
Model Dataset Epochs Batch Opt. LR LR Drop Weight Decay Initialization Rewind Epoch

LeNet MNIST 60 128
Adam(β1 = 0.9
β2 = 0.999,
ε = 1e− 8)

1.2e-3 - - Kaiming Normal 0

ResNet20 CIFAR-10 160 128 SGD(µ = 0.9) 0.1 10x at epoch 80, 120 1e-4 Kaiming Normal 10
VGG-16 CIFAR-10 160 128 SGD(µ = 0.9) 0.1 10x at epoch 80, 120 1e-4 Kaiming Normal 10
ResNet32 CIFAR-100 160 128 SGD(µ = 0.9) 0.1 10x at epoch 80, 120 1e-4 Kaiming Normal 10
ResNet50 ImageNet 90 768 SGD(µ = 0.9) 0.3 10x at epoch 30, 60, 80 1e-4 Kaiming Normal 10

Table 1: We use standard hyperparameters following the precedent of Frankle and Carbin [13], Frankle
et al. [14], Wang et al. [66]. µ in SGD configuration parameter denotes momentum.

A Acknowledgement.

We thank Zack Ankner, Xin Dong, Zhun Liu, Jesse Michel, Alex Renda, Cambridge Yang, and
Charles Yuan for their helpful discussion and feedback to this project. This work was supported in
part by Apple, a Facebook Research Award, the MIT-IBM Watson AI-LAB, Google’s Tensorflow
Research Cloud, and the Office of Naval Research (ONR N00014-17-1-2699). Daniel M. Roy is
supported in part by an NSERC Discovery Grant and Canada CIFAR AI Chair funding through the
Vector Institute. Part of this work was done while Gintare Karolina Dziugaite and Daniel M. Roy
were visiting the Simons Institute for the Theory of Computing.

B Additional Experimental Details

We complement the description of experimental methods in Section 2 with additional details.

B.1 Models and Datasets

We study pruning’s effect on generalization using LeNet [32], VGG-16 [56], ResNet-20, ResNet-32
and ResNet-50 [24]. We use the MNIST dataset, consisting of 60,000 images of handwritten digits
whose labels correspond to 10 integers between 0 and 9. We also use the CIFAR-10 and -100 [28]
datasets, which consists of 60,000 images in 10 and 100 classes. For both datasets, we draw 2,000 of
the original training images randomly as validation set; we continue to use the remaining 48,000 of
the training images as training set. We use all 10,000 original test images as our test set. We use the
ImageNet dataset [10] as well, which contains 1,281,167 images in 1,000 classes. We again randomly
draw 50,000 images as validation set and use the remaining 1,231,167 training images as our training
set. We use all 50,000 original test images as our test set.

B.2 Training Hyperparameters

Our training hyper-parameter configuration follows the precedent of Frankle and Carbin [13], Frankle
et al. [14], Wang et al. [66]: details are available in Table 1.

B.3 EL2N Score Calculation

We follow the method that Paul et al. [51] describes to compute the EL2N scores of examples in the
training dataset. For a model architecture f and dataset S, we first train N of a model for K% of the
total training time to obtain partially trained weights θn, n = 1, · · · , N for each model. Subsequently,
we compute the EL2N score for each image-label pair (x, y), as 1

N

∑
n ‖pθn(x)− y‖2, where y is

one-hot label, and pθn(x) is the softmax output of the model. Following the precedent of [51], we
take N = 10 and K = 10. There is no precedent for choosing the appropriate value for N,K for the
ImageNet benchmark, and we find setting N = 22, which corresponds to measuring EL2N scores at
the 20th epoch of training, and K = 10 to be a reasonable choice.

C Size-Reduction Does Not Explain Pruning’s Benefits to Generalization

In Section 1, we develop an augmented version of the pruning algorithm, by modifying the pruning
algorithm to no longer remove weights. This augmented training algorithm corresponds to extended

16

dense training with a cyclic learning rate schedule (EDT) we examine in Section 5.1 – it trains the
model for the same number of epochs and with the same cyclic learning rate schedule as pruning.

In Section 1, we highlight the similarity between the generalization of models that this EDT algorithm
and pruning produce. This similarity shows that the size-reduction hypothesis does not fully explain
pruning’s effect on the generalization of VGG-16 model. In this section, we demonstrate that, with
the exception of LeNet on MNIST, this phenomenon generalizes to other model architectures and
pruning algorithms, thereby showing that size-reduction does not fully explain pruning’s benefits to
generalization in general.

Method. For 5 model architecture and dataset combinations, we generate a family of models with
different sparsities (or training epochs, in the case of the augmented training algorithm), using the
following algorithms including 5 variants of pruning algorithms and the EDT algorithm:

1. Learning rate rewinding, as described in Section 2.

2. A variant of iterative magnitude pruning called weight rewinding [13, 53]. At the end of
each pruning iteration, this algorithm rewinds not only the learning rate, but also values of
remaining weights by resetting their values to the values they had had earlier in training.

3. Learning rate rewinding, but modified to remove weights according to a gradient-based
weight selection criterion called SynFlow [60, 15]. This pruning algorithm uses the following
heuristic to remove weights: the pruning algorithm first replaces each weight wl in the
model with ‖wl‖; then, it feeds an input tensor filled with all 1’s to this instrumented model,
and the sum of the output logits is computed as R. This pruning algorithm then assigns
an importance score ‖ dRdwl

� wl‖ to each weight, and remove the weights receiving the
lowest such scores. Tanaka et al. [60] designed SynFlow to mitigate layer collapse, a
phenomenon associated with ordinary magnitude-based pruning algorithm where weight
removal concentrates on certain layers, effectively disconnecting the sparse model.

4. Learning rate rewinding, but modified to remove weights according to a gradient-based
selection criterion called SNIP [34]. This pruning algorithm computes gradient gl for each
layer l using samples of training data. It then assigns an importance score |wl � gl| to each
weight, and removes the weights receiving the lowest such scores. The intuition behind
this importance score is that it prevents pruning weights with the highest "effect on the loss
(either positive or negative)" [15, 34].

5. Iterative random pruning, where a random set of weights are removed at each pruning
iteration. The algorithm otherwise behaves like learning rate rewinding.

6. The augmented algorithm, which trains the model for the same number of epochs and with
the same cyclic learning rate schedule as pruning, without removing weights.

In Table 2, for each benchmark and algorithm, we tabulate the test error of the model with the best
validation error, selected from the family of models that each aforementioned algorithm generates.
In Figure 8, we plot generalization of all models within the family of models each aforementioned
algorithm generates as a function of sparsities and training time.

Results. In Table 2, for each benchmark and algorithm, we select, from the family of models
that each aforementioned algorithm generates, the model with the best validation error and tabulate
its test error. In Figure 8, we plot the generalization of the family of models each aforementioned
algorithm generates as a function of sparsities and training time in epochs. We observe that with
the exception of LeNet on MNIST, the generalization of dense models that the augmented training
algorithm produces matches or exceeds the generalization of sparse models that pruning algorithms
produce. For LeNet on MNIST, however, the augmented training algorithm under-performs weight
rewinding. We conjecture, without testing, that for this benchmark, the lack of any explicit form of
regularization in the training process makes pruning’s regularization effect uniquely important for
generalization.

Conclusion. In Section 1, We show that the augmented training algorithm produces VGG-16
models with generalization that is indistinguishable from that of models that pruning with learning
rate rewinding produces. In this section, We further show that this phenomenon shows up even if

17

M-LeNet C10-ResNet20 C10-VGG-16 C100-ResNet32 I-ResNet50

LR
Rewinding 1.8±0.1 7.7±0.1 5.9±0.1 29.9±0.3 23.4±0.1

Weight
Rewinding 1.5±0.1 8.1±0.3 6.2±0.1 30.6±0.4 23.5±0.1

SynFlow 1.7±0.1 7.8±0.3 6.1±0.1 30.2±0.2 23.9±0.1

SNIP 1.9±0.1 7.7±0.1 6.1±0.1 29.6±0.2 23.4±0.0

Iterative
Random 1.9±0.2 8.1±0.3 6.4±0.2 30.2±0.1 23.9±0.1

EDT 1.8±0.1 7.6±0.3 6.0±0.1 29.0±0.1 23.4±0.3
Table 2: We tabulate test errors of the model with the minimum validation error that pruning and
the EDT algorithm generate. With the exception of MNIST-LeNet, the EDT algorithm matches or
exceeds the generalization of models that all pruning algorithms we test generate.

we apply other iterative pruning algorithms to additional model-dataset combinations. We therefore
conclude that in general, size reduction does not fully account for pruning’s benefits to generalization.

D Effects of Leaving Out Pruning-Affected Examples

In this section, we focus on the subgroups of examples whose training loss improves when pruning
to a range of generalization-improving sparsities. By excluding them from the training dataset, we
empirically examine their influence on the generalization of the dense models.

Method. We refer to the top K% of training examples whose training loss improves the most
during pruning as the top-improved examples. To examine the influence of these top-improved
examples on generalization, for each sparsity pruning reaches, we train two dense models on two
datasets respectively: a). the original training dataset excluding the top-improved examples at the
specified sparsity, which we denote as TIE (Top-Improved Examples); b). a dataset of the same size
as a)., but consisting of randomly drawn examples, which we denote as RND. We then compare their
resulting generalization. If the top-improved examples are indeed the ones with the largest influence
on generalization, excluding them from the training dataset should affect generalization more so
than excluding a random subset of the same size. We set K = 20 in our experiments, we also tried
setting K = 10, but the resulting generalization difference between models we train on two datasets
is negligible.

Result. We show in Figure 9 the generalization of dense models on the dataset excluding top-
improved examples (TIE) and randomly drawn dataset of the same size (denoted RND) as a function
of the sparsity at which the top-improved examples are selected. Figure 9 shows that, averaging
within the sparsities where generalization improves (the range of sparsities in green), excluding
top-improved examples hurts generalization more than excluding a random subset of examples of the
same size by 0.78%, 0.77%, 0.34%, 0.69% for LeNet on MNIST, ResNet20 on CIFAR-10, VGG-16
on CIFAR-10, ResNet50 on ImageNet benchmarks. For ResNet32 on CIFAR-100 benchmark, we do
not observe a significant difference between them. However, increasing the width of the ResNet32
model on CIFAR-100 from 16 to 128, we find that excluding the top-improved examples hurts
generalization more than excluding a random subset of examples of the same size by 0.44% (c.f. the
1st image from the right on the 2nd row), similar to our finding on the remaining benchmarks.

Conclusion The top-improved examples affect generalization to a greater extent than a randomly
chosen set of examples of the same size. Moreover, on standard image classification benchmarks,
they are more beneficial to generalization than randomly chosen examples.

18

101102

% Weights Remaining

1.5

2.0

2.5

3.0

3.5
%

 T
es

t E
rro

r

M-LeNet

100101102

% Weights Remaining

10

20

%
 T

es
t E

rro
r

C10-ResNet20

100101102

% Weights Remaining

6

8

10

12

14

%
 T

es
t E

rro
r

C10-VGG16

101102

% Weights Remaining

30

35

40

%
 T

es
t E

rro
r

C100-ResNet32

102 2 × 1013 × 1014 × 1016 × 101

% Weights Remaining

24

26

%
 T

es
t E

rro
r

I-ResNet50

200 400 600 800
Re-training Epochs

Dense
LR Rewinding
Weight Rewinding
SynFlow

SNIP
Iterative Random
Augmented

0 500 1000 1500 2000 2500 3000 3500
Re-training Epochs

Dense
LR Rewinding
Weight Rewinding
SynFlow

SNIP
Iterative Random
Augmented

0 1000 2000 3000 4000
Re-training Epochs

Dense
LR Rewinding
Weight Rewinding
SynFlow

SNIP
Iterative Random
Augmented

500 1000 1500 2000
Re-training Epochs

Dense
LR Rewinding
Weight Rewinding
SynFlow

SNIP
Iterative Random
Augmented

100 200 300 400 500 600 700 800
Re-training Epochs

Dense
LR Rewinding
Weight Rewinding
SynFlow

SNIP
Iterative Random
Augmented

Figure 8: Comparing variants of pruning algorithm. With the exception of MNIST-LeNet benchmark,
test errors of models we generate using the augmented pruning algorithm modified to no longer
remove weights matches or exceeds the test errors of models we generate using all other variants of
pruning algorithms.

