restriction, each node is assigned a weight wi = di/
√
V (A), and the probability of adding edge

(i, j) is Pij = wiwj . Since the weights are all in [0, 1], they can be interpreted as probabilities, and
the probability of adding an edge between two nodes is the product of the two nodes’ probabilities.

Our odds product model works similarly, but instead of a probability, for each node, there is an
associated odds, that is, a value in (0,∞), and the odds of adding an edge between two nodes is
the product of the two nodes’ odds. There is a one-to-one-to-one relationship between probability
p ∈ [0, 1], odds o = p

1−p ∈ [0,∞), and logit ℓ = ln(o) ∈ (−∞,+∞). We outlined above how our
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Algorithm 1 Fitting the odds product model
input graphical degree sequence d ∈ Rn, error threshold ϵ
output symmetric matrix P ∈ (0, 1)n×n with row/column sums approximately d

1: ℓ← 0 ▷ ℓ ∈ Rn is the vector of logits, initialized to all zeros
2: P ← σ

(
ℓ1⊤ + 1ℓ⊤

)
▷ σ is the logistic function applied entrywise,

and 1 is the all-ones column vector of length n

3: d̃← P1 ▷ degree sequence of P
4: while ∥d̃− d∥2 > ϵ do
5: B ← P ◦

(
11⊤ − P

)
▷ ◦ is an entrywise product

6: J ← B + diag (B1) ▷ diag is the diagonal matrix with the input vector along its diagonal
7: ℓ← ℓ− J−1

(
d̃− d

)
▷ rather than inverting J , we solve this linear system

8: P ← σ
(
ℓ1⊤ + 1ℓ⊤

)
9: d̃← P1

10: end while
11: return P

model is based on adding logits associated with each node; since the odds is the exponentiation of the
logit, the model can equally be viewed as multiplying odds associated with nodes.

Varying overlap in the odds product model. We propose a simple method to control the trade-off
between overlap and accuracy in matching the input graph statistics in the odds product model. Given
the original adjacency matrix A and the P generated by the odds product model to match the degree
sequence of A, we use a convex combination of P and A. That is, we use P̃ = (1 − ω)P + ωA,
where 0 ≤ ω ≤ 1. As ω increases to 1, P̃ approaches a model which returns the original graph with
high certainty; hence high ω produce P̃ with high overlap which closely match graph statistics, while
low ω produce P̃ with lower overlap which may diverge from A in some statistics. Note that since P̃
is a convex combination of adjacency matrices with the expected degree sequence of A, P̃ also has
the same expected degree sequence regardless of the value of ω.

Linear model. As an even simpler baseline, we also propose and evaluate the following model: we
produce an Erdös-Rényi model P with the same expected volume as the original graph A, then return
a convex combination P̃ of P and A. In particular, each entry of P is V (A)/n2, and, as with the
odds product model, P̃ = (1− ω)P + ωA, where 0 ≤ ω ≤ 1. This model can alternatively be seen
as producing a P̃ by lowering each entry of A which is 1 to some probability α, and raising each
entry of A which is 0 to a probability β, with α ≥ β, such that the volume is conserved.

4 Experimental Results

We now present our evaluations of different edge independent graph generative models in terms of the
tradeoff achieved between overlap and performance in generating graphs with similar key statistics to
an input network. These experiments highlight the strengths and limitations of each model, as well as
the overall limitations of this class, as established by our theoretical bounds.

4.1 Methods

We compare our proposed models from Section 3 with a number of existing models described below

1. CELL [23] (Cross-Entropy Low-rank Logits) An alternative to the popular NetGAN method
[3] which strips the proposed architecture of deep leaning components and achieves com-
parable performance in significantly less time, via a low-rank approximation approach. To
control overlap, we follow the approach of the original paper, halting training once the
generated graph exceeds a specified overlap threshold with the input graph. We set the rank
parameter to a value that allows us to get up to 75% overlap (typical values are 16 and 32).

