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ABSTRACT

The pursuit of robot generalists—instructable agents capable of performing diverse
tasks across diverse environments—demands rigorous and scalable evaluation.
Yet real-world testing of robot policies remains fundamentally constrained: it is
labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simu-
lation benchmarks are similarly limited, as they train and test policies within the
same synthetic domains and cannot assess models trained primarily on real-world
demonstrations, which is the dominant paradigm for today’s vision-language-action
(VLA) models. As policies expand in scope and complexity, these barriers only
intensify, since defining “success” in robotics often hinges on nuanced human
judgments of execution quality. In this paper, we introduce a new benchmark-
ing framework that overcomes these challenges by shifting VLA evaluation into
large-scale simulated environments augmented with online human feedback. Lever-
aging advances in vision-language models, 2D-to-3D generative modeling, and
differentiable rendering, our approach automatically converts video demonstrations
from widely used robot datasets into simulated counterparts. Within these digital
twins, we assess VLA policies using both automated VLM-guided scoring and
scalable human preference judgments collected from crowdworkers—transforming
human involvement from tedious scene setup, resetting, and safety supervision
into lightweight preference comparisons. To measure robustness, we systemati-
cally perturb simulated environments along multiple axes— textures and object
placements — stress-testing policy generalization under controlled variation. The
result is a continuously evolving, reproducible, and scalable benchmark for real-
world–trained robot manipulation policies, addressing a critical missing capability
in today’s robotics landscape.

1 INTRODUCTION

While recent years have witnessed substantial progress in developing more capable and general robot
policies, their evaluation remains a persistent challenge and lacks standardization. This problem
becomes especially acute as policies grow more generalist, requiring broader and more diverse
evaluation scenarios. Real-world evaluation is inherently unscalable: it is limited by logistics,
safety concerns, and reproducibility issues, and requires significant human involvement for setup,
execution, and scoring. Human operators must supervise trials and manually reset scenes, which
restricts the scale and frequency of evaluations Vincent et al. (2024); Abou-Chakra et al. (2025); Li
et al. (2024). Such manual oversight also raises concerns about consistency and fairness, particularly
when baselines and new models are compared under slightly different conditions.

Centralized physical evaluation provides a gold standard, where policies are tested under identical
conditions, typically by submitting containers or shipping robots to a shared testing site. Notable
examples include the Amazon Picking Challenge Correll et al. (2016), the Open-Vocabulary Mobile
Manipulation Challenge Yenamandra et al. (2023), and RoboCup@Home Matamoros et al. (2019).
However, the high cost for both organizers and participants means such events occur infrequently,
often no more than once a year. In contrast, fields such as computer vision and natural language
processing have advanced rapidly thanks to standardized benchmarks that provide consistent metrics,
clear performance targets, and a foundation for fair comparison across methods Deng et al. (2009);
Schuhmann et al. (2022). Our work is particularly inspired by LMarena Chiang et al. (2024), a large-
scale, crowdsourced evaluation framework that benchmarks LLMs and VLMs through direct pairwise
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Figure 1: RobotArena ∞ provides a scalable and extensible robot benchmarking framework
by automating environment construction and evaluation. It automatically generates simulated
environment seeded from real videos, deploys robot policies, and evaluates them using VLMs and
crowdsourced workers that cast preferences between pairs of execution videos. The simulated
environments are derived from both in-distribution and out-of-distribution videos, enabling rigorous
tests of generalization in contemporary VLAs.

comparisons of responses to the same prompt by human annotators. By aggregating thousands of
such head-to-head matchups across diverse prompts, LMarena produces an Elo-style ranking that
reflects collective judgments of model quality. Motivated by this success, we ask: What would be
the analogue of LMArena for Robotics?

RobotArena ∞: We introduce RobotArena ∞, a new benchmarking framework that scales robot
evaluation by deploying policies in automatically constructed simulated environments and assess-
ing them through automatic VLM score and online human preference feedback. Our framework
first automatically translates real videos into corresponding simulation environments. This reality-
to-simulation translation method builds on recent advances in vision-language models for scene
understanding, 2D-to-3D generative models for 3D asset creation from image crops and videos, and
our differentiable rendering techniques for object pose estimation and robot–camera calibration.

Once constructed, we deploy VLAs in these environments and evaluate their execution trajectories
using two complementary strategies: (1) absolute evaluation, in which prompted VLMs estimate task
progress scores for each video frame, and (2) relative evaluation, in which human annotators express
pairwise preferences between execution videos from different VLAs performing the same task. A key
strength of RobotArena ∞ is its ability to measure both in-distribution performance—by testing on
simulation environments seeded from training videos in established datasets such as Bridge Walke
et al. (2023b)—and out-of-distribution performance, by testing on environments generated from
videos outside the training set. To assess robustness and generalization, we also introduce systematic
perturbations, such as variations in lighting, object placement, and background appearance. Our initial
benchmark aggregates more than 7000 preference pairs across one hundred nominal environments
and hundreds of perturbations, comparing four VLAs from independent labs worldwide. To the best
of our knowledge, this constitutes the largest-scale robot evaluation effort to date.

