
Published in Transactions on Machine Learning Research (09/2025)

Latent
Encoder

PSC

Text
Compression

Latent
Decoder

A pack of zebras
are grazing in a field

by a bonzai tree

Figure 7: Latent-PSC diagram: Latent Text-to-Image diffusion models such as Stable Diffusion can
be used for effective image compression with PSC. The latent representation is compressed using linear
measurements. The textual prompt is used for conditioning the diffusion model in both the compression and
decompression, and thus this text is also transmitted.

A Implementation Details

For the ImageNet experiment we used the unconditional diffusion model from Dhariwal & Nichol (2021)
to apply PSC. We used 25 DDRM Kawar et al. (2022a) steps to generate 16 samples, using η = 1.0 and
ηb = 0.0. We added 12 rows to H in every iteration, and used matched the number of iterations to the
desired rate. We restore the images using the same model with either ΠGDM Song et al. (2023) with 100
denoising steps and default hyperparameters for high perceptual quality restoration, or an average of 64
DDRM Kawar et al. (2022a) samples which where produced as detailed above for low-distortion restoration.
We use the Range Encoder from constriction Bamler (2022) as an entropy encoder5 in all our experiments.

In the latent diffusion experiment we used float16 stable-diffusion-2-1-base6 Rombach et al. (2022) and 50
DDRM steps, using the same hyperparameters. Due to the loss in PSNR due to using the VAE decoder,
we focus Latent-PSC on high perceptual generation. We restore the images using the same model with the
posterior sampler from Nested Diffusion Elata et al. (2024a), which applies 50 DDRM steps, each composed
of 5 second order unconditioned diffusion sampling steps. We find this sampler to work better than ΠGDM
for this specific setup.

We used publicly available third party software for JPEG Wallace (1991), JPEG2000 Skodras et al. (2001),
and BPG Bellard (2018). For HiFiC Mentzer et al. (2020), we trained our own model using the pytorch
implementation publicly available on github7. We trained the models using the default parameters for each
rate, and pruned networks that failed to converge to the desired rate. To provide results for ELIC He
et al. (2022) and IPIC Xu et al. (2024) we used the official implementation for IPIC8. We used the Neural
CompressionMuckley et al. (2021)9 for MS-ILLM Muckley et al. (2023) results, and the unofficial pytorch
implementation10 of PerCo Careil et al. (2023).

FID Heusel et al. (2017) and KID Bińkowski et al. (2018) is measured using Pytorch Fidelity 11. For FID
on the 256 × 256 ImageNet images we used 50 random crops of size 128 × 128 inspired by Mentzer et al.
(2020). For KID on experiments on the CLIC Toderici et al. (2020) and DIV2K Agustsson & Timofte (2017)

5https://github.com/bamler-lab/constriction
6https://huggingface.co/stabilityai/stable-diffusion-2-base
7https://github.com/Justin-Tan/high-fidelity-generative-compression
8https://github.com/tongdaxu/Idempotence-and-Perceptual-Image-Compression
9https://github.com/facebookresearch/NeuralCompression/tree/main/projects/illm

10https://github.com/Nikolai10/PerCo
11https://github.com/toshas/torch-fidelity

15

https://github.com/bamler-lab/constriction
https://huggingface.co/stabilityai/stable-diffusion-2-base
https://github.com/Justin-Tan/high-fidelity-generative-compression
https://github.com/tongdaxu/Idempotence-and-Perceptual-Image-Compression
https://github.com/facebookresearch/NeuralCompression/tree/main/projects/illm
https://github.com/Nikolai10/PerCo
https://github.com/toshas/torch-fidelity

Published in Transactions on Machine Learning Research (09/2025)

validation datasets, we used 64× 64 patches from the 512× 512 images, as a sufficiently large reference for
high-quality images (The datasets are quite small).

The top image in Fig. 1 is taken from the Kodak Franzen (1999) Dataset.

A.1 PSC Pseudo-Code

1from utilities import posterior_sampler , restoration_function , entropy_encode ,
entropy_decode

2

3def SelectNewRows (H, y, r, shape , s=None):
4c, h, w = shape
5s = s if s is not None else (r * 4) // 3
6noise = torch . randn ((s, c, h, w))
7samples = posterior_sampler (noise , H, y)
8samples = samples . reshape (s, -1)
9samples = samples - samples .mean (0, keepdim =True)
10new_rows = torch . linalg .svd(samples , full_matrices = False)[-1][:r]
11return new_rows
12

13def PSC_compress (image , N, r)
14c, h, w = image . shape
15H = torch . zeros ((0 , c * h * w)) # Empty sensing matrix
16y = H @ image . reshape ((-1, 1)) # Empty measurements
17compressed_representation = y. clone ()
18

19for n in range (N):
20new_rows = SelectNewRows (H, y, r, (c, h, w))
21H = torch .cat ([H, new_rows])
22y = torch .cat ([y, new_rows @ image . reshape ((-1, 1)])
23

24compressed_representation = y.to(torch . float8_e4m3fn) # Quantize
25y = compressed_representation .to(torch . float32)
26

27return entropy_encode (compressed_representation)
28

29def PSC_decompress (compressed_representation , N, r)
30compressed_representation = entropy_decode (compressed_representation)
31c, h, w = image . shape
32H = torch . zeros ((0 , c * h * w)) # Empty sensing matrix
33y = H @ image . reshape ((-1, 1)) # Empty measurements
34

35for n in range (N):
36new_rows = SelectNewRows (H, y, r, (c, h, w))
37H = torch .cat ([H, new_rows])
38y = compressed_representation [:(n*r + r)]. to(torch . float32)
39

40return restoration_function (H, y)

Our complete code is available at https://github.com/noamelata/PSC.