2. TSVD (Truncated Singular Value Decomposition) A classic spectral method which computes
a rank-k approximation of the adjacency matrix using truncated SVD. As in [27], the
resulting matrix is clipped to [0,1] to yield P . Overlap is controlled by varying k.
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Table 1: Dataset summaries

Dataset Nodes Edges Triangles

POLBLOGS [1] 1,222 33,428 101,043
CITESEER [26] 2,110 7,336 1,083
WEB-EDU [11] 3,031 12,948 10,058

CORA [26] 2,485 10,138 1,558
ROAD-MINNESOTA [24] 2,640 6,604 53
PPI [30] 3,852 75,682 91,461
FACEBOOK [18] 4,039 176,468 1,612,010

3. CCOP (Convex Combination Odds Product) The odds product model as of Sec. 3 with
overlap controlled by taking a convex combination of P and the input adjacency matrix A.

4. HDOP (Highest Degree Odds Product) The odds product model, but with overlap controlled
by fixing the edges adjacency to a certain number of the highest degree nodes. See Appendix
for results on other variants, e.g., where some number of dense subgraphs are fixed.

5. Linear The convex combination between the input adjacency matrix and an Erdös-Rényi
graph, as described in Sec. 3, with overlap controlled by varying the ω parameter.

CCOP, HDOP, and Linear all produce edge probability matrices P with the same volume, V (G), in
expectation as the original adjacency matrix. For TSVD, letting L be the low-rank approximation
of the adjacency matrix, we learn a scalar shift parameter σ using Newton’s method such that
P = max(0,min(1, L + σ)) has volume V (G). We then generate new networks from the edge
independent distribution G(P ) (Def. 1). For CELL, we follow the authors’ approach of generating
V (G) edges without replacement - an edge (i, j) is added with probability proportional to Pij).

We sample 5 networks from each distribution and report the average for every statistic. For imple-
mentation details and code, see the supplemental material.

4.2 Datasets and network statistics

For evaluation we use seven popular datasets with varied structure, from triangle-rich social networks
to planar road networks – see Table 1. We treat each network as undirected and keep its largest
connected component. In the main text we present results on three of the networks, POLBLOGS,
CITESEER, and WEB-EDU. POLBLOGS is a collection of political blogs and the links between them.
CITESEER is a graph of papers from six scientific categories and the citations among them. Finally,
WEB-EDU is a web-graph from educational institutions. Descriptions of other networks and results
on them are deferred to the appendix.

We evaluate performance in matching the following key network statistics:

1. Pearson correlation of the degree sequences of the input and the generated network.

2. Maximum degree over all nodes.

3. Exponent of a power-law distribution fit to the degree sequence.

4. Assortativity, a measure that captures the preference of nodes to attach to others with similar
degree (ranging from -1 to 1).

5. Pearson correlation of the triangle sequence (number of triangles a node participates in).

6. Total triangle count (analyzed theoretically in Thm. 1).

7. Global clustering coefficient (defined in Def. 3 and analyzed theoretically in Thm. 6).

8. Characteristic path length (average path length between any two nodes).

4.3 Results

The theoretical results from Section 2 highlight a key weakness of edge independent generative
models: they cannot generate many triangles (or other higher-order locally dense areas), without
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having high overlap and thus not generating a diversity of graphs. We observe that these theoretical
findings hold in practice – generally speaking, all models tested tend to significantly underestimate
triangle count and global clustering coefficient, as well as inaccurately match the triangle degree
sequence, when overlap is low. See Figures 1, 2, and 3 for results on the POLBLOGS, CITESEER, and
WEB-EDU networks. As overlap increases, performance in reconstructing these metrics does as well,
as expected.

All methods are able to capture certain network characteristics accurately, even at low overlap. Even
for a relatively small overlap (less than 0.2), the CCOP and HDOP methods accurately capture the
degree sequences of the true networks (as they are designed to do). These methods, especially HDOP
which fixes edges from high degree nodes, often outperform more sophisticated methods like CELL
in terms of triangle density and triangle degree sequence correlation. On the other hand, CELL seems
to do a somewhat better job capturing global features, like the characteristic path length. TSVD
provides a fair compromise – it performs better than CELL in terms of degree sequence and triangle
counts, but worse in terms of characteristic path length. In general, it is the method that gives the best
results when the overlap is extremely small, appearing to be less sensitive to the variation in overlap.

Broadly speaking, all methods do reasonably well in matching the power-law degree distribution of
the networks, even when they do not match the actual degree sequence closely. With the exception
of WEB-EDU, they tend to underestimate the characteristic path length (see additional plots in the
supplemental). This is perhaps not surprising due to the independent random edge connections,
however it would be interesting to understand more theoretically.
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Figure 1: Metrics for POLBLOGS.