E Leaving Out Noisy Examples Improves Generalization

Section 4 demonstrates that, when pruning to the optimal sparsity in the presence of random label
noise, its effect is to increase training loss on noisy examples. In this section, we show that increasing
training loss on the same set of noisy examples improves the generalization of dense models to the
same, if not larger, extent as pruning. Our results validate the connection between increased training
loss on noisy examples to generalization improvement.

Method. Pruning to the optimal sparsity increases the training loss especially on a particular
subgroup of examples consisting primarily of noisy examples. A simple and hyperparameter-free
method to increase training loss of dense models on the same set of examples is to exclude from
the training dataset the set of examples that the sparse models misclassify. Since training only on a
dataset subset changes the number of gradient steps an epoch takes, we increase the total number of
epochs so that the total number of gradient steps taken remains the same as training on the original
dataset. We compare pruning and training dense models exclusively on the subset of examples that the
sparse models correctly predict; we refer to such dense models as dense-subset models. In Figure 10,

19

101102

% Weights Remaining

1.75

2.00

2.25

2.50

2.75

3.00

%
 T

es
t E

rro
r

M-LeNet

TIE
RND

100101102

% Weights Remaining

8.0

8.5

9.0

9.5

10.0

%
 T

es
t E

rro
r

C10-ResNet20

TIE
RND

10 1100101102

% Weights Remaining

6.50

6.75

7.00

7.25

7.50

7.75

8.00

%
 T

es
t E

rro
r

C10-VGG16

TIE
RND

101102

% Weights Remaining

31.5

32.0

32.5

33.0

33.5

%
 T

es
t E

rro
r

C100-ResNet32

TIE
RND

102 2 × 1013 × 1014 × 1016 × 101

% Weights Remaining

24.6

24.8

25.0

25.2

25.4

25.6

%
 T

es
t E

rro
r

I-ResNet50

TIE
RND

101102

% Weights Remaining

22.5

23.0

23.5

24.0

24.5

25.0

%
 T

es
t E

rro
r

C100-ResNet32-128

TIE
RND

Figure 9: Excluding top-improved examples hurt generalization more than excluding a random subset
of the same size on 4/5 benchmarks. We show test errors of dense models we train on the dataset
excluding top-improved examples (denoted as TIE), and on the dataset excluding a random subset of
the same size (denoted as RND) as a function of sparsity at which the top-improved examples are
selected. The range of sparsities where generalization is improved by pruning is shaded in green.

plot the test errors of the dense-subset models as a function of the sparsity of the pruned model whose
prediction determines which examples to exclude when training the said dense-subset model. For
comparison, we also plot the test errors of sparse models as a function of its sparsity. We summarize
the numerical results in Table 8.

Results. Variations in the generalization of the dense-subset models track variations in the gen-
eralization of the sparse models with respect to the fractions of weights remaining. Moreover, the
generalization of the optimal dense-subset models matches or exceeds the generalization of the
optimally sparse models.

Conclusion. Section 4 shows that, in the presence of random label noise, pruning to the optimal
sparsity has regularization effects: pruning increases the loss on a select subgroup of training examples
consisting predominantly of noisy examples. In this section, we demonstrate that increasing training
loss on the same set of examples benefits dense model generalization as well. Our results establish a
connection between pruning’s regularization effect and generalization improvement.

F Comparing Pruning with Width Down-scaling

In this section, we present a less-cluttered version of the images we show in Section 5.2.

I Similarities between Pruning and Width Down-scaling

In Section 5.2, we observe that the pruned models and width down-scaled models attain similar
generalization at the optimal sparsity and model width on benchmarks with random label noise, where
pruning’s effect at the optimal sparsity is to improve generalization by strengthening regularization
(Section 4). Their similarity is surprising because pruning and down-scaling model width are two

20

101 102

% Weights Remaining

10

20

30

40

%
 T

es
t E

rro
r

M-LeNet
5%
10%

15%

100 101 102

% Weights Remaining

10

20

30

40

50

60

%
 T

es
t E

rro
r

C10-ResNet20
15%
30%

60%

10 1 100 101 102

% Weights Remaining

20

40

60

80

%
 T

es
t E

rro
r

C10-VGG16
15%
30%

60%

101 102

% Weights Remaining

40

50

60

70

80

%
 T

es
t E

rro
r

C100-ResNet32
15%
30%

60%

101 102

% Weights Remaining

26

28

30

32

%
 T

es
t E

rro
r

I-ResNet50
15%

Figure 10: Excluding examples that the optimally sparse models misclassify improves dense model
generalization to the same if not greater extent as pruning does. Test errors of dense-subset models
are shown using circular markers with solid lines. Test errors of sparse models are shown using
square markers with dashed lines. Legend shows levels of random label noise.

distinct methods to reduce model size. In this section, we further compare pruning and width down-
scaling with equalized training time and quantify the similarities between their effects on training
examples.

Method. Width down-scaling differs from pruning because a pruned model receives extra training,
due to the retraining step. To compare fairly, we modify the pruning and width down-scaling
algorithms as such to equalize the amount of training:7

1. For pruning, we adopt a variant of the magnitude pruning algorithm, called one-shot pruning
[53]. While iterative pruning (the pruning algorithm we introduce in Section 2) removes
a fixed fraction of the remaining weights per iteration until achieving the desired sparsity,

7Alternatively, one can equalize training by increasing the amount of training of width down-scaled models.
However this increases the amount of compute required by an order of magnitude, and beyond reasonable budget.
This is because unlike iterative pruning, a trained model with a larger width does not become the starting point
for training a model with a smaller width, and therefore no amount of training is shared between models with
different sizes.

21

104105

Weights Remaining

0

10

20

30

Te
st

Er
ro

r

M-LeNet 0%

LRR
WD

103104105

Weights Remaining

20

40

60

80

Te
st

Er
ro

r

C10-ResNet20 0%

LRR
WD

105107

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C10-VGG16 0%

LRR
WD

104105

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C100-ResNet32 0%

LRR
WD

106107

Weights Remaining

24

26

28

30

Te
st

Er
ro

r

I-ResNet50 0%

LRR
WD

104105

Weights Remaining

0

10

20

30

Te
st

Er
ro

r

M-LeNet 5%

LRR
WD

103104105

Weights Remaining

20

40

60

80

Te
st

Er
ro

r

C10-ResNet20 15%

LRR
WD

105107

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C10-VGG16 15%

LRR
WD

104105

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C100-ResNet32 15%

LRR
WD

106107

Weights Remaining

26

28

30

32

Te
st

Er
ro

r

I-ResNet50 15%

LRR
WD

104105

Weights Remaining

0

10

20

30

Te
st

Er
ro

r

M-LeNet 10%

LRR
WD

103104105

Weights Remaining

20

40

60

80

Te
st

Er
ro

r

C10-ResNet20 30%

LRR
WD

105107

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C10-VGG16 30%

LRR
WD

104105

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C100-ResNet32 30%

LRR
WD

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

104105

Weights Remaining

0

10

20

30

Te
st

Er
ro

r

M-LeNet 15%

LRR
WD

103104105

Weights Remaining

20

40

60

80

Te
st

Er
ro

r

C10-ResNet20 60%

LRR
WD

105107

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C10-VGG16 60%

LRR
WD

104105

Weights Remaining

20

40

60

80

100

Te
st

Er
ro

r

C100-ResNet32 60%

LRR
WD

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Comparing Pruning with Model Width Reduction. The percentage of random label noise
injected is shown in each subplot title. The test errors of sparse models generated by learning rate
rewinding algorithm (denoted LRR) and width-down-scaled models (denoted WD) as a function of
their number of weights are shown using orange and blue lines, respectively.

one-shot pruning removes all weights at once to reach the desired sparsity. Like iterative
pruning, one-shot pruning retrains the model after weights removal.

2. For width down-scaling, we equalize the amount of training with one-shot pruning by
training the width down-scaled model for the same number of gradient steps and using the
same learning rate schedule as one-shot pruning.

We then quantify the similarities between two algorithms by comparing (1). the generalization of
their produced models; (2). average loss change, relative to the standard dense model, on training
example subgroups with distinct EL2N percentile ranges due to respective algorithms; (3). overlap
of the 10% examples whose training loss changes the most due to two algorithms, relative to the
training loss of the original dense model, measured in terms of Jiccard similarity index. The Jiccard
similarity index J(A,B) measures the similarity between the content of two sets A and B, with the
following formula:

J(A,B) =
|A ∩B|
|A ∪B|

Generalization. Figure 12 shows that generalization of models that both algorithms produce are
qualitatively similar on benchmarks with injected random label noise – generalization of models that
both algorithms generate improves when they only remove a relatively small fraction of weights. As
both algorithms remove more weights, generalization of produced models begins to suffer.

22

103 104 105

Params

0

20

40

60

80

Te
st

Er
ro

r

M-LeNet-0% Noise

LR
WS

103 104 105

Params

20

40

60

80

Te
st

Er
ro

r

M-LeNet-5% Noise

LR
WS

103 104 105

Params

20

40

60

80

Te
st

Er
ro

r

M-LeNet-10% Noise

LR
WS

103 104 105

Params

20

40

60

80

Te
st

Er
ro

r

M-LeNet-15% Noise

LR
WS

103 104 105

Params

10

20

30

40

50

Te
st

Er
ro

r

C10-ResNet20-0% Noise

LR
WS

103 104 105

Params

20

30

40

50

Te
st

Er
ro

r

C10-ResNet20-15% Noise

LR
WS

103 104 105

Params

20

30

40

50

Te
st

Er
ro

r

C10-ResNet20-30% Noise

LR
WS

103 104 105

Params

30

40

50

60

70

80

Te
st

Er
ro

r

C10-ResNet20-60% Noise

LR
WS

104 105 106 107

Params

20

40

60

80

100

Te
st

Er
ro

r

C10-VGG16-0% Noise

LR
WS

104 105 106 107

Params

20

40

60

80

100

Te
st

Er
ro

r

C10-VGG16-15% Noise

LR
WS

104 105 106 107

Params

20

40

60

80

100

Te
st

Er
ro

r

C10-VGG16-30% Noise

LR
WS

104 105 106 107

Params

40

60

80

Te
st

Er
ro

r

C10-VGG16-60% Noise

LR
WS

104 105

Params

40

60

80

100

Te
st

Er
ro

r

C100-ResNet32-0% Noise

LR
WS

104 105

Params

40

50

60

70

80

90

Te
st

Er
ro

r

C100-ResNet32-15% Noise

LR
WS

104 105

Params

40

50

60

70

80

90

Te
st

Er
ro

r

C100-ResNet32-30% Noise

LR
WS

104 105

Params

60

70

80

90

Te
st

Er
ro

r

C100-ResNet32-60% Noise

LR
WS

105 106 107

Params

20

40

60

80

Te
st

Er
ro

r

I-ResNet50-0% Noise

LR
WS

105 106 107

Params

40

60

80

Te
st

Er
ro

r

I-ResNet50-15% Noise

LR
WS

100 101

0.0

0.2

0.4

0.6

0.8

1.0

100 101

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Generalization of pruned models (denoted LR) is similar to generalization of width down-
scaled models (denoted WS). We equalize training time between pruning and width down-scaling.

Change in loss by subgroups. Figure 13 shows that on benchmarks with random label noise,
pruning and width down-scaling has similar effects on example subgroups with distinct EL2N score
percentile ranges at optimal sparsity and model width respectively – training loss increase for both
algorithms tends to concentrate on examples with high EL2N score percentile ranges.

Affected examples overlap. Table 3 shows that the 10% of training examples whose training loss
changes the most due to pruning and width down-scaling overlap significantly more than random
baseline.