The diversity of our reproducible evaluations yields several insights. First, VLAs perform poorly
when tested on datasets they were not trained on, indicating that current models are not true generalists
but instead specialists in recognizing the environments underlying their training data, as also found in
Xing et al. (2025). Second, within the same environment, performance degrades under controlled
perturbations—especially color changes—highlighting their limited robustness to distribution shifts.
Yet, despite these limitations, consistent performance rankings emerge across models, demonstrating
that architectural and data choices do produce measurable differences.

RobotArena ∞ is inspired by prior efforts to design scalable robot benchmarks, particularly the
seminal contributions of BEHAVIOR Li et al. (2024) and SIMPLER Li et al. (2024). Unlike prior
work, RobotArena ∞ provides a smooth scaling evaluation of VLA abilities. BEHAVIOR boasts
an impressive manual effort of asset and environment creation, while SIMPLER reconstructs four
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real-world Bridge scenes and includes hand-designed reward functions. Compared to these efforts,
RobotArena ∞ offers a far more scalable and extensible framework by automating environment
construction and evaluation. In summary, our contributions are as follows:

1. We present a scalable and extensible benchmarking protocol for robotics, by coupling
physics engines, real-to-sim translation and human preference feedback.

2. We introduce a fully automated reality-to-simulation translation pipeline built upon
VLMs, 2D-to-3D generative models and differentiable rendering.

3. We evaluate VLAs from labs worldwide across hundreds of environments and thousands
of human preferences, the most extensive robot evaluation to date.

4. We present key evaluation results that reveal how current generalist policies generalize—or
fail to—under distribution shifts.

Our benchmark is not without limitations. We outline these and discuss future directions and
extensions. Importantly, RobotArena ∞ will continue to benefit from advances in physics engines
and real-to-sim research. Both our benchmark environments and evaluation code will be publicly
released and centrally maintained for continual support.

2 RELATED WORK

Generalist Robot Manipulation Policies Recent advances in robot foundation models have led
to significant progress in generalist manipulation policies (Brohan et al., 2023; Kim et al., 2024;
Octo Model Team et al., 2023; Kalashnikov et al., 2021; Ehsani et al., 2023; Bharadhwaj et al., 2024;
Liu et al., 2024; Anil et al., 2023; Sridhar et al., 2023; Ye et al., 2024; Black et al., 2024; Pertsch
et al., 2025), driven by the availability of large-scale robot datasets (O’Neill et al., 2024; Walke et al.,
2023a; Khazatsky et al., 2024b; Shah et al., 2023). These models are trained to perform a wide
range of tasks –including pick-and-place, cloth folding, and tool use (Walke et al., 2023a; Kim et al.,
2024; Black et al., 2024; Pertsch et al., 2025)—and to generalize across diverse environments with
varying backgrounds and distractors (Zhou et al., 2024; Fu et al., 2024), as well as across different
robot embodiments such as arms, quadrupeds, and drones (Yang et al., 2024; Doshi et al., 2024).
As these capabilities grow, evaluating such policies becomes increasingly labor intensive, requiring
performance assessments across many different tasks, scenes, and embodiments.

Evaluating Robot Policies in The Real World Evaluating robot policies in the real world in a fair,
comprehensive, and reproducible way remains a major challenge. Most methods are evaluated in
custom lab-specific settings using proprietary hardware, task definitions, and success metrics, which
makes cross-institution comparisons difficult. While standardized benchmarks exist for focused areas
such as grasp prediction (Fang et al., 2020) and motion planning (Moll et al., 2014; Chamzas et al.,
2022), extending these to cover generalist skills remains complex. Standardization efforts using
shared object sets (e.g., YCB (Calli et al., 2015), IKEA (Heo et al., 2023), NIST (Kimble et al.,
2020), ACRV (Leitner et al., 2016)) help reduce some variability, but differences in hardware, camera
placement, lighting, and workspace setup still hinder consistent evaluation across labs. Real-world
evaluation is often time-consuming and labor intensive. Human operators are typically required
to supervise trials and manually reset scenes, limiting the scale and frequency of evaluations. For
example, Cheng et al.(Chi et al., 2024) report manually aligning a T-shaped object into 20 predefined
start configurations for each rollout, a process repeated across all baselines. This reset step is non-
parallelizable and presents a significant bottleneck when evaluating policies across different tasks,
agents, and environments(Vincent et al., 2024; Abou-Chakra et al., 2025). While recent systems such
as AutoEval (Zhou et al., 2025) aim to automate evaluation, they are often limited in scope—e.g.,
supporting only five tasks in three static real-world scenes. RoboArena Atreya et al. (2025) builds a
system of distribution real-world evaluation where human users reset the scene, run the robot policies
and evaluate the resulting robot executions. It targets scenes from the DROID environment and
evaluatea a set of policies finetuned on DROID. As real-world robot datasets and generalist policies
continue to expand in scale and complexity, the need for a more scalable, general, and continuous
evaluation framework becomes increasingly urgent.
Evaluating Robot Policies in Simulation Simulation offers a scalable and safe alternative for
evaluating robot policies, with numerous benchmarks like: RLBench James et al. (2020), Colos-
seum (Pumacay et al., 2024), CALVIN (Mees et al., 2022), LIBERO (Liu et al., 2024), Per-
ACT2 (Grotz et al., 2024), Meta-World (Yu et al., 2020), IKEA Simulation (Lee et al., 2019),
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Figure 2: Automated video-to-simulation translation in RobotArena ∞. Given a scene from a
robotic dataset, we automatically create a simulated environment for the scene.