5 Conclusion

Our theoretical results prove limitations on the ability of any edge independent graph generative
model to produce networks that match the high triangle densities of real-world graphs, while still
generating a diverse set of networks, with low model overlap. These results match empirical findings
that popular edge independent models indeed systematically underestimate triangle density, clustering
coefficient, and related measures. Despite the popularity of edge independent models, many non-
independent models, such as graph RNNs [32] have been proposed. An interesting future direction
would be to study the representative power and limitations of such models, giving general theoretical
results that provide a foundation for the study of graph generative models.
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Figure 2: Metrics for CITESEER.
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Figure 3: Metrics for WEB-EDU.
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A Omitted Proofs

Theorem 6 (Bound on Expected Clustering Coefficient). Consider symmetric P ∈ [0, 1]n×n with
zeros on the diagonal and with V (P ) ≥ 2n.

EG∼G(P ) [C(G)] = O

(
Ov(P )3/2 · n
V (P )1/2

)
.

Proof. By Theorem 1 we have EG∼G(P ) [3∆(G)] ≤
√
2 ·Ov(P )3/2 · V (P )3/2. We will show that

with high probability,
∑n

i=1 di(di − 1) = Ω(V (P )2/n), which will give the theorem. Note that
EG∼G(P ) [

∑n
i=1 di] = EG∼G(P )[2|E(G)|] = 2V (P ). Thus, by a Bernstein bound, for large enough

n since V (P ) ≥ 2n.

Pr

[∣∣∣∣∣
n∑

i=1

di − 2V (P )

∣∣∣∣∣ ≥ V (P )/5

]
≤ 2 exp

(
− V (P )2/50

V (P ) + V (P )/15

)
≪ 1

n2
,

We can bound
∑n

i=1 d
2
i ≥

(
∑n

i=1 di)
2

n . Thus, with probability ≥ 1− 1/n2,
n∑

i=1

di(di − 1) ≥ (8/5)2 · V (P )2

n
− 12

5
V (P ) ≥ V (P )2

n
,

where in the last step we use that V (P ) ≥ 2n and so 12
5 · V (P ) ≤ 6

5 ·
V (P )2

n . Combined with our
bound on EG∼G(P ) [3∆(G)], and the fact that C(G) ≤ 1 always, we have

EG∼G(P ) [C(G)] = O

(
Ov(P )3/2V (P )3/2

V (P )2

n

+
1

n2

)
= O

(
Ov(P )3/2 · n
V (P )1/2

)
.

Derivation for Odd Product Model

To apply Newton-Raphson to optimizing the odd-product model (Section 3), we need the Jacobian
matrix J of derivatives of the degree errors with respect to the entries of ℓ. Since d does not vary
with ℓ, these derivatives are exactly ∂d̂i

∂ℓj
, which can be computed as:

∂d̂i

∂ℓj
= ∂

∂ℓj

∑
k∈[n]

Pik

= ∂
∂ℓj

∑
k∈[n]

σ(ℓi + ℓk)

= ∂
∂ℓj

σ(ℓi + ℓj) + δij
∑

k∈[n]

∂
∂ℓi

σ(ℓi + ℓk)

= σ(ℓi + ℓj) (1− σ(ℓi + ℓj)) + δij
∑

k∈[n]
σ(ℓi + ℓk) (1− σ(ℓi + ℓk))

= Pij (1− Pij) + δij
∑

k∈[n]
Pik (1− Pik) .

B Exact Embeddings in the CELL Model

Recently, Rendsburg et al [23] propose the CELL graph generator: a major simplification of the
NetGAN algorithm for [3], which gives comparable performance, much faster runtimes, and helps
clarify the key components of the generator. CELL uses a simple low-rank factorization model. Here
we prove that, when its rank parameter is k, the CELL model can ‘memorize’ any graph with degree
bounded by O(k). This allows the model to trivially produce distributions with very high expected
triangle densities. However, as our main results show, this inherently requires memorization and high
overlap.

Our result can be viewed as an extension of the results of [4], which considers a different edge
independent model. The proof techniques are very similar. Interestingly, our result seem to indicate
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that the good generalization of CELL in link prediction tests may mostly be due to the fact that this
model is not fully optimized, to the point of memorizing the input.

