Published in Transactions on Machine Learning Research (09/2025)

~__

Latent
Encoder

Latent
Decoder

A pack of zebras
are grazing in a field
by a bonzai tree

J Text
" Compression
N J

Figure 7: Latent-PSC diagram: Latent Text-to-Image diffusion models such as Stable Diffusion can
be used for effective image compression with PSC. The latent representation is compressed using linear
measurements. The textual prompt is used for conditioning the diffusion model in both the compression and
decompression, and thus this text is also transmitted.

A Implementation Details

For the ImageNet experiment we used the unconditional diffusion model from [Dhariwal & Nichol (2021)
to apply PSC. We used 25 DDRM [Kawar et al.| (2022a)) steps to generate 16 samples, using n = 1.0 and
m = 0.0. We added 12 rows to H in every iteration, and used matched the number of iterations to the
desired rate. We restore the images using the same model with either IIGDM [Song et al| (2023) with 100
denoising steps and default hyperparameters for high perceptual quality restoration, or an average of 64
DDRM [Kawar et al.| (2022a)) samples which where produced as detailed above for low-distortion restoration.
We use the Range Encoder from constriction as an entropy encoderﬂ in all our experiments.

In the latent diffusion experiment we used float16 stable-diffusion-2-1-basd’|[Rombach et al] (2022) and 50
DDRM steps, using the same hyperparameters. Due to the loss in PSNR due to using the VAE decoder,
we focus Latent-PSC on high perceptual generation. We restore the images using the same model with the
posterior sampler from Nested Diffusion [Elata et al.| (2024a), which applies 50 DDRM steps, each composed
of 5 second order unconditioned diffusion sampling steps. We find this sampler to work better than IIGDM
for this specific setup.

We used publicly available third party software for JPEG (1991), JPEG2000 [Skodras et al| (2001),
and BPG (2018). For HiFiC Mentzer et al| (2020), we trained our own model using the pytorch
implementation publicly available on githul{l We trained the models using the default parameters for each
rate, and pruned networks that failed to converge to the desired rate. To provide results for ELIC
et al| (2022)) and IPIC |Xu et al.| (2024) we used the official implementation for IPICﬂ We used the Neural
CompressionMuckley et al.| (2021)| for MS-ILLM [Muckley et al| (2023) results, and the unofficial pytorch
implementation|'’| of PerCo [Careil et al| (2023).

FID [Heusel et al. (2017) and KID Bifikowski et al. (2018) is measured using Pytorch Fidelity IEI. For FID
on the 256 x 256 ImageNet images we used 50 random crops of size 128 x 128 inspired by [Mentzer et al.
(2020)). For KID on experiments on the CLIC |Toderici et al.| (2020)) and DIV2K |Agustsson & Timofte| (2017)

Shttps://github.com/bamler-lab/constriction
Shttps://huggingface.co/stabilityai/stable-diffusion-2-base
"https://github.com/Justin-Tan/high-fidelity-generative-compression
Shttps://github.com/tongdaxu/Idempotence-and-Perceptual-Image-Compression
9https://github.com/facebookresearch/NeuralCompression/tree/main/projects/illm
Ohttps://github.com/Nikolail0/PerCo
Hhttps://github.com/toshas/torch-fidelity

15

https://github.com/bamler-lab/constriction
https://huggingface.co/stabilityai/stable-diffusion-2-base
https://github.com/Justin-Tan/high-fidelity-generative-compression
https://github.com/tongdaxu/Idempotence-and-Perceptual-Image-Compression
https://github.com/facebookresearch/NeuralCompression/tree/main/projects/illm
https://github.com/Nikolai10/PerCo
https://github.com/toshas/torch-fidelity

Published in Transactions on Machine Learning Research (09/2025)

validation datasets, we used 64 x 64 patches from the 512 x 512 images, as a sufficiently large reference for

high-quality images (The datasets are quite small).
The top image in Fig. [1|is taken from the Kodak [Franzen| (1999) Dataset.