and Behavior-1K (Li et al., 2024). However, these typically assume policies are trained and tested
in the same simulated environments, potentially favoring specialist policies that exploit simulation-
specific advantages over generalist models trained on real-world data. Our approach, in contrast,
uses simulation strictly as an evaluation environment, independent of the policy’s training origin.
We contend that simulation is increasingly viable for policy evaluation due to improving physics
engines and advancements in generative models and VLMs, which can automate scene asset creation
and task success detection. RobotArena ∞ leverages these by automatically generating diverse
simulation-based evaluation environments. The closest work, SIMPLER Li et al. (2024), creates
high-fidelity replicas of real scenes with human efforts, showing strong sim-to-real correlation. Unlike
SIMPLER (Li et al., 2024), RobotArena ∞ automates both scene generation and task evaluation
across varied tasks and datasets, and evaluates policy robustness and generalization by systematic
perturbations.

3 TRANSLATING VIDEOS TO SIMULATION FOR POLICY EVALUATION

RobotArena ∞ leverages VLMs for scene understanding and 2D-to-3D generative models to automat-
ically create scalable simulation environments from video. We mainly consider robot demonstration
datasets, where cameras are typically static sources of video. Our goal is to generate environ-
ments and tasks that include both in-distribution and out-of-distribution cases for current
VLAs—avoiding inflated performance while revealing their relative strengths and limitations.

3.1 MAPPING DEMONSTRATION VIDEOS TO SIMULATION

We develop an automated method for mapping robot demonstration videos to simulation environments
in physics engines, shown in Figure 2. Each robot demonstration is typically annotated with a
language task description and per frame robot joint angle trajectories. We also know the robot used
and assume access to its URDF file. Our method extracts five key elements from the demonstration
video: (1) the camera’s 6-DoF pose relative to the robot body frame, (2) 3D mesh reconstructions
of task-relevant objects, their orientations, sizes, and material properties, (3) a scene depth map, (4)
a clean background image, (5) proportional–derivative control gains. Together, these components
enable realistic, physics-consistent simulations derived directly from video, without requiring manual
calibration or curated annotations beyond standard robot joint trajectories.

Automated Robot-Camera Calibration through Differentiable Robot Rendering Robot demon-
stration videos are typically uncalibrated. We therefore estimate the camera-to-robot transforma-
tion using an analysis-by-synthesis approach (Figure 3). Specifically, we construct a joint an-
gle–conditioned 3D Gaussian model of the robot via differentiable rendering in simulation, based on
its URDF file following DR-Robot (Liu et al., 2024), shown in Figure 3 Step 1.

Given an RGB video with per-frame joint angles, we render the Gaussian robot model and optimize
the camera’s 3D translation and orientation to minimize a composite alignment loss with three terms:
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Figure 3: Automated robot-camera calibra-
tion through differentiable rendering of pose-
conditioned 3D robot Gaussians.

(i) an RGB loss penalizing pixel-level appear-
ance differences, (ii) a flow loss enforcing
consistency between rendered motion fields
and optical flow from the video Karaev et al.
(2024), and (iii) a feature loss aligning DI-
NOv2 embeddings between rendered and ob-
served frames, following differentiable render-
ing practices (Chu et al., 2024) (Figure 3 Step
2). When calibration metadata is available (e.g.,
from DROID (Khazatsky et al., 2024a)), it is
used for initialization; otherwise, we perform a
coarse flow-based grid search to provide a ro-
bust starting point, as in BridgeV2 (Walke et al.,
2023a) and RoboMind (Wu et al., 2024). More
details can be found in Appendix B.