The CELL Model. We first describe the CELL model introduced in [23].

1. Given a graph adjacency matrix A ∈ {0, 1}n×n, let

W ⋆ = min
W∈Rn×n

rank(W )≤k

n∑
i,j=1

Aij log σrows(W )ij , (2)

where σrows(W ) applies a softmax rowwise to W – ensuring that each row of σrows(W )
sums to 1.

2. Let P ⋆ = σrows(W
⋆) and let π ∈ Rn be the eigenvector satisfying πTP ⋆ = πT .

3. Let P = max(diag(π)P ∗, (diag(π)P ⋆)T ).
4. Generate G ∼ G(P ).

Note that the last step described above is slightly different than the approach taken in CELL. Rather
than use an edge-independent model as in Def. 1, they form G by sampling edges without replacement,
with probability proportional to the entries in P . They also insure that at least one edge is sampled
adjacent to every node. However, this distinction is minor.

Unconstrained Optimum. We first show that, if the rank constraint in (2) is removed, then the
optimal W ⋆ has σrows(W

⋆) = P ⋆ = D−1A, where D is the diagonal degree matrix. At this
minimum, we can check that πi = di, the degree of the ith node, and thus diag(π) = D and P = A.
That is, the model simply outputs the input graph with probability 1.
Theorem 8 (CELL Optimum). The unconstrained CELL objective function (2) is minimized when
σrows(W ) = D−1A. At this minimum, the edge independent model P is simply A. That is, the model
just returns the input graph with probability 1.

Proof. It suffices to consider the ith row of W for each i ∈ [n], since the objective function of (2)
breaks down rowwise. Let wi, ai ∈ Rn be the ith rows of σrows(W ) and A respectively. Note that
wi is a probability vector, with wi(j) ≥ 0 for all j and

∑n
j=1 wi(j) = 1.

We seek to minimize
∑n

j=1 Aij log[wi(j)]. We need to show that this objective is minimized when
wi = 1/di · ai – i.e., when wi places mass 1/di at each nonzero entry in ai 1/di · ai is the ith row
of D−1A, so applying this argument to all i gives that σrows(W ) = D−1A is the overall minimizer.
Assume for the sake of contradiction that there is some other minimizer w⋆ ̸= 1/di · ai. Since∑n

j=1 w
⋆(j) = 1, we must have w⋆(j) ≤ 1/di for some j where ai = 1. In turn, there must be

some j′ with either (1) w⋆(j′) ≥ 0 and ai(j
′) = 0 or (2) w⋆(j′) ≥ 1/di and ai(j

′) = 1. In case
(1), clearly moving w⋆(j′) mass from j′ to j will decrease the objective function. In case (2), due
to the concavity of the log function, moving w⋆(j′)− 1/di mass from j′ to j will also decrease the
objective function. Thus, w⋆ cannot be a minimizer, completing the proof.

Rank-Constrained Optimum. We next show that the unconstrained optimum of σrows(W ) =
D−1A, which leads to CELL memorizing the input graph (Thm. 8) can be achieved even with the
rank constraint of (2), as long as k ≥ 2∆ + 1, where ∆ is the maximum degree of the input graph.
Theorem 9 (CELL Exact Factorization). If A is an adjacency matrix with maximum degree ∆, there
is a rank 2∆ + 1 matrix W with

σrows(W ) = D−1A+ E

where ∥E∥2 ≤ ϵ. Note that the rank of W does not depend on ϵ, and so we can drive ϵ → 0 and
find a rank-2∆ + 1 W which is arbitrarily close to minimizing (2) and thus produces P which is
arbitrarily close to A.