23

0 50 100
EL2N Percentile

0.125

0.100

0.075

0.050

0.025

0.000

Lo
ss

 C
ha

ng
e

M-LeNet-0%

LR
WS

0 50 100
EL2N Percentile

0

1

2

3

4

Lo
ss

 C
ha

ng
e

M-LeNet-5%

LR
WS

0 50 100
EL2N Percentile

0

1

2

3

4

Lo
ss

 C
ha

ng
e

M-LeNet-10%

LR
WS

0 50 100
EL2N Percentile

0

1

2

3

Lo
ss

 C
ha

ng
e

M-LeNet-15%

LR
WS

0 50 100
EL2N Percentile

0.06

0.04

0.02

0.00

Lo
ss

 C
ha

ng
e

C10-ResNet20-0%

LR
WS

0 50 100
EL2N Percentile

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

 C
ha

ng
e

C10-ResNet20-15%

LR
WS

0 50 100
EL2N Percentile

0.0

0.2

0.4

0.6

Lo
ss

 C
ha

ng
e

C10-ResNet20-30%

LR
WS

0 50 100
EL2N Percentile

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

 C
ha

ng
e

C10-ResNet20-60%

LR
WS

0 50 100
EL2N Percentile

0.002

0.001

0.000

0.001

Lo
ss

 C
ha

ng
e

C10-VGG16-0%

LR
WS

0 50 100
EL2N Percentile

0

1

2

3

Lo
ss

 C
ha

ng
e

C10-VGG16-15%

LR
WS

0 50 100
EL2N Percentile

0

1

2

3

Lo
ss

 C
ha

ng
e

C10-VGG16-30%

LR
WS

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 C
ha

ng
e

C10-VGG16-60%

LR
WS

0 50 100
EL2N Percentile

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Lo
ss

 C
ha

ng
e

C100-ResNet32-0%

LR
WS

0 50 100
EL2N Percentile

0.5

0.0

0.5

1.0

1.5

2.0

Lo
ss

 C
ha

ng
e

C100-ResNet32-15%

LR
WS

0 50 100
EL2N Percentile

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Lo
ss

 C
ha

ng
e

C100-ResNet32-30%

LR
WS

0 50 100
EL2N Percentile

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 C
ha

ng
e

C100-ResNet32-60%

LR
WS

0 50 100
EL2N Percentile

0.125

0.100

0.075

0.050

0.025

0.000

Lo
ss

 C
ha

ng
e

I-ResNet50-0%

LR
WS

0 50 100
EL2N Percentile

0.125

0.100

0.075

0.050

0.025

0.000

Lo
ss

 C
ha

ng
e

I-ResNet50-15%

LR
WS

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Pruning (denoted LR) and width down-scaling (denoted WS) has similar effect on the
average training loss of example subgroups with distinct EL2N score percentile ranges at optimal
sparsity and model width.

24

Model Noise Level Jaccard Similarity
M-LeNet 0%/5%/10%/15% 0.60 / 0.11 / 0.74 / 0.62

C10-ResNet20 0%/15%/30%/60% 0.20 / 0.37 / 0.35 / 0.42
C10-VGG-16 0%/15%/30%/60% 0.14 / 0.57 / 0.27 / 0.12

C100-ResNet32 0%/15%/30%/60% 0.17 / 0.23 / 0.27 / 0.28
I-ResNet50 0%/15%/ 0.26 / 0.26

Table 3: Jaccard similarity of top 10% of examples most affected by pruning and width down-scaling.
A randomly chosen two sets of 10% training examples has a baseline similarity index of 0.05. All
standard deviations are less than or equal to 0.03.

Conclusion. Pruning and width down-scaling have similar regularization effects: they nonuniformly
increase the average training loss of example subgroups, which we show is key to improving
generalization in the presence of random label noise (Section 4). Therefore, the regularization effect
of pruning may be a consequence of model size reduction in general.

J Ablation Studies

Pruning algorithms are complex aggregation of individual design choices. In this section, we examine
whether specific design choices of pruning algorithms including weight resetting and weight selection
heuristics contributes to the generalization-improving effect of pruning.

J.1 Rewinding Weights

The pruning algorithm we use in this study, namely, learning rate rewinding, rewinds learning rate
to their value early in training after each pruning iteration. Its predecessor, an iterative pruning
algorithm called weight rewinding rewinds not just learning rate, but also weights to their values
early in training after each pruning iteration. Frankle and Carbin [13] proposed weight rewinding
and later, Renda et al. [53] found that rewinding weight is unnecessary if one’s goal is to produce a
family of models achieving the optimal parameter count - generalization trade-off. In this section,
we expand the comparison weight rewinding [13] and learning rate rewinding [53] to datasets with
random label noise, and show that rewinding weights is actually necessary for achieving optimal
generalization on benchmarks with random label noise.

Method. To examine whether rewinding weights contributes to the generalization-improving
effect of pruning, we compare the generalization of models that weight rewinding produces with
generalization of models that learning rate rewinding produces. The former pruning algorithm
rewinds weights and the latter does not.

Results. We plot our results in Figure 14. Numerical results are available in Table 9 in Appendix M.
We observe that across 18 model, dataset, noise level combinations, weight rewinding out-performs
learning rate rewinding on 10 benchmarks, whereas learning rate rewinding only out-performs weight
rewinding on 2. For the remaining 6 benchmarks, two algorithms produce models with matching
generalization. Notably, weight rewinding is better at mitigating random label noise than learning
rate rewinding. Across all model architectures, on datasets with and without random label noise, the
optimal test error of models that weight rewinding produces is lower than the optimal test error of
models that learning rate rewinding produces by -0.7% to 0.3%, 0% (matching) to 5.5%.

Conclusion. Weight resetting contributes to the generalization-improving effect of pruning.

J.2 Weight Selection Heuristics

The pruning algorithm we study, namely learning rate rewinding [53], removes weights based on
the simple heuristic that weights with low magnitude are less important for the given task. We
study whether pruning’s generalization improving effect is affected by the choice of weight selection
heuristic.

25

100101102

% Weights Remaining

0

10

20

30

M-LeNet
0%
5%

10%
15%

100101102

% Weights Remaining

10

20

30

40

50

60

C10-ResNet20
0%
15%

30%
60%

10 1100101102

% Weights Remaining

20

40

60

80
C10-VGG16
0%
15%

30%
60%

101102

% Weights Remaining

30

40

50

60

70

80
C100-ResNet32

0%
15%

30%
60%

102 2 × 1013 × 1014 × 1016 × 101

% Weights Remaining

24

25

26

27

I-ResNet50
0% 15%

Figure 14: Rewinding weights helps improve generalization in the presence of random label noise.
We plot test errors of models that weight rewinding and learning rate rewinding produce in lines with
circle and square markers, respectively. We plot test errors of dense models with horizontal dashed
lines. Legend shows noise levels.

Method. We modify learning rate rewinding to adopt the following alternative weight selection
heuristics, and compare the generalization of models that each modified pruning algorithm generates.

1. Random selection. Weights are removed at random without considering their values.
2. Synaptic flow preserving weight selection [60]. This weight selection heuristic works as

follow. The heuristic algorithm first replaces each weight wl in the model with ‖wl‖;
then, the algorithm feed an input tensor filled with all 1’s to this instrumented model, and
the sum of the output logits is computed as R. The heuristic algorithm then assigns an
importance score ‖ dRdwl

� wl‖ to each weight, and the weights receiving the lowest such
scores are removed. Tanaka et al. [60] designed SynFlow to mitigate layer collapse, a
phenomenon associated with ordinary magnitude-based pruning method where weight
removal concentrates on certain layers, effectively disconnecting the sparse model.

Results. We plot and tabulate the result of comparison in Figure 15 and Table 10. We observe that
SynFlow-based weight selection heuristic beats magnitude-based one on 6 out of 18 benchmarks. We
also observe that random pruning is particularly effective at mitigating random label noise – on 9 out

26

101102

% Weights Remaining

0

10

20

30
%

 T
es

t E
rro

r

M-LeNet
0%
5%

10%
15%

100101102

% Weights Remaining

20

40

60

80

%
 T

es
t E

rro
r

C10-ResNet20
0%
15%

30%
60%

10 1100101102

% Weights Remaining

25

50

75

100

%
 T

es
t E

rro
r

C10-VGG16
0%
15%

30%
60%

101102

% Weights Remaining

30

40

50

60

70

80

%
 T

es
t E

rro
r

C100-ResNet32
0%
15%

30%
60%

102 2 × 1013 × 1014 × 1016 × 101

% Weights Remaining

24

25

26

27

%
 T

es
t E

rro
r

I-ResNet50
0% 15%

Figure 15: The choice of weight selection heuristic matters to generalization. However, among
magnitude, synflow and random selection heuristics we test, not one selection strategy stands out
as the best heuristic for improving generalization. We plot test errors of models that pruning with
magnitude, synflow and random selection heuristics produce in lines with square, circle and triangle
markers, respectively. We plot test errors of dense models with horizontal dashed lines. Legend
shows noise levels.

of 13 benchmarks with random label noise, random pruning out-performs magnitude-based weight
selection heuristic.

Conclusion. The choice of weight selection heuristic plays a significant role in determining prun-
ing’s generalization-improving effect.

K Closer Look at Examples with Training Loss Most Worsened by Pruning

In this section, we take a closer look at the examples in the standard image classification training
datasets whose training loss is increased the most by pruning to a range of generalization-improving
and generalization-preserving sparsities.

27

MNIST
LeNet

CIFAR-10
ResNet20

CIFAR-10
VGG-16

CIFAR-100
ResNet32

ImageNet
ResNet50

Most-worsened 1.4% 16.7-13.4% 2.3-0.7% 16.7-8.6% 13.4%
Most-improved 80-5.5% 80-21% 80-2.3% 80-21% 80-16.8%
Least-affected 100-1.4% 100-5.5% 100-0.19% 100-8.6% 100-13.4%

Table 4: Sparsities at which we measure training loss after pruning to select training dataset subsets.

K.1 Example Images and Labels

When pruning to sparsities that improve or preserve (causing <2% error increase) generalization,
what is the nature of examples whose training loss increases or decreases the most? Here, we present
examples whose training loss is affected the most by pruning to the aforementioned sparsities. We
show that while the majority of these examples are atypical representations of their labels, a fraction
of these examples contain incorrect or ambiguous labels.

Method. We select three subsets of training examples: the most-worsened examples, the most-
improved examples and the least-affected examples as follow.

1. The most-worsened examples: we first measure the per-example training loss after prun-
ing to the following sparsities. For ResNet20 on CIFAR-10 and VGG-16 on CIFAR-10
benchmarks, a range of sparsities with an increased overall training loss but improved
generalization exist. We measure per-example training loss after pruning to these sparsities.
For LeNet on MNIST, ResNet32 on CIFAR-100 and ResNet50 on ImageNet benchmarks,
however, no such sparsities exist. We therefore choose to measure per-example training
loss after pruning to sparsities with an increased overall training loss and generalization that
is no worse than that of the dense models by 2%. We then rank examples in the training
dataset based on the geometric average of their training loss increase after pruning to afore-
mentioned sparsities, relative to their training loss before pruning.8 We select examples with
the most training loss increase as the most-worsened examples.

2. The most-improved examples: we first measure the per-example training loss after pruning to
sparsities with improved generalization and decreased training loss. We then rank examples
in the training dataset based on the geometric average of their training loss decrease after
pruning to aforementioned sparsities, relative to their training loss before pruning.9 We
select examples with the most training loss decrease as the most-improved examples.

3. The least-affected examples: we first measure the per-example training loss after pruning to
sparsities that attains generalization no worse than that of the dense models by 2%. We then
rank examples in the training dataset based on geometric average of the absolute value of
their training loss change after pruning to aforementioned sparsities, relative to their training
loss before pruning. We select examples with the least absolute value of training loss change
as the least-affected examples.

For each type of training example subset, we tabulate the sparsities at which we measure per-example
training loss after pruning in Table 4. We average the per-example training loss across selected
sparsities and across independent runs of the same experiment with distinct random seeds.

On each benchmark, we present the 20 examples from each category Figure 16. Notably, the set of
20 least-affected examples are not unique, as many examples are practically unaffected by pruning.