Object and Scene 3D Reconstruction, Com-
pletion, and Physics Estimation We begin
by prompting Gemini Team et al. (2023) to seg-
ment the robot and all task-relevant foreground
objects (Appendix C.1). Each segmented crop is super-resolved with InvSR Yue et al. (2024) and
converted into a textured 3D asset using Hunyuan-3D (Team, 2025), which, like most image-to-3D
mesh generation models, reconstructs objects in a canonical frame. To recover each object’s correct
3D pose, we render synthetic views of the reconstructed mesh and match them to 2D object crops
from the original image using the correspondence model MINIMA (Ren et al., 2024). The view with
the most feature matches is selected, and these correspondences are lifted into 3D using monocular
depth estimates for the real image (Wang et al., 2024) and simulated depth for the rendered view.
The final pose is then solved via singular value decomposition (SVD) on the resulting 3D–3D cor-
respondences (Appendix C.2). Physical and material properties are inferred by prompting Gemini
and incorporated into the simulation to ensure realistic interactions. To complete the scene, we
generate a static background by inpainting the robot and object regions in the first video frame with
LaMa Suvorov et al. (2021), producing a clean backdrop for the reconstructed assets (Appendix
D). Finally, to accurately reproduce robot dynamics, we perform system identification to tune the
proportional derivative (PD) controller gains, aligning simulated end-effector trajectories with those
observed in real demonstrations (Appendix E). Apart from standard joint trajectory annotations, our
method requires no additional human supervision. More details on our translation method can be
found in the Appendix.

Controllable Domain Perturbations We introduce controlled perturbations to the generated
environments in order to stress-test policy generalization under changes in background, scene
arrangement, viewpoint, and color. Specifically, we consider:

• Background Change (∆BG): Replaces the original scene background with different in-
painted textures drawn from a diverse background dataset, isolating the policy’s dependence
on contextual appearance cues (Appendix G.1).

• Color Shift (∆Color): Alters the RGB channel configuration of the scene (e.g., converting
RGB to BGR), applied at intensities from 0% to 100% in increments of approximately 33%,
to test robustness against low-level color variation (Appendix G.2).

• Object Pose Change (∆ObjPose): Randomly permutes the location of objects in the scene
(Appendix G.3).

4 EVALUATING ROBOT TRAJECTORIES WITH HUMANS AND VLMS

In some environments, robot policies may fail entirely, making pairwise preference comparisons
noisy or even meaningless. To address this, we first use vision-language models (VLMs) to assign
per-frame task progress scores in each execution video. Only videos with non-zero progress scores
are then forwarded for human preference evaluation.
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4.1 EVALUATING ROBOT TASK PROGRESS SCORING WITH VLMS

Figure 4: We obtain task progress scores for exe-
cution videos automatically by prompting Gemini
with a shuffled frame sequence and the language
instruction, following Ma et al. (2024).

Our goal is to automate success detection
and progress scoring, allowing evaluation to
scale across many environments without human-
crafted success detectors. We thus assess task
progress in execution videos using prompt-
ing techniques for vision-language models
(VLMs) (Ma et al., 2024), without relying on
privileged simulator state. Specifically, a VLM
is prompted with a shuffled sequence of video
frames, augmented with the initial frame as a
zero-progress reference, and asked to assign
progress scores (shown in Figure 4). Shuffling
prevents the model from exploiting temporal or-
der, forcing evaluation based purely on visual
cues. This approach is effective for both suc-
cessful and failed trajectories, and we observed
no improvement from few-shot prompting compared to zero-shot. From the per-frame scores, we
considered the mean score over the full execution trajectory, the mean score over the final 30% of
frames, and the mean score over the highest scored 30% of frames. Among these, we found the mean
score averaged over the final 30% of frames to align best with human-annotated task progress scores,
and retain it for subsequent analysis.

4.2 EVALUATING ROBOT PERFORMANCE WITH HUMAN PREFERENCE FEEDBACK

While automated scoring provides scalability, human preference feedback remains essential for
capturing nuanced aspects of robot behavior that numerical metrics may overlook. Our human
evaluations are conducted through pairwise, double-blind comparisons of two policy execution videos
drawn from the same simulation environment, under identical initial conditions and task instructions,
following the protocol of Chiang et al. (2024). For each comparison, evaluators provide two forms of
feedback: (i) a preference label specifying which policy performed better overall or whether they are
tied, and (ii) a free-form natural language explanation describing the rationale behind their choice. We
use free-form explanations as a way to increase evaluator engagement and attention. In sanity-check
experiments, we found that requiring written justification led to more accurate human annotations.
We have included the web interface for pairwise comparisons in the Appendix J.

4.2.1 GLOBAL RANKING FROM PAIRWISE PREFERENCES

In this section, we describe our algorithm for computing a global policy ranking from the pairwise
feedback provided by evaluators. Formally, let the set of N policies be Π = {π1, . . . , πN} and let
the dataset of pairwise preferences be Dp = {(PπA,πB

, t)}, where PπA,πB
∈ {−1, 0, 1} indicates a

preference for πA over πB or a tie, and t identifies the task on which the A/B evaluation was run (e.g.,
a specific scene and language instruction). Our goal is to compute a global ranking R over policies,
e.g., πi ≻ πj ≻ · · · ≻ πk.