A.1 PSC Pseudo-Code

from utilities import posterior_sampler, restoration_function, entropy_encode,

entropy_decode

def SelectNewRows(H, y, r, shape, s=Nomne):

c, h, w = shape

s = s if s is not None else (r * 4) // 3

noise = torch.randn((s, c, h, w))

samples = posterior_sampler (noise, H, y)

samples = samples.reshape(s, -1)

samples = samples - samples.mean(0, keepdim=True)

new_rows = torch.linalg.svd(samples, full_matrices=False)[-1][:r]

return new_rows

def PSC_compress (image, N, r)

c, h, w = image.shape

H = torch.zeros((0, ¢ * h * w)) # Empty sensing matrix
y = H @ image.reshape((-1, 1)) # Empty measurements
compressed_representation = y.clone()

for n in range(N):
new_rows = SelectNewRows(H, y, r, (c, h, w))
H = torch.cat([H, new_rows])
y = torch.cat([y, new_rows @ image.reshape((-1, 1)])

compressed_representation = y.to(torch.float8_e4m3fn) # Quantize

y = compressed_representation.to(torch.float32)
return entropy_encode (compressed_representation)

def PSC_decompress(compressed_representation, N, r)

compressed_representation = entropy_decode(compressed_representation)
c, h, w = image.shape

H = torch.zeros((0, ¢ * h * w)) # Empty sensing matrix

y = H @ image.reshape((-1, 1)) # Empty measurements

for n in range(N):

new_rows = SelectNewRows(H, y, r, (c, h, w))
H = torch.cat([H, new_rows])
y = compressed_representation[:(n*r + r)].to(torch.float32)

return restoration_function(H, y)

Our complete code is available at https://github.com/noamelata/PSC.

Latent-PSC follows the diagram in Fig.[7] encoding the input image with the VAE encoder before compression
and decoding the decompressed output with the VAE decoder. Also, as the diffusion model used is text-
COHditiOHed, the text prompt is given to the diffusion model inside posterior_sampler and restoration_function.
The text is also begin compressed and appended to the compressed representation.

A.2 Computational Requirements

The computational requirements for PSC are listed in Tab. with rate and time for both compression
and decompression. Because PSC is a progressive compression algorithm, runtime increases with algorithm
iterations, which correlate linearly with the compression bit-rate. The memory requirements are 12461MB
for PSC 256 and 5719MB for Latent-PSC 512. These evaluation have been conducted on a single Nvidia
A100 GPU.

16

https://github.com/noamelata/PSC

Published in Transactions on Machine Learning Research (09/2025)

Table 1: Computational requirements for PSC - Perception 256 (top) and Latent-PSC 512 (bottom).

Iterations 16 32 64 128
Rate (BPP) 0.0097 0.0193 0.0387 0.0773
Compression time (min.) 3:25 6:55 14:59 37:57

Decompression time (min.) 3:49 7:20 15:31 38:21

Iterations 16 32 64 128 256
Rate (BPP) 0.0065 0.0114 0.0211 0.0405 0.0795
Compression time (min.) 2:54 5:38 11:07 22:13 45:36

Decompression time (min.) 3:26 6:13 11:48 23:05 46:41

Rate-Distortion Rate-Perception
PSC-Distortion PSC-Perception 3x102 PSC-Distortion PSC-Perception
28 x
—¥— rank 6
26 4 —4— rank 12 244 4 x 10!
—A— rank 24 2 x 102
24 221
1 b a a 3x10!
ﬂzﬁ 22 ﬂzﬁ 20 [[
z 2 : :
204 181 1071
2 x10*
18 161
6x 10t
16 144
1072 107t 1072 107t 1072 1071 1072 107t
BPP BPP BPP BPP

Figure 8: Rate-Distortion (top) and Rate-Perception (bottom) curves for ImageNet256 com-
pression, using PSC-Distortion (left) and PSC-Perception (right). Distortion is measured as av-
erage PSNR of images for the same desired rate or specified compression quality, while Perception (image
quality) is measured by FID.