Results. We describe our observations in the captions of Figure 16.

8Since we are concerned with examples whose training loss increases due to pruning, and in general, one
cannot compute geometric average of arrays with negative numbers, we set negative training loss increase due to
pruning to a small number 1e− 5, effectively ignoring them.

9Similar to how we select most-worsened examples, since we are concerned with examples whose training
loss decreases due to pruning, and in general, one cannot compute geometric average of arrays with negative
numbers, we set negative training loss decrease due to pruning to a small number 1e− 5, effectively ignoring
them.

28

Conclusion. When pruning to sparsities that improves or preserves generalization (<2% error
increase), the set of examples whose training loss is most affected (i.e., either most worsened or most
improved) are examples that are atypical representations of their labels. A fraction of them have
ambiguous or erroneous labels. In contrast, the least affected examples are mostly unambiguous and
canonical representations of the labels.

29

L:9
P:8

L:7
P:2

L:3
P:5

L:1
P:8

L:5
P:8

L:2
P:2

L:3
P:2

L:3
P:8

L:5
P:8

L:6
P:4

L:3
P:3

L:2
P:2

L:4
P:4

L:9
P:7

L:3
P:3

L:5
P:0

L:9
P:8

L:7
P:7

L:3
P:5

L:5
P:3

(a) MNIST-LeNet Most-worsened Examples. The 3rd image on the 1st row has the incorrect label (should be 5,
but labeled 3). The 2nd image on the 1st row is labeled 7, but is indistinguishable from a 2. The 5th image on the

1st row is labeled 5, but it also looks like an 8.

L:3
P:3

L:1
P:1

L:1
P:1

L:3
P:3

L:3
P:3

L:1
P:1

L:9
P:9

L:1
P:1

L:3
P:3

L:1
P:1

L:3
P:3

L:9
P:9

L:3
P:3

L:5
P:5

L:6
P:6

L:9
P:9

L:3
P:3

L:1
P:1

L:1
P:1

L:3
P:3

(b) MNIST-LeNet Most-improved Examples. Similar to the most-worsened examples, such examples are
atypical representation of labels, and may contain wrong or ambiguous labels.

L:7
P:7

L:7
P:7

L:1
P:1

L:3
P:3

L:7
P:7

L:7
P:7

L:0
P:0

L:2
P:2

L:5
P:5

L:0
P:0

L:8
P:8

L:3
P:3

L:0
P:0

L:2
P:2

L:1
P:1

L:5
P:5

L:3
P:3

L:5
P:5

L:5
P:5

L:2
P:2

(c) MNIST-LeNet Least-affected Examples.

L:bird
P:horse

L:cat
P:bird

L:bird
P:deer

L:automobile
P:ship

L:horse
P:deer

L:dog
P:deer

L:deer
P:bird

L:airplane
P:cat

L:automobile
P:truck

L:truck
P:automobile

L:cat
P:bird

L:deer
P:bird

L:dog
P:dog

L:ship
P:frog

L:dog
P:cat

L:cat
P:cat

L:horse
P:bird

L:automobile
P:truck

L:bird
P:bird

L:cat
P:cat

(d) CIFAR-ResNet20 Most-worsened Examples. The 1st image on the 1st row, the 5th image on the 1st row and
the 2nd image from the right on the 1st row contains multiple objects with the same label. The 1st image from the
right on the 1st row is labeled truck, but cannot be discerned from an automobile when only its front is shown.

Figure 16: Most-worsened/improved examples are atypical representations of labels and may have
wrong and ambiguous labels. Least-affected examples are unambiguous and canonical representations
of labels. Plot title shows image label (denoted L) and model majority prediction (P).

30

L:truck
P:truck

L:dog
P:dog

L:frog
P:frog

L:dog
P:dog

L:airplane
P:airplane

L:cat
P:cat

L:cat
P:cat

L:frog
P:frog

L:dog
P:dog

L:cat
P:cat

L:dog
P:dog

L:bird
P:bird

L:horse
P:horse

L:deer
P:deer

L:cat
P:cat

L:horse
P:horse

L:cat
P:cat

L:frog
P:frog

L:truck
P:truck

L:cat
P:cat

(e) CIFAR-ResNet20 Most-improved Examples. Similar to the most-worsened examples, such examples are
atypical representation of labels and may contain wrong or ambiguous labels.

L:truck
P:truck

L:ship
P:ship

L:bird
P:bird

L:frog
P:frog

L:deer
P:deer

L:truck
P:truck

L:truck
P:truck

L:bird
P:bird

L:deer
P:deer

L:automobile
P:automobile

L:deer
P:deer

L:dog
P:dog

L:frog
P:frog

L:automobile
P:automobile

L:automobile
P:automobile

L:ship
P:ship

L:deer
P:deer

L:deer
P:deer

L:truck
P:truck

L:automobile
P:automobile

(f) CIFAR-ResNet20 Least-affected Examples.

L:dog
P:dog

L:bird
P:bird

L:ship
P:ship

L:bird
P:bird

L:bird
P:bird

L:dog
P:dog

L:bird
P:bird

L:frog
P:frog

L:dog
P:dog

L:bird
P:bird

L:deer
P:deer

L:frog
P:frog

L:bird
P:bird

L:cat
P:cat

L:deer
P:deer

L:airplane
P:airplane

L:cat
P:cat

L:ship
P:ship

L:frog
P:frog

L:dog
P:dog

(g) CIFAR-VGG-16 Most-affected Examples. The 5th image on the 1st row contains multiple objects with the
same label. The 2nd image on the 1st row labeled bird does not contain enough information to be discerned from
an airplane. The 2nd image from the right on the 1st row is quite blurred, but judging by the fact that horses are

more likely to graze than dogs, the animal in this picture is likely to be a horse.

L:truck
P:truck

L:truck
P:truck

L:automobile
P:automobile

L:bird
P:bird

L:bird
P:bird

L:dog
P:dog

L:cat
P:cat

L:airplane
P:airplane

L:truck
P:truck

L:airplane
P:airplane

L:bird
P:bird

L:bird
P:bird

L:cat
P:cat

L:airplane
P:airplane

L:dog
P:dog

L:truck
P:truck

L:cat
P:cat

L:deer
P:deer

L:dog
P:dog

L:dog
P:dog

(h) CIFAR-VGG-16 Most-improved Examples. Similar to the most-worsened examples, such examples are
atypical representation of labels and may contain wrong or ambiguous labels..

Figure 16: (Cont.) Most-worsened/improved examples are atypical representations of labels and
may have wrong and ambiguous labels. Least-affected examples are unambiguous and canonical
representations of labels. Plot title shows image label (denoted L) and model majority prediction (P).

31

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:dog
P:dog

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:horse
P:horse

L:deer
P:deer

L:horse
P:horse

L:horse
P:horse

(i) CIFAR-VGG-16 Least-affected Examples.

L:worm
P:plain

L:cloud
P:can

L:elephant
P:lamp

L:lizard
P:flatfish

L:shark
P:bear

L:porcupine
P:whale

L:cup
P:bowl

L:tulip
P:couch

L:can
P:ray

L:snail
P:mouse

L:squirrel
P:leopard

L:mushroom
P:flatfish

L:lizard
P:kangaroo

L:orchid
P:bed

L:bear
P:cattle

L:crab
P:spider

L:tiger
P:palm_tree

L:table
P:apple

L:train
P:bridge

L:beetle
P:leopard

(j) CIFAR-100-ResNet32 Most-affected Examples. The 2nd image on the first row labeled cloud has the wrong
label. The 3rd image from the right on the 2nd row labeled table has more than one objects with the same label, it

also has fruits on it.

L:beaver
P:beaver

L:beaver
P:beaver

L:table
P:table

L:caterpillar
P:bowl

L:leopard
P:leopard

L:hamster
P:hamster

L:shark
P:ray

L:forest
P:maple_tree

L:squirrel
P:squirrel

L:spider
P:spider

L:willow_tree
P:pine_tree

L:maple_tree
P:maple_tree

L:seal
P:dolphin

L:ray
P:ray

L:poppy
P:poppy

L:possum
P:possum

L:tulip
P:rose

L:elephant
P:elephant

L:sea
P:sea

L:seal
P:seal

(k) CIFAR-100-ResNet32 Most-improved Examples. Similar to the most-worsened examples, such examples are
atypical representation of labels and may contain wrong or ambiguous labels.

L:keyboard
P:keyboard

L:bicycle
P:bicycle

L:keyboard
P:keyboard

L:sunflower
P:sunflower

L:wolf
P:wolf

L:keyboard
P:keyboard

L:keyboard
P:keyboard

L:keyboard
P:keyboard

L:sunflower
P:sunflower

L:keyboard
P:keyboard

L:bicycle
P:bicycle

L:raccoon
P:raccoon

L:raccoon
P:raccoon

L:skunk
P:skunk

L:bicycle
P:bicycle

L:keyboard
P:keyboard

L:keyboard
P:keyboard

L:keyboard
P:keyboard

L:keyboard
P:keyboard

L:keyboard
P:keyboard

(l) CIFAR-100-ResNet32 Least-affected Examples.

Figure 16: (Cont.) Most-worsened/improved examples are atypical representations of labels and
may have wrong and ambiguous labels. Least-affected examples are unambiguous and canonical
representations of labels. Plot title shows image label (denoted L) and model majority prediction (P).

32

L:plunger,
 plumber's helper

P:Labrador retriever

L:military uniform
P:cornet, horn, trumpet,

 trump

L:limpkin, Aramus pictus
P:American alligator,

Alligator,
mississipiensis

L:French horn, horn
P:bearskin, busby, shako L:malinois

P:Rhodesian ridgeback

L:guinea pig, Cavia cobaya
P:brassiere, bra, bandeau

L:lynx, catamount
P:common iguana, iguana,

 Iguana iguana L:mailbox, letter box
P:mountain tent

L:fountain
P:stethoscope

L:ping-pong ball
P:piggy bank, penny bank

L:lighter, light, igniter,
 ignitor

P:vestment
L:hen

P:limpkin, Aramus pictus

L:cliff dwelling
P:bighorn, bighorn sheep,

 cimarron,
 Rocky Mountain bighorn,
 Rocky Mountain sheep,

 Ovis canadensis

L:lycaenid,
 lycaenid butterfly

P:lycaenid,
 lycaenid butterfly

L:brown bear, bruin,
 Ursus arctos

P:water buffalo, water ox,
 Asiatic buffalo,
 Bubalus bubalis

L:jay
P:corn L:computer keyboard,

 keypad
P:stethoscope

L:shopping cart
P:cowboy hat,
 ten-gallon hat L:airship, dirigible

P:pier

L:tusker
P:wild boar, boar,

 Sus scrofa

(m) ImageNet-ResNet50 Most-affected Examples. The 3rd image on the 1st row is not a limpkin, which is a bird
species with long beak. The 1st image from the right on the 2nd row is not a tusker, but a wild boar. The 5th

image from the right labeled guinea pig, the 2nd, 3rd and 4th images from the right on the 2nd row, among other
images, show multiple objects with the same label.

Figure 16: (Cont.) Most-worsened/improved examples are atypical representations of labels and
may have wrong and ambiguous labels. Least-affected examples are unambiguous and canonical
representations of labels. Plot title shows image label (denoted L) and model majority prediction (P).

33

L:wig
P:fur coat

L:hair slide
P:chain mail, ring mail,

 mail, chain armor,
 chain armour,

 ring armor, ring armour

L:neck brace
P:neck brace L:gasmask, respirator,

 gas helmet
P:unicycle, monocycle

L:corkscrew, bottle screw
P:corkscrew, bottle screw

L:harmonica, mouth organ,
 harp, mouth harp

P:buckle
L:lampshade, lamp shade
P:lampshade, lamp shade

L:hourglass
P:hourglass L:water bottle

P:toy poodle

L:sewing machine
P:sewing machine

L:Christmas stocking
P:soft-coated,wheaten,

terrier L:bustard
P:vulture

L:maze, labyrinth
P:maze, labyrinth

L:maypole
P:maypole L:apiary, bee house

P:apiary, bee house

L:chain
P:chain L:bow

P:langur

L:pencil sharpener
P:bookshop, bookstore,

 bookstall L:muzzle
P:muzzle

L:cellular telephone,
 cellular phone,
 cellphone, cell,
 mobile phone

P:bullet train, bullet

(n) ImageNet-ResNet50 Most-improved Examples. Similar to the most-worsened examples, such examples are
atypical representation of labels and may contain wrong or ambiguous labels.