We will use the Bradley–Terry (BT) model Bradley & Terry (1952) which is a widely used proba-
bilistic framework for ranking items based on pairwise comparisons, modeling the probability that
item i is preferred over item j as P (i ≻ j) = θi

θi+θj
, where θi and θj are latent ability scores. In

our benchmark, comparisons may result in ties, which the classical BT formulation cannot handle.
Extensions such as the Davidson model Davidson (1970) incorporate ties by introducing an additional
tie parameter ν that accounts for the likelihood of indifference between two items. In this formulation,
the probabilities are defined as:

P (i ≻ j) =
θi

θi + θj + ν
√
θiθj

, P (i ≡ j) =
ν
√

θiθj

θi + θj + ν
√
θiθj

.

This modification enables the model to capture not only strict preferences but also situations where
two items are judged equally good, making it more robust for human preference aggregation in
settings such as robot evaluation or language model comparison.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

D
R
O
ID
Si
m

R
H
20
TS
im

B
rid
ge
Si
m

Figure 5: We show simulation environments in RobotArena ∞ seeded from videos demonstrations
in the datasets of Bridge, RH20T and DROID.

Estimation. The parameters θ = {θ1, . . . , θN} (and the tie parameter ν) are estimated by maxi-
mizing the likelihood of the observed preferences. For the Davidson extension, the log-likelihood
is:

L(θ, ν) =
∑

(i,j)∈Dp

[
1[Pi,j = 1] logP (i ≻ j)+1[Pi,j = −1] logP (j ≻ i)+1[Pi,j = 0] logP (i ≡ j)

]
.

This objective is concave in the natural parameterization log θi, and can be efficiently optimized using
iterative methods such as minorization–maximization or gradient ascent. The resulting θi values
provide an interpretable ability score for each policy, from which a global ranking R can be obtained
by simple ordering.

5 BENCHMARKING ROBOT POLICIES IN ROBOTARENA ∞

Generated Simulation Arenas Our benchmark spans a diverse set of environments and tasks
derived from both existing datasets and user-provided scenes (shown in Figure 5):

1. BridgeSim contains simulated environments and tasks generated from robot demonstra-
tions in the BridgeV2 dataset Walke et al. (2023b), a widely used subset of the Open
X-Embodiment (OXE) dataset Open X-Embodiment Collaboration et al. (2023), frequently
employed to pretrain generalist robot policies.

2. DROIDSim consists of environments and tasks created from demonstrations in the DROID
dataset Khazatsky et al. (2024b). Unlike BridgeV2, DROID is often excluded from pre-
training pipelines for generalist policies due to its higher noise levels Ma et al. (2024).

3. Rh20TSim includes environments and tasks derived from the RH20T dataset Fang et al.
(2023). Notably, among the candidate policies we evaluate, only SpatialVLA has been
trained on this dataset.

Candidate Policies to Evaluate We benchmark the following open-source generalist robot policies.
All policies operate with a fixed egocentric camera and do not make use of wrist-mounted cameras:

1. Octo Octo Model Team et al. (2024) is a transformer-based manipulation policy pre-trained
on 800k demonstrations from the OXE dataset Open X-Embodiment Collaboration et al.
(2023). For our experiments, we evaluate the 93M-parameter Octo-Base model.

2. RoboVLM Li et al. (2024) extends vision-language models (VLMs) into vision-language-
action (VLA) policies by adding a continuous action prediction head. We evaluate the
variant built on the KosMos backbone Peng et al. (2023).

3. SpatialVLA Qu et al. (2025) augments standard VLAs with 3D spatial reasoning through
Ego3D Position Encodings and Adaptive Action Grids. It is trained on 1.1 million real-world
robot demo demonstrations.
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Figure 6: Task completion policy evaluation results obtained automatically from VLMs, (a) in
RobotArena ∞ environments and (b) in perturbations of BridgeSim environments.

4. CogAct Li et al. (2024) combines a 7B-parameter VLM backbone with a diffusion trans-
former for action prediction. It is pre-trained on the large-scale OXE dataset (22.5M frames,
60 datasets, 22 robot embodiments) and further fine-tuned on smaller real-world datasets for
embodiment-specific adaptation.

We show task VLM derived progress evaluation results of robot policies in Figure 6 left
with Standard Error of the Mean (SEM). We show the performance in perturbed environ-
ments in Figure 6 right with SEM for the BridgeSim for which the polices perform the
best. We draw the following conclusions: (1) Cross-dataset generalization is weak: Poli-
cies perform substantially worse on environments derived from datasets they were not trained
on (e.g., DROID and RH20T). (2) Model choice matters: RoboVLM and CogACT consis-
tently outperform Octo-Base and SpatialVLA. (3) 3D structure helps: SpatialVLA shows
improved robustness under object position perturbations, suggesting that explicit modeling of
3D spatial relationships enhances generalization and reduces reliance on fixed asset layouts.