Latent-PSC follows the diagram in Fig. 7, encoding the input image with the VAE encoder before compression
and decoding the decompressed output with the VAE decoder. Also, as the diffusion model used is text-
conditioned, the text prompt is given to the diffusion model inside posterior_sampler and restoration_function.
The text is also begin compressed and appended to the compressed representation.

A.2 Computational Requirements

The computational requirements for PSC are listed in Tab. 1, with rate and time for both compression
and decompression. Because PSC is a progressive compression algorithm, runtime increases with algorithm
iterations, which correlate linearly with the compression bit-rate. The memory requirements are 12461MB
for PSC 256 and 5719MB for Latent-PSC 512. These evaluation have been conducted on a single Nvidia
A100 GPU.

16

https://github.com/noamelata/PSC

Published in Transactions on Machine Learning Research (09/2025)

Table 1: Computational requirements for PSC - Perception 256 (top) and Latent-PSC 512 (bottom).
Iterations 16 32 64 128

Rate (BPP) 0.0097 0.0193 0.0387 0.0773
Compression time (min.) 3:25 6:55 14:59 37:57
Decompression time (min.) 3:49 7:20 15:31 38:21

Iterations 16 32 64 128 256

Rate (BPP) 0.0065 0.0114 0.0211 0.0405 0.0795
Compression time (min.) 2:54 5:38 11:07 22:13 45:36
Decompression time (min.) 3:26 6:13 11:48 23:05 46:41

10 2 10 1

BPP

16

18

20

22

24

26

28

PS
NR

PSC-Distortion
rank 6
rank 12
rank 24

10 2 10 1

BPP

14

16

18

20

22

24

PS
NR

PSC-Perception

10 2 10 1

BPP

102

6 × 101

2 × 102

3 × 102
FI

D
PSC-Distortion

10 2 10 1

BPP

2 × 101

3 × 101

4 × 101

FI
D

PSC-Perception
Rate-Distortion Rate-Perception

Figure 8: Rate-Distortion (top) and Rate-Perception (bottom) curves for ImageNet256 com-
pression, using PSC-Distortion (left) and PSC-Perception (right). Distortion is measured as av-
erage PSNR of images for the same desired rate or specified compression quality, while Perception (image
quality) is measured by FID.

B Effect of measurement rank

We repeat the ImageNet experiment with different values of the hyperparameter r, which determines how
adaptive our algorithm would be. We modify the number of samples generated at each iteration s accordingly
to account for the rank required by the empirical covariance matrix. Based on the original implementation
of AdaSense Elata et al. (2024b), we expect performance to improve the lower the value of r is. In the
results, demonstrated in Figure 8, the variation of the rank seems to have only a marginal effect, even for
low rates. We conclude that PSC is not sensitive to this parameter, and r can be tuned according to the
system’s hardware (namely, maximum available batch size).

C Additional Latent-PSC ablations

Figure 9 shows an additional comparison of Latent-PSC to PerCo Careil et al. (2023) and MS-ILLM Muckley
et al. (2023), similar to Fig. 11. Figure 10 demonstrates the progressive nature of PSC – as more rows of
H are accumulated, the posterior distribution converges with the input. This comes at the cost of a larger
compressed representation and higher bit-rates.

17

Published in Transactions on Machine Learning Research (09/2025)

 0.033 BPP 0.052 BPP 0.033 BPP

Lo
w

 R
at

es

Figure 9: Additional comparison of Latent-PSC to leading methods. Zoom-in view is shown below
each image

To quantify the effects of different rates and use of textual prompts, we evaluate Latent-PSC on 512 × 512
images from the MSCOCO Lin et al. (2014) dataset, which includes textual descriptions for each image. We
compress the textual description assuming 6 bits per character, with no entropy encoding. Figure 11 shows
decompressed samples using Latent-PSC with different rates, demonstrating good semantic similarity to the
originals and high perceptual quality.

C.1 Effect of Caption on Latent-PSC

Figure 12 illustrates the impact of using a captioning model to obtain the textual representation. In this
experiment, the captions generated by BLIP Li et al. (2022) achieved comparable or superior results to
human annotated description from the dataset. However, omitting the prompt causes some degradation of
quality.

18

Published in Transactions on Machine Learning Research (09/2025)

Figure 10: An example of the progression of PSC with growing bit-rates from left to right (both
rows). The posterior mean (top of each row) becomes sharper as more information about the original image
is accumulated. The posterior samples also converge to the original while always being of high photorealism.
A zoom-in view is shown below the bottom row of images to highlight fine differences

19

Published in Transactions on Machine Learning Research (09/2025)

Figure 11: Qualitative examples of Latent-PSC with Stable Diffusion. For each image and corre-
sponding text, several results for different bit-rates are shown. BPP and LPIPS are reported.

Original Human-Labeled Auto-Caption No Caption

0.214LPIPS 0.253LPIPS0.230LPIPS

0.345LPIPS 0.309LPIPS 0.350LPIPS

 0.077BPP 0.077BPP 0.077BPP

 0.039BPP 0.039BPP 0.039BPP

Figure 12: Qualitative examples of Latent-PSC with various prompt configurations. For each
image we compare compression results with human annotated textual description, auto-captioning using a
model, and using no caption.

20

	Implementation Details
	PSC Pseudo-Code
	Computational Requirements

	Effect of measurement rank
	Additional Latent-PSC ablations
	Effect of Caption on Latent-PSC