Figure 16: (Cont.) Most-worsened/improved examples are atypical representations of labels and
may have wrong and ambiguous labels. Least-affected examples are unambiguous and canonical
representations of labels. Plot title shows image label (denoted L) and model majority prediction (P).

34

L:mousetrap
P:mousetrap

L:mousetrap
P:mousetrap

L:doormat, welcome mat
P:doormat, welcome mat

L:waffle iron
P:waffle iron

L:hourglass
P:hourglass

L:doormat, welcome mat
P:doormat, welcome mat L:mousetrap

P:mousetrap

L:hourglass
P:hourglass

L:bubble
P:bubble

L:hourglass
P:hourglass

L:hourglass
P:hourglass L:mousetrap

P:mousetrap L:quill, quill pen
P:quill, quill pen

L:quill, quill pen
P:quill, quill pen

L:Band Aid
P:Band Aid

L:hourglass
P:hourglass

L:waffle iron
P:waffle iron L:thimble

P:thimble
L:hourglass
P:hourglass

L:ice lolly, lolly,
 lollipop, popsicle
P:ice lolly, lolly,

 lollipop, popsicle

(o) ImageNet-ResNet50 Least-affected Examples.

Figure 16: (Cont.) Most-worsened/improved examples are atypical representations of labels and
may have wrong and ambiguous labels. Least-affected examples are unambiguous and canonical
representations of labels. Plot title shows image label (denoted L) and model majority prediction (P).

35

K.2 Empirical Analysis

We refer to the set of examples whose training loss is increased the most by pruning as top-worsened
examples. In this subsection, we empirically evaluate the effect of the top-worsened examples on
generalization. We focus on two benchmarks – CIFAR-10-ResNet20 and CIFAR-10-VGG-16, since
we only observe generalization improvement with an overall increase in training loss on the two
aforementioned benchmarks.

Method. For each benchmark and model with sparsity X% that the pruning algorithm generates,
we create two dataset subsamples of size N to evaluate the effect of P top-worsened examples on
generalization, whereN � P : a). start with a randomly drawn (N−P) examples, and add additional
P examples whose training loss is increased the most by pruning to sparsity X (i.e., the top-worsened
examples); we denote this dataset subsample as SXTW ; b). start with the same (N − P) examples,
but add additional P examples drawn randomly from the rest of the dataset; we denote this dataset
subsample as SXRand. We then train dense models on two subsamples SXTW and SXRand to obtain
the corresponding generalization Y XTW , Y XRand. If our hypothesis is correct – that pruning improves
generalization by increasing training loss, essentially ignoring, a small fraction of noisy examples
detrimental to generalization – for a range of sparsities X where pruning improves generalization,
we should observe that the generalization of dense models we train on the subsample containing
top-worsened examples (SXTW) to be worse than the one we train on a randomly drawn subsample
(SXRand). Following the precedent of Paul et al. [51], we choose N to be the size equivalent to 40%
of the training dataset and P to be 1% of the training dataset.

Notably, subsampling the dataset is necessary to reveal the effect of the small fraction of noisy
examples empirically. Their relatively rare occurrence makes their harmful effect on generalization
difficult to detect empirically. This is consistent with with observation and experimental setup used in
Paul et al. [51], characterizing the harmful effect of a small fraction of training examples with high
EL2N scores. We similarly demonstrate the harmful effect of examples avoided by the sparse models.

Results. We visualize the generalization difference Y XTW - Y XRand of dense models we train on the
two dataset subsamples as a function of sparsities X in Figure 17. Indeed, dense models we train
on the subsample containing the top-worsened examples achieve worse generalization compared
with dense models we train on a random subsample, most notably near and beyond the highest
sparsity that still improves generalization. Within the range of sparsity levels where pruning improves
generalization, the test errors of dense ResNet20, VGG-16 models we train on the dataset subsample
containing the top-worsened examples is worse than the models trained on a random subsample by 0
(matching) to 0.35% and 0 (matching) to 0.54% respectively. We thus confirm that pruning improves
generalization while avoiding fitting a small fraction of examples harmful to generalization.

101 102

% Weights Remaining

11.2

11.4

11.6

11.8

12.0

12.2

12.4

12.6

 %
 T

es
t E

rro
r

C10-ResNet20

Rand
Top-Worsened

100 101 102

% Weights Remaining

9.8

10.0

10.2

10.4

10.6

 %
 T

es
t E

rro
r

C10-VGG16

Rand
Top-Worsened

Figure 17: Dense models we train on dataset subsamples including top-worsened examples (labeled
Top-Worsened) achieve worse generalization than dense models we train on dataset subsamples
without top-worsened examples (labeled Rand). We show test errors of dense models trained on two
dataset subsamples as a function of sparsities at which per-example training loss is measured. We
color the range of sparsity levels where pruning improves generalization green.

36

L Effects of Learning Algorithms on Subgroup Training Loss

In Section 3, we partition the training set into subgroups, each with a distinct EL2N score percentile
range and present pruning’s effect on the average training loss of example subgroups at two sparsities
of interests. In this section, we present pruning’s effect on the average training loss of example
subgroups at more sparsities. We similarly present the effect of two other learning algorithms,
extended dense training (Section 5.1) and width downscaling (Section 5.2), on subgroup training loss.

Method. Similar to Section 3, to measure the change in training loss due to a particular learning
algorithm, we partition the training set into M subgroups, each with a different range of EL2N
scores. For each subgroup, we then compute the average change in training loss after we apply
the learning algorithm, relative to the resulting training loss after training the dense model with
standard hyperparameters as specified in Appendix B.2, on examples in the subgroup. A negative
value indicates that the learning algorithm improves the subgroup training loss relative to training the
dense model with standard hyperparameters. We present the effect of pruning on subgroup training
loss across a sequence of evenly spaced 5 sparsities in Figure 18. We present the effect of extended
dense training and width downscaling on subgroup training loss across a sequence of 5 evenly spaced
training time milestones and model downscaling factors in Figure 19 and Figure 20, respectively.
Consistent with Section 3, we pick M = 20 because it is the largest value of M that enables us to
clearly present per-subgroup training loss change.

Pruning results. Figure 18 shows that, at low sparsities, pruning’s effect is to improve training
loss on almost all example subgroups. For example, on CIFAR-10-ResNet20 benchmark with 0%
random label noise, pruning to 80% to 26.21% weights remaining reduces the average training
loss on example subgroups. At these sparsities, pruning’s effect is to improve training. Pruning to
higher sparsities, pruning’s regularization effect dominates – pruning increases training loss across all
example subgroups. For example, on CIFAR-10-ResNet20 benchmark with 8.59% to 0.92% weights
remaining, pruning’s effect is to increase the average training loss on almost all example subgroups.

Extended dense training results. Figure 19 shows that the effect of extended dense training
is to improve training loss on almost all example subgroups. This effect is similar to pruning
to low sparsities (e.g., 80% to 26.21% weights remaining for CIFAR-10-ResNet20), as shown in
Figure 18. However, unlike pruning to high sparsities (e.g, 8.59% to 0.92% weights remaining for
CIFAR-10-ResNet20), we do not observe any regularization effect of extended dense training.

Width downscaling results. Figure 20 shows that width downscaling has a regularization effect,
as it increases training loss on almost all example subgroups. This effect is similar to pruning to
high sparsities (e.g., 8.59% to 0.92% weights remaining for CIFAR-10-ResNet20), as shown in
Figure 18. However, unlike pruning to low sparsities (e.g, 80% to 26.21% weights remaining for
CIFAR-10-ResNet20), we do not observe any training loss improvement at any model width we test.

37

0 50 100
EL2N Percentile

0.10

0.05

0.00

Av
g.

 C

E
Lo

ss

E=1.91%, WR=80.0%

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=1.69%, WR=40.96%

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=1.82%, WR=20.97%

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=2.1%, WR=10.74%

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=2.24%, WR=5.5%

0 50 100
EL2N Percentile

0.2

0.0

Av
g.

 C

E
Lo

ss

E=5.51%, WR=80.0%

0 50 100
EL2N Percentile

0.4

0.2

0.0
E=5.27%, WR=40.96%

0 50 100
EL2N Percentile

0.4

0.2

0.0
E=6.79%, WR=20.97%

0 50 100
EL2N Percentile

0.4

0.2

0.0
E=9.68%, WR=10.74%

0 50 100
EL2N Percentile

0

1

2

3

E=6.91%, WR=5.5%

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=10.01%, WR=80.0%

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=10.01%, WR=40.96%

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=12.86%, WR=20.97%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=15.68%, WR=10.74%

0 50 100
EL2N Percentile

0

2

4
E=9.59%, WR=5.5%

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=14.16%, WR=80.0%

0 50 100
EL2N Percentile

1.0

0.5

0.0
E=14.76%, WR=40.96%

0 50 100
EL2N Percentile

0.75

0.50

0.25

0.00
E=19.71%, WR=20.97%

0 50 100
EL2N Percentile

0

1

2

E=13.31%, WR=10.74%

0 50 100
EL2N Percentile

0

1

2

3

E=12.4%, WR=5.5%

(a) LeNet-MNIST, rows correspond to 0%, 5%, 10% and 15% random label noise

0 50 100
EL2N Percentile

0.04

0.02

0.00

Av
g.

 C

E
Lo

ss

E=7.84%, WR=80.0%

0 50 100
EL2N Percentile

0.04

0.02

0.00
E=7.69%, WR=26.21%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=9.09%, WR=8.59%

0 50 100
EL2N Percentile

0

1

2
E=13.03%, WR=2.81%

0 50 100
EL2N Percentile

0

1

2

E=21.34%, WR=0.92%

0 50 100
EL2N Percentile

0.2

0.0

Av
g.

 C

E
Lo

ss

E=14.18%, WR=80.0%

0 50 100
EL2N Percentile

0.4

0.2

0.0
E=14.5%, WR=26.21%

0 50 100
EL2N Percentile

0.00

0.25

0.50

0.75

E=12.86%, WR=8.59%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5
E=14.83%, WR=2.81%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

E=22.57%, WR=0.92%

0 50 100
EL2N Percentile

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=20.15%, WR=80.0%

0 50 100
EL2N Percentile

0.2

0.0

E=21.29%, WR=26.21%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=16.58%, WR=8.59%

0 50 100
EL2N Percentile

0.0

0.5

E=16.8%, WR=2.81%

0 50 100
EL2N Percentile

0.0

0.5

1.0

E=23.04%, WR=0.92%

0 50 100
EL2N Percentile

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=45.93%, WR=80.0%

0 50 100
EL2N Percentile

0.3

0.2

0.1

0.0
E=49.99%, WR=26.21%

0 50 100
EL2N Percentile

0.0

0.1

0.2

0.3
E=38.41%, WR=8.59%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=26.22%, WR=2.81%

0 50 100
EL2N Percentile

0.00

0.25

0.50

E=27.66%, WR=0.92%

(b) CIFAR-10-ResNet20, rows correspond to 0%, 15%, 30% and 60% random label noise

Figure 18: Pruning’s effect on average training loss on subgroups of examples with distinct EL2N
score percentile range. Title shows the test error (E) and weights remaining (WR) of the sparse model.
A negative value indicates that pruning improves training loss.

38

0 50 100
EL2N Percentile

0.002

0.001

0.000

Av
g.

 C

E
Lo

ss

E=6.12%, WR=80.0%

0 50 100
EL2N Percentile

0.003

0.002

0.001

0.000

E=5.73%, WR=16.78%

0 50 100
EL2N Percentile

0.001

0.000

0.001
E=5.87%, WR=3.52%

0 50 100
EL2N Percentile

0.00

0.02

E=6.56%, WR=0.74%

0 50 100
EL2N Percentile

0.0

0.5

1.0
E=9.47%, WR=0.15%

0 50 100
EL2N Percentile

0.10

0.05

0.00

Av
g.