Figure 7: BT scores for human preferences of
the models.

(4) Backbone strength drives robustness: Policies
with stronger VLM backbones (CogACT, RoboVLM)
are more resilient to color perturbations, relying on
structural rather than superficial appearance cues. (5)
Background matters most: Performance across all
policies degrades sharply when backgrounds are re-
placed (e.g., sampling alternatives from BridgeV2),
revealing that VLAs often overfit to scene-level cor-
relations between background cues and spatial priors.

We show BT rankings of the models from human
preferences in Figure 7 with the chi-squared interval.
We note that human preferences align with the VLM
task success score; RoboVLM and CogACT are much
more preferred than Octo and SpatialVLA.

5.1 POLICY RANKING IN ROBOTARENA ∞ VERSUS THE REAL WORLD

In Figure 8, we further test the sim-real evaluation alignment. Specifically, we tested the three
VLAs, i.e., RoboVLMs, Octo, and SpatialVLA, on the real-world task ”Put the carrot in the plate” as
presented by Qu et al. (2025). We recreated the same scenes in simulation and deployed the same
policies. RoboVLMs and SpatialVLA succeeded in both real and simulated settings, while Octo
failed in both, consistently attempting but failing to grasp the carrot.

5.2 ROBOTARENA ∞ VERSUS SIMPLER OF LI ET AL. (2024)

In Figure 9, we compare policy performance on our reproduction of the four SIMPLER environments
with our BridgeSim benchmark, which includes 70 environments derived from the same Bridge
V2 dataset. All evaluated VLA models achieve much higher scores on SIMPLER than BridgeSim,
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Figure 8: Validation of Simulation-Based Robot
Evaluation Against Real-World Robot Evalua-
tions.

Figure 9: Task completion policy evaluation re-
sults in RobotArena ∞ versus SIMPLER bench-
mark of Li et al. (2024).

indicating that the benchmark is nearing saturation—the strongest model nearly solves all tasks.
While relative model rankings remain consistent across the two benchmarks, SIMPLER’s limited
difficulty makes it less suitable for distinguishing future, more advanced models.

Please find additional video results in our project’s website at https://submitsquirtel.github.io/.

6 LIMITATIONS / FUTURE DIRECTIONS

By leveraging recent advances in reality-to-simulation translation and crowdsourced evaluation,
RobotArena ∞ provides the most scalable and extensible robot benchmark to date. Our evaluators
are not domain experts or robotics researchers, but everyday end-users—the very audience that robots
are ultimately intended to serve.

That said, the current benchmark has limitations. First, the policies evaluated do not yet incorporate
wrist-camera inputs, which restricts the fidelity of certain manipulations. We are actively extending
our reality-to-simulation pipeline to generate complete 3D interactive environments that will support
richer observations. Second, current simulators still struggle to model fine-grained contact dynamics,
such as inserting a charger into a socket. Despite progress in physics engines and automated asset
generation Wang et al. (2025); Narang et al. (2022), these tasks remain difficult to reproduce faithfully,
highlighting a crucial direction for future research.

Looking forward, RobotArena ∞ is well positioned to benefit from advances in simulation, physics
engines, and environment generation, and to serve as a continually improving platform for evaluating
the next generation of robotic foundation models.

7 CONCLUSION

In this work, we introduced RobotArena ∞, a new benchmarking framework that scales robot
evaluation through automated reality-to-simulation translation and online human preference feedback.
By coupling advances in vision–language models, 2D-to-3D generative models, and differentiable
rendering, our framework enables the automatic construction of rich simulated environments directly
from real-world videos. We demonstrated its utility by evaluating multiple VLAs across hundreds
of environments and over 7000 human preference judgments, yielding the most extensive study
of policy robustness and generalization to date. Our findings highlight significant cross-dataset
failures, sensitivity to perturbations, and systematic differences across architectures—revealing both
the limitations of current VLAs and the promise of scalable evaluation protocols.

Looking ahead, we envision RobotArena ∞ as a continually evolving benchmark that grows alongside
advances in robot learning. Future directions include expanding the range of tasks, incorporating
more diverse real-world data sources, and leveraging improvements in physics engines and real-to-sim
translation. By releasing both the benchmark environments and evaluation code, we aim to provide
the community with an open, extensible platform for rigorous policy evaluation.
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A WEBSITE AND CODE

The project website is available at https://submitsquirtel.github.io/, and the source
code can be accessed at https://github.com/submitsquirtel/ICLR-paper-13938.