B Effect of measurement rank

We repeat the ImageNet experiment with different values of the hyperparameter r, which determines how
adaptive our algorithm would be. We modify the number of samples generated at each iteration s accordingly
to account for the rank required by the empirical covariance matrix. Based on the original implementation
of AdaSense [Elata et al.| (2024b), we expect performance to improve the lower the value of r is. In the
results, demonstrated in the variation of the rank seems to have only a marginal effect, even for
low rates. We conclude that PSC is not sensitive to this parameter, and r can be tuned according to the
system’s hardware (namely, maximum available batch size).

C Additional Latent-PSC ablations

Figure @shows an additional comparison of Latent-PSC to PerCo|Careil et al.| (2023)) and MS-ILLM |[Muckley
et al.| (2023)), similar to Fig. Figure |10| demonstrates the progressive nature of PSC — as more rows of
H are accumulated, the posterior distribution converges with the input. This comes at the cost of a larger
compressed representation and higher bit-rates.

17

Published in Transactions on Machine Learning Research (09/2025)

Low Rates

Figure 9: Additional comparison of Latent-PSC to leading methods. Zoom-in view is shown below
each image

To quantify the effects of different rates and use of textual prompts, we evaluate Latent-PSC on 512 x 512
images from the MSCOCO dataset, which includes textual descriptions for each image. We
compress the textual description assuming 6 bits per character, with no entropy encoding. shows
decompressed samples using Latent-PSC with different rates, demonstrating good semantic similarity to the
originals and high perceptual quality.

C.1 Effect of Caption on Latent-PSC

illustrates the impact of using a captioning model to obtain the textual representation. In this
experiment, the captions generated by BLIP (2022) achieved comparable or superior results to
human annotated description from the dataset. However, omitting the prompt causes some degradation of
quality.

18

Published in Transactions on Machine Learning Research (09/2025)

0.0016 BPP 0.0022 BPP 0.0034 BPP 0.0058 BPP

Original

Posterior Mean

Posterior Sample

0.0106 BPP 0.0202 BPP 0.0394 BPP 0.0779 BPP

Original

Posterior Sample Posterior Mean

Zoom

Figure 10: An example of the progression of PSC with growing bit-rates from left to right (both
rows). The posterior mean (top of each row) becomes sharper as more information about the original image
is accumulated. The posterior samples also converge to the original while always being of high photorealism.
A zoom-in view is shown below the bottom row of images to highlight fine differences

19

Published in Transactions on Machine Learning Research (09/2025)

A giraffe
grazing
from a tree
with rock
wall in
background

A traffic
sign sitting
next to a
sidewalk
on a street

£0.077BPP0.296LPIPS!

A plane
has its
wings

folded up
towards
the body

[0.153BPPi0.045LPIPS| E 0.077BPP.0.089LPIPS| B 0.03BBPPIO.196LPIPS|

A big bowl
of different
kinds of
fruit inside

Figure 11: Qualitative examples of Latent-PSC with Stable Diffusion. For each image and corre-
sponding text, several results for different bit-rates are shown. BPP and LPIPS are reported.

Original Human-Labeled

Jiil

Auto-Caption

No Caption
¥4

i
i

12
g !—d [l |
= e
}(jﬁi‘la Al ‘lm §

bl

0.077BPP0.230LPIPS

I 0.077BP!0.214LPIPS|

Figure 12: Qualitative examples of Latent-PSC with various prompt configurations. For each

image we compare compression results with human annotated textual description, auto-captioning using a
model, and using no caption.

20

	Implementation Details
	PSC Pseudo-Code
	Computational Requirements

	Effect of measurement rank
	Additional Latent-PSC ablations
	Effect of Caption on Latent-PSC