 C

E
Lo

ss

E=17.12%, WR=80.0%

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=16.72%, WR=16.78%

0 50 100
EL2N Percentile

0.10

0.05

0.00

E=17.93%, WR=3.52%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=23.54%, WR=0.74%

0 50 100
EL2N Percentile

0

2

4
E=12.39%, WR=0.15%

0 50 100
EL2N Percentile

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=29.96%, WR=80.0%

0 50 100
EL2N Percentile

0.2

0.1

0.0
E=29.79%, WR=16.78%

0 50 100
EL2N Percentile

0.2

0.1

0.0

E=32.12%, WR=3.52%

0 50 100
EL2N Percentile

0.00

0.25

0.50

0.75

E=36.34%, WR=0.74%

0 50 100
EL2N Percentile

0

1

2

3

E=15.19%, WR=0.15%

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=61.67%, WR=80.0%

0 50 100
EL2N Percentile

0.4

0.2

0.0
E=60.47%, WR=16.78%

0 50 100
EL2N Percentile

0.4

0.2

0.0
E=61.94%, WR=3.52%

0 50 100
EL2N Percentile

0.0

0.5

1.0
E=60.38%, WR=0.74%

0 50 100
EL2N Percentile

0

1

2

E=27.03%, WR=0.15%

(c) CIFAR-10-VGG-16, rows correspond to 0%, 15%, 30% and 60% random label noise

0 50 100
EL2N Percentile

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=30.15%, WR=80.0%

0 50 100
EL2N Percentile

0.3

0.2

0.1

0.0
E=29.68%, WR=32.77%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=31.18%, WR=13.42%

0 50 100
EL2N Percentile

0

1

2

E=34.18%, WR=5.5%

0 50 100
EL2N Percentile

0

1

2

3

E=41.98%, WR=2.25%

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=38.94%, WR=80.0%

0 50 100
EL2N Percentile

0.75

0.50

0.25

0.00
E=39.44%, WR=32.77%

0 50 100
EL2N Percentile

0.00

0.25

0.50

0.75
E=38.66%, WR=13.42%

0 50 100
EL2N Percentile

0

1

2

E=39.72%, WR=5.5%

0 50 100
EL2N Percentile

0

1

2

3

E=45.19%, WR=2.25%

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=45.18%, WR=80.0%

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=46.48%, WR=32.77%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=44.18%, WR=13.42%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

E=43.77%, WR=5.5%

0 50 100
EL2N Percentile

0

1

2

E=48.5%, WR=2.25%

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=64.22%, WR=80.0%

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=65.85%, WR=32.77%

0 50 100
EL2N Percentile

0.0

0.1

0.2
E=62.08%, WR=13.42%

0 50 100
EL2N Percentile

0.00

0.25

0.50

0.75

E=57.06%, WR=5.5%

0 50 100
EL2N Percentile

0.0

0.5

1.0

E=56.94%, WR=2.25%

(d) CIFAR-100-ResNet32, rows correspond to 0%, 15%, 30% and 60% random label noise

Figure 18: (Cont.) Pruning’s effect on average training loss on subgroups of examples with distinct
EL2N score percentile range. Title shows the test error (E) and weights remaining (WR) of the sparse
model. A negative value indicates that pruning improves training loss.

39

0 50 100
EL2N Percentile

0.10

0.05

0.00

Av
g.

 C

E
Lo

ss

E=23.58%, WR=80.0%

0 50 100
EL2N Percentile

0.2

0.1

0.0
E=23.46%, WR=51.2%

0 50 100
EL2N Percentile

0.3

0.2

0.1

0.0
E=23.56%, WR=32.77%

0 50 100
EL2N Percentile

0.2

0.1

0.0
E=23.78%, WR=20.97%

0 50 100
EL2N Percentile

0.050

0.025

0.000

E=24.25%, WR=13.42%

0 50 100
EL2N Percentile

0.05

0.00

Av
g.

 C

E
Lo

ss

E=26.12%, WR=80.0%

0 50 100
EL2N Percentile

0.2

0.1

0.0
E=26.18%, WR=51.2%

0 50 100
EL2N Percentile

0.3

0.2

0.1

0.0
E=26.22%, WR=32.77%

0 50 100
EL2N Percentile

0.3

0.2

0.1

0.0
E=26.52%, WR=20.97%

0 50 100
EL2N Percentile

0.1

0.0

E=26.82%, WR=13.42%

(e) ImageNet-ResNet50, with 0%, 15% random label noise

Figure 18: (Cont.) Pruning’s effect on average training loss on subgroups of examples with distinct
EL2N score percentile range. Title shows the test error (E) and weights remaining (WR) of the sparse
model. A negative value indicates that pruning improves training loss.

40

0 50 100

0.00

0.02

0.04

Av
g.

 C

E
Lo

ss

E=1.94%, TT=1

0 50 100

0.03

0.02

0.01

0.00

0.01
E=1.76%, TT=4

0 50 100

0.06

0.04

0.02

0.00

0.02
E=1.76%, TT=7

0 50 100
0.06

0.04

0.02

0.00
E=1.68%, TT=10

0 50 100
0.06

0.04

0.02

0.00
E=1.67%, TT=13

0 50 100

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=5.69%, TT=1

0 50 100

0.4

0.2

0.0
E=5.18%, TT=4

0 50 100

0.4

0.2

0.0
E=5.24%, TT=7

0 50 100

0.3

0.2

0.1

0.0

E=5.39%, TT=10

0 50 100

0.4

0.3

0.2

0.1

0.0

E=5.42%, TT=13

0 50 100

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=9.56%, TT=1

0 50 100

0.6

0.4

0.2

0.0
E=10.1%, TT=4

0 50 100

0.6

0.4

0.2

0.0
E=9.88%, TT=7

0 50 100

0.6

0.4

0.2

0.0
E=9.49%, TT=10

0 50 100

0.6

0.4

0.2

0.0
E=9.47%, TT=13

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=13.89%, TT=1

0 50 100
EL2N Percentile

0.8

0.6

0.4

0.2

0.0

E=14.54%, TT=4

0 50 100
EL2N Percentile

0.8

0.6

0.4

0.2

0.0
E=15.41%, TT=7

0 50 100
EL2N Percentile

1.00

0.75

0.50

0.25

0.00
E=14.58%, TT=10

0 50 100
EL2N Percentile

1.00

0.75

0.50

0.25

0.00
E=13.98%, TT=13

(a) LeNet-MNIST, rows correspond to 0%, 5%, 10% and 15% random label noise

0 50 100

0.06

0.04

0.02

0.00

Av
g.

 C

E
Lo

ss

E=7.69%, TT=1

0 50 100

0.100

0.075

0.050

0.025

0.000
E=7.17%, TT=6

0 50 100

0.100

0.075

0.050

0.025

0.000
E=6.96%, TT=11

0 50 100

0.100

0.075

0.050

0.025

0.000
E=6.93%, TT=16

0 50 100

0.10

0.05

0.00
E=6.81%, TT=21

0 50 100
0.4

0.3

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=14.16%, TT=1

0 50 100

1.00

0.75

0.50

0.25

0.00
E=15.45%, TT=6

0 50 100

1.0

0.5

0.0
E=15.95%, TT=11

0 50 100

1.0

0.5

0.0
E=15.9%, TT=16

0 50 100

1.0

0.5

0.0
E=16.37%, TT=21

0 50 100

0.3

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=19.95%, TT=1

0 50 100
0.8

0.6

0.4

0.2

0.0
E=23.37%, TT=6

0 50 100

0.75

0.50

0.25

0.00
E=24.88%, TT=11

0 50 100

1.00

0.75

0.50

0.25

0.00
E=25.67%, TT=16

0 50 100

1.00

0.75

0.50

0.25

0.00
E=26.23%, TT=21

0 50 100
EL2N Percentile

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=46.18%, TT=1

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=53.2%, TT=6

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=54.93%, TT=11

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=55.07%, TT=16

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=55.81%, TT=21

(b) CIFAR-10-ResNet20, rows correspond to 0%, 15%, 30% and 60% random label noise

Figure 19: Extended dense training improves subgroup training loss. Title shows the test error (E)
and training time (TT) in number of pruning iterations’ worth of training epochs. A negative value
indicates that extended dense training improves training loss.

41

0 50 100
EL2N Percentile

0.001

0.000

Av
g.

 C

E
Lo

ss

E=6.33%, TT=1

0 50 100
EL2N Percentile

0.002

0.001

0.000

E=5.97%, TT=8

0 50 100
EL2N Percentile

0.002

0.001

0.000
E=5.97%, TT=15

0 50 100
EL2N Percentile

0.002

0.001

0.000

E=6.01%, TT=22

0 50 100
EL2N Percentile

0.002

0.000

E=5.92%, TT=29

0 50 100
EL2N Percentile

0.075

0.050

0.025

0.000

Av
g.

 C

E
Lo

ss

E=17.0%, TT=1

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=15.98%, TT=8

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=16.01%, TT=15

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=15.58%, TT=22

0 50 100
EL2N Percentile

0.05

0.00

E=16.26%, TT=29

0 50 100
EL2N Percentile

0.15

0.10

0.05

0.00

Av
g.

 C

E
Lo

ss

E=29.86%, TT=1

0 50 100
EL2N Percentile

0.15

0.10

0.05

0.00
E=28.51%, TT=8

0 50 100
EL2N Percentile

0.15

0.10

0.05

0.00
E=29.74%, TT=15

0 50 100
EL2N Percentile

0.1

0.0

E=31.14%, TT=22

0 50 100
EL2N Percentile

0.15

0.10

0.05

0.00
E=27.9%, TT=29

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=61.18%, TT=1

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=59.95%, TT=8

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=60.06%, TT=15

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=60.81%, TT=22

0 50 100
EL2N Percentile

0.6

0.4

0.2

0.0
E=60.51%, TT=29

(c) CIFAR-10-VGG-16, rows correspond to 0%, 15%, 30% and 60% random label noise

0 50 100
0.3

0.2

0.1

0.0

Av
g.

 C

E
Lo

ss

E=29.4%, TT=1

0 50 100

0.4

0.2

0.0
E=28.72%, TT=5

0 50 100
0.6

0.4

0.2

0.0
E=28.72%, TT=9

0 50 100

0.6

0.4

0.2

0.0
E=28.26%, TT=13

0 50 100

0.6

0.4

0.2

0.0
E=28.08%, TT=17

0 50 100

0.6

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=39.19%, TT=1

0 50 100

1.0

0.5

0.0
E=39.44%, TT=5

0 50 100

1.5

1.0

0.5

0.0
E=39.63%, TT=9

0 50 100

1.5

1.0

0.5

0.0
E=39.56%, TT=13

0 50 100

1.5

1.0

0.5

0.0
E=39.71%, TT=17

0 50 100

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=45.47%, TT=1

0 50 100

1.00

0.75

0.50

0.25

0.00
E=46.57%, TT=5

0 50 100

1.0

0.5

0.0
E=47.82%, TT=9

0 50 100

1.0

0.5

0.0
E=48.31%, TT=13

0 50 100

1.5

1.0

0.5

0.0
E=47.9%, TT=17

0 50 100
EL2N Percentile

0.4

0.2

0.0

Av
g.

 C

E
Lo

ss

E=64.15%, TT=1

0 50 100
EL2N Percentile

1.00

0.75

0.50

0.25

0.00
E=67.74%, TT=5

0 50 100
EL2N Percentile

1.00

0.75

0.50

0.25

0.00
E=69.12%, TT=9

0 50 100
EL2N Percentile

1.0

0.5

0.0
E=69.5%, TT=13

0 50 100
EL2N Percentile

1.0

0.5

0.0
E=69.71%, TT=17

(d) CIFAR-100-ResNet32, rows correspond to 0%, 15%, 30% and 60% random label noise

Figure 19: (Cont.) Extended dense training improves subgroup training loss. Title shows the test
error (E) and training time (TT) in number of pruning iterations’ worth of training epochs. A negative
value indicates that extended dense training improves training loss.