B INFERRING CAMERA-ROBOT POSE TRANSFORMATION VIA
ANALYSIS-BY-SYNTHESIS

In this optimization problem, we work with a sequence of video frames capturing the robot’s
motion, denoted Igtt , where t ranges from 1 to T . We also have the robot’s joint angles qt at each
time t, provided by the dataset. Our task is to estimate the transformation T ∈ SE(3), which
aligns the robot’s coordinate system with the camera’s. Using T and qt, we produce rendered a
image It, a synthetic depiction of the robot at time t. Motion is captured through optical flow F gt

t ,
estimated between consecutive video frames Igtt and Igtt+1, and rendered flow Ft. Additionally, we
use the DINOv2 model to extract feature maps ϕgt

t = DINOv2(Igtt ) from the video frames and
ϕt = DINOv2(It) from the rendered images, enhancing alignment with high-level image features.

The optimization aligns the rendered and observed data using three loss terms:

1. RGB Loss: Measures the color difference between the rendered and video images at each
time t:

Lrgb(t) = ∥It − Igtt ∥22 (1)

2. Flow Loss: Compares the rendered flow to the optical flow for each pair of frames from
t = 1 to T − 1:

Lflow(t) = ∥Ft − F gt
t ∥22 (2)

3. Feature Loss: Aligns the feature maps using cosine loss at each time t:

Lfeat(t) = 1− cos
(
ϕt, ϕ

gt
t

)
(3)

The total loss combines these terms over the sequence:

L =

T∑
t=1

λrgbLrgb(t) +

T∑
t=1

λfeatLfeat(t) +

T−1∑
t=1

λflowLflow(t) (4)

where λrgb, λfeat, and λflow are weights balancing each term. The optimal T is found by minimizing:

T∗ = argmin
T∈SE(3)

L (5)

C RELEVANT OBJECT SEGMENTATION, 3D RECONSTRUCTION, AND
MATERIAL PROPERTY ESTIMATION

The creation of simulation-ready 3D assets for movable objects is accomplished through a multistage
pipeline. This process begins with semantic understanding of the scene using a vision language
model (VLM), specifically Gemini Team et al. (2023). We prompt Gemini to segment the robot
and all foreground objects it interacts with. The resulting segmentation masks provide fine-grained
object localization. To enhance visual details critical for reconstruction, the original image is first
super-resolved, then resized to its original dimensions. The segmentation masks are applied to isolate
and crop each object of interest. These object-specific image patches are further refined using a
second stage of super-resolution with InvSR Yue et al. (2024), producing high-fidelity inputs for 3D
reconstruction. The enhanced patches are then processed by an image-to-3D model, Hunyuan-3D
Team (2025), which outputs detailed meshes capturing both the geometry and texture of each object.
To ensure physical plausibility within simulation, Gemini Team et al. (2023) is prompted to infer
object-specific physical parameters such as mass and friction coefficients. Final asset preparation
includes appropriate scaling and placement within the simulated environment to ensure consistent
alignment with the original scene configuration.
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This section describes the method of recovering the 3D position and orientation of objects from a
single RGB image. The approach leverages camera parameters recovered by our previously described
method, detailed in Section B, and an initial depth map estimated using (MoGE Wang et al. (2024)).

C.1 OBJECT SEGMENTATION

To obtain accurate localization of task-relevant entities, we employ Gemini Team et al. (2023) with
three structured prompts tailored for different goals.

Robot Segmentation Prompt We first segment the robot, as jointly detecting all entities may
result in missed or inaccurate detection of the robot. The prompt below is used to obtain the robot’s
segmentation mask:

Give segmentation masks for the robot in the scene. Output a JSON list of segmentation masks
where each entry contains the 2D bounding box in ”box 2d”, a descriptive text label in ”label”,
and the mask in ”mask”.

Foreground Object Segmentation Prompt After isolating the robot, we proceed to segment the
foreground objects it interacts with, along with estimating their physical properties. The following
prompt is used to obtain segmentation masks and associated physical attributes:

Give segmentation masks for all important complete foreground objects on the plane which the
robot interacts with. You must ignore any background objects, irrelevant surfaces, or any objects
that are occluded, covered, or severely blocked by other objects.
Output a JSON list of segmentation masks where each entry contains:
- ”box 2d”: the 2D bounding box
- ”mask”: the segmentation mask (in image format)
- ”label”: a descriptive text label
- ”mass”: estimated object mass in kilograms (float)
- ”friction”: estimated friction coefficient (float)
- ”surface type”: one of [Glass, Water, Emission, Plastic, Rough, Smooth, Reflective, Metal, Iron,
Aluminium, Copper, Gold]

Task-Relevant Object Selection Prompt (conditional) If a task description is provided, we use
the following prompt to analyze the previously segmented objects, identifying those with seman-
tic relevance to the task and determining their functional roles (e.g., as a manipulation target or
destination):

Consider this specific task: {task}, given the object names: {object names}, please select the
object names that are relevant to the task and identify their role in the task from ”target” and
”destination”.
Output in this format exactly as: target: <target object>, destination: <destination object>.
Please try to identify the target object (If you can’t find an exact match, use the closest one from
given object names) and if there is no destination object, only output the target object.