Proof. Let V ∈ Rn×2∆+1 be the Vandermonde matrix with Vt,j = tj−1. For any x ∈ R2∆+1,
[V x](t) =

∑2∆+1
j=1 x(j) · tj−1. That is: V x is a degree 2∆ polynomial evaluated at the integers

t = 1, . . . , n.
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Let ai be the ith row of A. Note that ai has at most ∆ nonzeros whose positions we denote by
t1, t2, . . . , tdi . To prove the theorem, for each row ai, we will construct a polynomial V xi which has
the same positive value at each t1, t2, . . . , tdi and is negative all all other integers t. Then, we will
let X ∈ R2∆+1×n be the matrix with columns xi and W = (V X)T . Note that rank(W ) ≤ 2∆ + 1,
and W is equal to a fixed positive value whenever A is one and negative whenever it is zero. If we
scale W by a very large number (which does not affect its rank), we will have σrows(W ) arbitrarily
close to D−1A, since the rowwise softmax will place equal probability on each positive entry in row
i of W and arbitrarily close to 0 probability on each negative. So the row will exactly have di at the
nonzero entries of ai, entries each equal to 1/di.

It remains to exhibit the polynomial need to construct W . We start by constructing a polynomial
of degree 2∆ that is positive on each nonzero position t1, t2, . . . , tdi

of ai and negative at all other
indices. Later we will modify this polynomial to have the same positive value at each nonzero
position of ai. Let rj,L and rj,U be any values with tj − 1 < rj,L < tj and tj < rj,U < tj + 1.
Consider the polynomial with roots at each rj,L and rj,U – this polynomial has 2di ≤ 2∆ roots and
so degree at most 2∆. It will flip signs just at each rj,L and rj,U , and will in fact have the same sign
at t1, t2, . . . , tdi

(either positive or negative). Simply negativing the coefficients we can ensure that
this sign is positive, while it is negative at all other indices, giving the result.

The polynomial above can be written as p(t) =
∏di

j=1(t− rj,U )(t− rj,L). Choose rj,U = tj + ϵwj

and rj,L = tj − ϵwj , where ϵ is arbitrarily small and wj is a weight chosen specifically for tj which
we’ll set later. We have for any k = 1, · · · , di,

lim
ϵ→0

p(tk)

ϵ2
= lim

ϵ→0

∏∆
j=1(tk − tj + ϵwj)(tk − tj − ϵwj)

ϵ2

= lim
ϵ→0

−ϵ2w2
k ·
∏

j ̸=k(tk − tj)
2

ϵ2

= −w2
k ·
∏
j ̸=k

(tk − tj)
2.

This, if we set wk = 1∏
j ̸=k(tk−tj)

, in the limit as ϵ → 0 we will have p(tk)/ϵ
2 = −1. If we

negate and scale the polynomially appropriately (which doesn’t change its degree) we will have p(tk)
arbitrarily close to one for each nonzero index tk, and negative for each zero index. This gives the
theorem.

C Omitted Experimental Results

We now include descriptions and plots of metrics for 5 other networks. The basic statistics of each
network are listed in Table 1. We treat all networks as binary, in that we set all non-zero weights
to 1, and undirected, in that if edge (i, j) appears in the network, we also include edge (j, i) . See
Figures 1, 4, 5, 6, and 7 for the plots.

1. FACEBOOK: A union of ego networks of Facebook users.

2. CORA: A collection of scientific publications and the citations among them.

3. ROAD-MINNESOTA: A road network from the state of Minnesota. Each intersection is a
node.

4. PPI: A subgraph of the PPI network for Homo Sapiens. Vertices represent proteins and
edges represent interactions.
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Figure 4: Metrics for CORA.

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Degree Correlation

0.0 0.5 1.0

6

8

10

12

Max Degree

0.0 0.5 1.0
2.00

2.05

2.10

2.15

2.20

2.25

Power Law Exp.

0.0 0.5 1.0
0.20

0.15

0.10

0.05

0.00

0.05

0.10
Assortativity

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Triangle Correlation

0.0 0.5 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Norm. Triangle Count

0.0 0.5 1.0
0.00

0.01

0.02

0.03

0.04

Clustering Coeff.

0.0 0.5 1.0

10

15

20

25

30

35
Charac. Path Length

True HDOP CELL TSVD CCOP Linear

Figure 5: Metrics for ROAD-MINNESOTA.
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Figure 6: Metrics for PPI
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Figure 7: Metrics for FACEBOOK.

D Code for Reproducing Results

Code is available at https://github.com/konsotirop/edge_independent_models. Our im-
plementation of the methods we introduce is written in Python and uses the NumPy [34] and
SciPy [36] packages. Additionally, to calculate the various graph metrics, we use the following
packages: powerlaw [33] and MACE (MAximal Clique Enumerator) [35].
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