42

0 50 100

0.10

0.05

0.00

Av
g.

 C

E
Lo

ss

E=23.63%, TT=1

0 50 100
0.2

0.1

0.0
E=23.46%, TT=3

0 50 100
0.2

0.1

0.0
E=23.4%, TT=5

0 50 100

0.15

0.10

0.05

0.00
E=23.45%, TT=7

0 50 100
0.15

0.10

0.05

0.00
E=23.44%, TT=9

0 50 100
EL2N Percentile

0.10

0.05

0.00

Av
g.

 C

E
Lo

ss

E=26.0%, TT=1

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=25.88%, TT=3

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=25.82%, TT=5

0 50 100
EL2N Percentile

0.10

0.05

0.00
E=25.9%, TT=7

0 50 100
EL2N Percentile

0.10

0.05

0.00

E=25.73%, TT=9

(e) ImageNet-ResNet50, with 0%, 15% random label noise

Figure 19: (Cont.) Extended dense training improves subgroup training loss. Title shows the test
error (E) and training time (TT) in number of pruning iterations’ worth of training epochs. A negative
value indicates that extended dense training improves training loss.

43

0 50 100
0.10

0.05

0.00

0.05

Av
g.

 C

E
Lo

ss

E=2.01%, WR=78.2%

0 50 100

0.075

0.050

0.025

0.000

E=2.38%, WR=30.16%

0 50 100

0.05

0.00

0.05

E=3.31%, WR=12.02%

0 50 100
0.00

0.25

0.50

0.75

1.00

E=5.65%, WR=4.76%

0 50 100

0

1

2

E=44.17%, WR=1.78%

0 50 100

0.0

0.1

0.2

0.3

Av
g.

 C

E
Lo

ss

E=6.1%, WR=78.2%

0 50 100
0.00

0.25

0.50

0.75

1.00

E=6.99%, WR=30.16%

0 50 100
0

1

2

3

E=5.26%, WR=12.02%

0 50 100
0

2

4

E=6.44%, WR=4.76%

0 50 100
0

2

4

6

E=18.34%, WR=1.78%

0 50 100

0.0

0.1

0.2

0.3

Av
g.

 C

E
Lo

ss

E=9.98%, WR=78.2%

0 50 100
0.0

0.5

1.0

1.5

2.0

E=8.63%, WR=30.16%

0 50 100
0

1

2

3

E=5.66%, WR=12.02%

0 50 100
0

1

2

3

4

E=6.92%, WR=4.76%

0 50 100
0

1

2

3

4

E=25.85%, WR=1.78%

0 50 100
EL2N Percentile

0.0

0.1

0.2

0.3

Av
g.

 C

E
Lo

ss

E=13.42%, WR=78.2%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

2.0

E=9.07%, WR=30.16%

0 50 100
EL2N Percentile

0

1

2

3

E=6.24%, WR=12.02%

0 50 100
EL2N Percentile

0

1

2

3

E=6.91%, WR=4.76%

0 50 100
EL2N Percentile

0

1

2

3

4
E=29.11%, WR=1.78%

(a) LeNet-MNIST, rows correspond to 0%, 5%, 10% and 15% random label noise

0 50 100
0.0

0.2

0.4

Av
g.

 C

E
Lo

ss

E=9.59%, WR=56.32%

0 50 100
0.0

0.5

1.0

1.5
E=12.03%, WR=25.1%

0 50 100
0

1

2

E=16.38%, WR=9.85%

0 50 100
0

1

2

3
E=23.87%, WR=3.58%

0 50 100
0.0

0.5

1.0

1.5

2.0

E=55.38%, WR=0.41%

0 50 100

0.0

0.2

0.4

0.6

0.8

Av
g.

 C

E
Lo

ss

E=13.06%, WR=56.32%

0 50 100

0.0

0.5

1.0

E=14.77%, WR=25.1%

0 50 100

0.0

0.5

1.0

1.5

E=18.34%, WR=9.85%

0 50 100

0.0

0.5

1.0

1.5

E=25.26%, WR=3.58%

0 50 100
0.0

0.5

1.0

1.5

E=57.52%, WR=0.41%

0 50 100
0.0

0.2

0.4

Av
g.

 C

E
Lo

ss

E=16.72%, WR=56.32%

0 50 100

0.0

0.2

0.4

0.6

0.8

E=16.39%, WR=25.1%

0 50 100

0.0

0.5

1.0

E=20.46%, WR=9.85%

0 50 100

0.0

0.5

1.0

E=27.84%, WR=3.58%

0 50 100

0.0

0.5

1.0

1.5

E=60.05%, WR=0.41%

0 50 100
EL2N Percentile

0.0

0.1

0.2

0.3

Av
g.

 C

E
Lo

ss

E=30.75%, WR=56.32%

0 50 100
EL2N Percentile

0.0

0.2

0.4

E=25.57%, WR=25.1%

0 50 100
EL2N Percentile

0.0

0.2

0.4

0.6

E=27.26%, WR=9.85%

0 50 100
EL2N Percentile

0.0

0.2

0.4

0.6

0.8
E=33.59%, WR=3.58%

0 50 100
EL2N Percentile

0.0

0.5

1.0

E=64.03%, WR=0.41%

(b) CIFAR-10-ResNet20, rows correspond to 0%, 15%, 30% and 60% random label noise

Figure 20: Width downscaling increases subgroup training loss. Title shows the test error (E) and
weights remaining (WR), as a portion of the number of parameters in the model with the original and
unscaled width. A positive value indicates that width downscaling increases training loss.

44

0 50 100

0.000

0.001

0.002

0.003

0.004

Av
g.

 C

E
Lo

ss

E=6.95%, WR=63.51%

0 50 100
0.00

0.02

0.04

0.06

E=8.71%, WR=16.52%

0 50 100
0.00

0.25

0.50

0.75

E=12.11%, WR=4.13%

0 50 100
0.0

0.5

1.0

1.5

2.0

E=18.42%, WR=0.88%

0 50 100
0.0

0.5

1.0

1.5

2.0

E=28.77%, WR=0.22%

0 50 100
0.00

0.05

0.10

0.15

0.20

Av
g.

 C

E
Lo

ss

E=18.38%, WR=63.51%

0 50 100
0

1

2

E=15.91%, WR=16.52%

0 50 100
0

1

2

3

E=14.16%, WR=4.13%

0 50 100
0

1

2

3

4
E=20.2%, WR=0.88%

0 50 100
0

1

2

3

E=30.17%, WR=0.22%

0 50 100
0.0

0.1

0.2

0.3

0.4

Av
g.

 C

E
Lo

ss

E=31.87%, WR=63.51%

0 50 100
0.0

0.5

1.0

1.5

2.0

E=22.82%, WR=16.52%

0 50 100
0

1

2

3

E=17.3%, WR=4.13%

0 50 100
0

1

2

3

E=20.98%, WR=0.88%

0 50 100
0

1

2

3

E=29.95%, WR=0.22%

0 50 100
EL2N Percentile

0.0

0.2

0.4

Av
g.

 C

E
Lo

ss

E=62.43%, WR=63.51%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

E=46.93%, WR=16.52%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

2.0

E=29.17%, WR=4.13%

0 50 100
EL2N Percentile

0

1

2

E=27.2%, WR=0.88%

0 50 100
EL2N Percentile

0

1

2

E=37.41%, WR=0.22%

(c) CIFAR-10-VGG-16, rows correspond to 0%, 15%, 30% and 60% random label noise

0 50 100
0.0

0.5

1.0

Av
g.

 C

E
Lo

ss

E=32.87%, WR=56.52%

0 50 100
0

1

2

E=38.24%, WR=25.36%

0 50 100
0

1

2

3

E=48.17%, WR=10.08%

0 50 100
0

1

2

3

E=63.48%, WR=3.74%

0 50 100
0

1

2

3

4
E=87.55%, WR=0.48%

0 50 100

0.0

0.5

1.0

1.5

Av
g.

 C

E
Lo

ss

E=39.19%, WR=56.52%

0 50 100
0

1

2

3
E=43.0%, WR=25.36%

0 50 100
0

1

2

3

E=51.3%, WR=10.08%

0 50 100
0

1

2

3
E=64.8%, WR=3.74%

0 50 100
0

1

2

3

E=89.19%, WR=0.48%

0 50 100
0.00

0.25

0.50

0.75

1.00

Av
g.

 C

E
Lo

ss

E=43.77%, WR=56.52%

0 50 100
0.0

0.5

1.0

1.5

2.0
E=47.13%, WR=25.36%

0 50 100
0.0

0.5

1.0

1.5

2.0

E=55.02%, WR=10.08%

0 50 100
0

1

2

E=69.56%, WR=3.74%

0 50 100
0

1

2

3

4

E=92.47%, WR=0.48%

0 50 100
EL2N Percentile

0.0

0.2

0.4

0.6

Av
g.

 C

E
Lo

ss

E=57.65%, WR=56.52%

0 50 100
EL2N Percentile

0.00

0.25

0.50

0.75

1.00

E=59.62%, WR=25.36%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

E=66.54%, WR=10.08%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

2.0

E=78.04%, WR=3.74%

0 50 100
EL2N Percentile

0

1

2

3

4
E=95.93%, WR=0.48%

(d) CIFAR-100-ResNet32, rows correspond to 0%, 15%, 30% and 60% random label noise

Figure 20: (Cont.) Width downscaling increases subgroup training loss. Title shows the test error (E)
and weights remaining (WR), as a portion of the number of weights in the model with the original
and unscaled width. A positive value indicates that width downscaling increases training loss.

45

0 50 100
0.0

0.2

0.4

Av
g.

 C

E
Lo

ss

E=25.02%, WR=64.81%

0 50 100
0.0

0.5

1.0

1.5

E=30.25%, WR=18.45%

0 50 100
0

1

2

E=39.83%, WR=5.43%

0 50 100
0

1

2

3

E=55.06%, WR=1.56%

0 50 100
0

2

4

E=73.92%, WR=0.58%

0 50 100
EL2N Percentile

0.0

0.2

0.4

Av
g.

 C

E
Lo

ss

E=27.38%, WR=64.81%

0 50 100
EL2N Percentile

0.0

0.5

1.0

1.5

E=32.8%, WR=18.45%

0 50 100
EL2N Percentile

0

1

2

E=42.4%, WR=5.43%

0 50 100
EL2N Percentile

0

1

2

3

E=58.64%, WR=1.56%

0 50 100
EL2N Percentile

0

2

4

E=74.76%, WR=0.58%

(e) ImageNet-ResNet50, with 0%, 15% random label noise

Figure 20: (Cont.) Width downscaling increases subgroup training loss. Title shows the test error (E)
and weights remaining (WR), as a portion of the number of weights in the model with the original
and unscaled width. A positive value indicates that width downscaling increases training loss.

46

Models Method Noise Level Test Errors

M-LeNet LR 5%/10%/15% 5.21±0.08%/7.57±0.35%/9.96±0.62%
EDT 5%/10%/15% 4.84±0.33%/8.96±0.13%/13.04±0.71%

C10-ResNet20 LR 15%/30%/60% 13.04±0.43%/16.03±0.13%/25.39±0.11%
EDT 15%/30%/60% 13.45±0.16%/18.40±0.24%/39.87±0.58%

C10-VGG-16 LR 15%/30%/60% 12.47±0.29%/15.47±0.13%/25.29±0.49%
EDT 15%/30%/60% 16.04±0.22%/28.22±0.37%/59.46±0.53%

C100-ResNet32 LR 15%/30%/60% 38.81±0.70%/43.86±0.29%/55.83±0.45%
EDT 15%/30%/60% 39.51±0.40%/44.10±0.49%/60.62±0.74%

I-ResNet50 LR 15% 26.15±0.09%
EDT 15% 25.95±0.06%

Table 5: Comparing Learning Rate Rewinding with Extended Dense Training. LR=Learning Rate
Rewinding, EDT=Extended Dense Training.

M Data for Experiments in Paper

Model Noise Level Rewind Type Test Error

M-LeNet 0%/5%/10%/15%
Weight Sparse 1.5±0.1%/3.7±0.3%/4.2±0.1%/4.4±0.2%

LR Sparse 1.8±0.1%/5.2±0.1%/7.6±0.3%/10.0±0.6%
N/A Dense 2.1±0.2%/5.3±0.2%/9.1±0.2%/13.4±0.3%

C10-ResNet20 0%/15%/30%/60%
Weight Sparse 8.1±0.3%/13.1±0.2%/15.4±0.2%/24.5±0.5%

LR Sparse 7.7±0.1%/13.0±0.4%/16.0±0.1%/25.4±0.1%
N/A Dense 8.2±0.1%/13.6±0.3%/18.4±0.4%/40.3±0.4%

C10-VGG-16 0%/15%/30%/60%
Weight Sparse 6.2±0.1%/12.0±0.3%/14.8±0.4%/23.8±0.2%

LR Sparse 5.9±0.1%/12.5±0.3%/15.5±0.1%/25.5±0.3%
N/A Dense 6.6±0.0%/17.5±0.2%/31.5±0.6%/62.7±0.6%

C100-ResNet32 0%/15%/30%/60%
Weight Sparse 30.6±0.4%/38.7±0.6%/42.9±0.1%/54.7±0.5%

LR Sparse 29.9±0.3%/38.8±0.7%/43.9±0.3%/55.8±0.5%
N/A Dense 30.3±0.2%/38.9±0.3%/44.0±0.6%/61.0±0.4%

Table 6: Pruning’s Impact on Model Generalization. Shorthand for dataset names: M=MNIST,
C10=CIFAR-10, C100=CIFAR-100, I=ImageNet.

47

Model Method Noise Level Test Error

M-LeNet WD 0%/5%/10%/15% 1.90±0.09%/5.63±0.18%/5.45±0.38%/6.08±0.33%
LR 0%/5%/10%/15% 1.82±0.11%/5.21±0.08%/7.57±0.35%/9.96±0.62%

C10-ResNet20 WD 0%/15%/30%/60% 8.42±0.11%/13.06±0.16%/16.01±0.55%/25.29±0.59%
LR 0%/15%/30%/60% 7.71±0.09%/13.04±0.43%/16.03±0.13%/25.39±0.11%

C10-VGG-16 WD 0%/15%/30%/60% 6.67±0.04%/14.32±0.24%/17.43±0.10%/26.76±0.37%
LR 0%/15%/30%/60% 5.86±0.08%/12.47±0.29%/15.47±0.13%/25.29±0.49%

C100-ResNet32 WD 0%/15%/30%/60% 30.43±0.25%/38.88±0.13%/44.41±0.16%/57.92±0.29%
LR 0%/15%/30%/60% 29.93±0.34%/38.81±0.70%/43.86±0.29%/55.83±0.45%

I-ResNet50 WD 0%/15% 23.89±0.10%/24.75±0.18%
LR 0%/15% 23.42±0.14%/26.15±0.09%

Table 7: Comparing Pruning with Width Downscaling. Pruning matches or exceeds the generalization
performance of width downscaling, except on MNIST-LeNet benchmark. Shorthand for dataset
names: M=MNIST, C10=CIFAR-10, C100=CIFAR-100, I=ImageNet.

Model Method Noise Level Test Error (Optimal) Test Error (0% Sparsity)

MNIST
LeNet

LR 5%/10%/15% 5.22±0.06%/7.57±0.35%/10.03±0.60% 5.35±0.18%/9.08±0.21%/13.40±0.32%
DS 5%/10%/15% 2.55±0.12%/2.74±0.13%/3.30±0.11% 5.23±0.35%/9.11±0.09%/12.03±0.93%

CIFAR-10
ResNet20

LR 15%/30%/60% 12.63±0.12%/15.88±0.26%/25.39±0.11% 13.57±0.26%/18.35±0.42%/40.26±0.43%
DS 15%/30%/60% 9.76±0.11%/11.38±0.10%/18.66±0.26% 11.20±0.29%/14.51±0.40%/32.77±0.48%

CIFAR-10
VGG-16

LR 15%/30%/60% 12.39±0.27%/15.19±0.26%/25.49±0.29% 17.51±0.18%/31.46±0.60%/62.68±0.63%
DS 15%/30%/60% 8.84±0.08%/10.09±0.09%/17.80±0.37% 18.07±0.57%/32.25±0.40%/61.21±0.88%

C100
ResNet32

LR 15%/30%/60% 38.81±0.70%/43.29±0.40%/55.81±0.46% 38.85±0.29%/43.97±0.61%/61.03±0.36%
DS 15%/30%/60% 34.24±0.25%/37.17±0.23%/47.38±1.10% 34.35±0.26%/37.89±0.33%/52.66±0.42%

ImageNet
ResNet50

LR 15% 26.12±0.08% 26.44±0.06%
DS 15% 24.75±0.09% 24.77±0.07%

Table 8: Comparing Pruning with Training Dense Models Exclusively on Dataset Subsets Predicted
Correctly by Sparse Models (referred to as “Dense Subset" models). “Dense Subset" models matches
or exceeds the generalization performance achieved by pruning. Shorthand for dataset names: LR =
Learning Rate Rewinding, DS = “Dense Subset".

Model Method Noise Level Test Error

M-LeNet WR 0%/5%/10%/15% 1.50±0.08%/3.74±0.30%/4.16±0.07%/4.41±0.16%
LR 0%/5%/10%/15% 1.82±0.11%/5.21±0.08%/7.57±0.35%/9.96±0.62%

C10-ResNet20 WR 0%/15%/30%/60% 8.07±0.29%/13.09±0.24%/15.43±0.25%/24.47±0.49%
LR 0%/15%/30%/60% 7.71±0.09%/13.04±0.43%/16.03±0.13%/25.39±0.11%

C10-VGG-16 WR 0%/15%/30%/60% 6.19±0.10%/11.97±0.33%/14.81±0.39%/23.80±0.15%
LR 0%/15%/30%/60% 5.86±0.08%/12.47±0.29%/15.47±0.13%/27.90±1.41%

C100-ResNet32 WR 0%/15%/30%/60% 30.58±0.36%/38.74±0.59%/42.89±0.09%/54.67±0.50%
LR 0%/15%/30%/60% 29.93±0.34%/38.81±0.70%/43.86±0.29%/55.83±0.45%

I-ResNet50 WR 0%/15% 23.51±0.08%/26.14±0.23%
LR 0%/15% 23.42±0.14%/26.15±0.09%

Table 9: The Effect of Weight Resetting on Pruning’s Generalization Improvement. Shorthand for
dataset names: M=MNIST, C10=CIFAR-10, C100=CIFAR-100, I=ImageNet.

48

Model Method Noise Level Test Error

M-LeNet
Magnitude 0%/5%/10%/15% 1.82±0.11%/5.21±0.08%/7.57±0.35%/9.96±0.62%
SynFlow 0%/5%/10%/15% 1.65±0.05%/5.20±0.15%/9.59±0.20%/11.72±0.64%
Random 0%/5%/10%/15% 1.86±0.19%/5.11±0.27%/6.88±0.23%/7.50±0.07%

C10-ResNet20
Magnitude 0%/15%/30%/60% 7.71±0.09%/13.04±0.43%/16.03±0.13%/25.39±0.11%
SynFlow 0%/15%/30%/60% 7.83±0.28%/12.61±0.41%/15.27±0.02%/25.09±0.20%
Random 0%/15%/30%/60% 8.14±0.29%/12.09±0.08%/14.53±0.09%/24.52±0.42%

C10-VGG-16
Magnitude 0%/15%/30%/60% 5.86±0.08%/12.47±0.29%/15.47±0.13%/25.29±0.49%
SynFlow 0%/15%/30%/60% 6.14±0.09%/12.35±0.18%/15.04±0.21%/30.67±10.03%
Random 0%/15%/30%/60% 6.40±0.17%/14.65±0.39%/17.77±0.42%/27.30±0.49%

C100-ResNet32
Magnitude 0%/15%/30%/60% 29.93±0.34%/38.81±0.70%/43.86±0.29%/55.83±0.45%
SynFlow 0%/15%/30%/60% 30.24±0.24%/38.13±0.33%/43.12±0.57%/55.55±0.17%
Random 0%/15%/30%/60% 30.15±0.14%/37.18±0.32%/41.44±0.30%/53.60±0.07%

I-ResNet50
Magnitude 0%/15% 23.42±0.14%/26.15±0.09%
SynFlow 0%/15% 23.90±0.08%/26.37±0.10%
Random 0%/15% 23.86±0.10%/26.49±0.10%

Table 10: The Effect of Weight Selection Heuristics on Pruning’s Generalization Improvement.
Shorthand for dataset names: M=MNIST, C10=CIFAR-10, C100=CIFAR-100, I=ImageNet.

Benchmark Noise Level Partition Dense/Sparse (Diff) CE Loss

M-LeNet

5% Noisy 0.46±0.06/0.2±0.13(-0.26)
Original 0.02±0.0/0.01±0.0(-0.01)

10% Noisy 0.53±0.04/3.83±0.06(+3.3)
Original 0.03±0.01/0.24±0.01(+0.21)

15% Noisy 0.59±0.0/3.5±0.17(+2.91)
Original 0.05±0.01/0.36±0.04(+0.31)

C10-ResNet20

15% Noisy 2.63±0.06/3.18±0.27(+0.55)
Original 0.18±0.0/0.26±0.03(+0.08)

30% Noisy 2.52±0.01/3.1±0.03(+0.58)
Original 0.34±0.0/0.55±0.02(+0.21)

60% Noisy 2.21±0.01/2.61±0.0(+0.4)
Original 0.77±0.01/1.16±0.0(+0.39)

C10-VGG-16

15% Noisy 0.06±0.01/3.28±0.39(+3.22)
Original 0.03±0.01/0.31±0.02(+0.28)

30% Noisy 0.12±0.01/2.99±0.1(+2.87)
Original 0.07±0.0/0.53±0.01(+0.46)

60% Noisy 0.27±0.01/2.55±0.01(+2.28)
Original 0.14±0.01/1.17±0.04(+1.03)

C100-ResNet32

15% Noisy 4.19±0.03/5.71±0.04(+1.52)
Original 0.43±0.0/0.81±0.01(+0.38)

30% Noisy 4.25±0.04/5.13±0.34(+0.88)
Original 0.66±0.01/1.05±0.16(+0.39)

60% Noisy 4.02±0.02/4.94±0.04(+0.92)
Original 1.24±0.02/2.13±0.03(+0.89)

I-ResNet50 15% Noisy 7.53±0.03/7.34±0.04(-0.19)
Original 0.56±0.0/0.53±0.0(-0.03)

Table 11: Pruning’s Impact on Training Loss Incurred on Noisy/Original partitions of Dataset.
Shorthand for dataset names: M=MNIST, C10=CIFAR-10, C100=CIFAR-100, I=ImageNet.

49

	Introduction
	Preliminaries
	Generalization Improvement from Better Training
	Generalization Improvement from Additional Regularization
	Isolating the Effects of Extending Training Time and Reducing Model Size
	Extended Training Time
	Size Reduction
	Conclusion

	Related Work
	Closing Discussion
	Acknowledgement.
	Additional Experimental Details
	Models and Datasets
	Training Hyperparameters
	EL2N Score Calculation

	Size-Reduction Does Not Explain Pruning's Benefits to Generalization
	Effects of Leaving Out Pruning-Affected Examples
	Leaving Out Noisy Examples Improves Generalization
	Comparing Pruning with Width Down-scaling
	Similarities between Pruning and Width Down-scaling
	Ablation Studies
	Rewinding Weights
	Weight Selection Heuristics

	Closer Look at Examples with Training Loss Most Worsened by Pruning
	Example Images and Labels
	Empirical Analysis

	Effects of Learning Algorithms on Subgroup Training Loss
	Data for Experiments in Paper