For example, given the task: put the pot on top of the yellow cloth and the segmented object names:
sauce pan, cloth, the output would be: target: sauce pan, destination: cloth

C.2 OBJECT POSE ESTIMATION

Initial 3D Point Cloud Reconstruction With the 2D mask of the target object generated using
Gemini Team et al. (2023), we unproject each masked pixel into a 3D point cloud in world coordinates.
This process uses the recovered camera intrinsic and extrinsic parameters K, R, t and a metric-scale
depth map D(u, v). To recover metric depth maps, we compute the scale factor by comparing
MoGE’sWang et al. (2024) relative depth estimates of the robot arm against the simulated robot arm’s
ground-truth depth; applying this factor converts the relative predictions into accurately scaled metric
depth maps.
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For each pixel (u, v) within the mask, its world-space coordinate Pworld is then given by

Pworld = R⊤D(u, v)K−1 [u, v, 1]⊤ − t.

Simulated Viewpoint Generation and 2D Correspondence Establishment To robustly estimate
the object’s pose, we generate multiple synthetic views. This process begins with the generated 3D
mesh of the object. To ensure dimensional consistency for the simulation, the scale of this generated
mesh is aligned by utilizing its bounding box and the bounding box of the original point cloud. The
scale-aligned mesh is then imported into our simulation environment and initialized at a reference
position. In this simulated environment, multiple views are rendered by a camera programmed to
navigate around this central object position. The camera’s trajectory is systematically defined by
varying its elevation and azimuth angles relative to the reference position.

Let
zlevels = {z1, z2, . . . , zL}, θvalues = {θ1, θ2, . . . , θM}, Nθ = M,

For each view index i ∈ {0, . . . , N − 1}, we compute:

θi = θvalues
[
i mod Nθ

]
, (6)

zi = zlevels
[
⌊i/Nθ⌋

]
, (7)

v̂i =
1√

cos2θi + sin2θi + z2i

cos θisin θi

zi

 , (8)

pi = pref + d v̂i. (9)

where pref is the target’s centroid in world coordinates and d > 0 is the fixed radial distance. The
simulated camera is then oriented such that its viewing direction is aimed at pref .

For each camera pose pi, we render a synthetic image:

Iisim = Render(pi) ,

We then apply the MINIMA algorithm Ren et al. (2024) to establish 2D keypoint correspondences
between Iisim and the original masked image. This produces, for each view i, a set of Mi matched
keypoint pairs:

Ci =
{(

ki,j
sim, k

i,j
orig

)}Mi

j=1
.

where ki,j
sim is the j-th keypoint in Iisim and ki,j

orig is its corresponding keypoint in the original image.

Optimal View Selection and 3D Keypoint Pair Generation We select the optimal view index

i∗ = argmax
i∈{0,...,N−1}

|Ci|,

and denote the corresponding rendered image by I∗sim. The set of matched keypoints for this view is

Ci∗ =
{(

k∗,j
sim, k

∗,j
orig

)}M

j=1
,

The optimal 2D keypoint correspondences {(k∗,j
sim,k

∗,j
orig)}Mj=1 are then lifted into 3D by unprojection.

Specifically, for each simulated keypoint k∗,j
sim we compute its 3D coordinate via

Psim,j = Unproject
(
k∗,j
sim; K

∗
sim, R

∗
sim, t

∗
sim, D

j
sim

)
, (10)

where K∗
sim,R

∗
sim, t

∗
sim are the intrinsic and extrinsic parameters of the known simulated camera and

Dj
sim is the depth rendered in the simulation.

Similarly, for each original image keypoint k∗,j
orig we obtain

Porig,j = Unproject
(
k∗,j
orig; K, R, t, D(uj

orig, v
j
orig)

)
, (11)
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Figure 10: Background Impainting Results. The top row shows the original RGB images with task-
relevant objects present; the bottom row shows the corresponding inpainted images after foreground
object removal, where only backgrounds remain.

where K, R and t are the recovered camera intrinsic and extrinsic parameters, and D(uj
orig, v

j
orig) is

the aligned MoGEWang et al. (2024) depth at pixel (uj
orig, v

j
orig).

This yields a set of M 3D–3D correspondences

S =
{
(Psim,j , Porig,j)

}M

j=1
.

Rigid Transformation Estimation using SVD Given the set of M 3D–3D keypoint correspon-
dences {(Psim,j ,Porig,j)}Mj=1, our goal is to estimate the rigid transformation (R, t) that best aligns
these two point sets. This transformation consists of a rotation matrix R ∈ SO(3) and a translation
vector t ∈ R3, such that:

Porig,j ≈ RPsim,j + t.

We employ the Singular Value Decomposition (SVD) method for this estimation, which yields the
rotation R and translation t that map the 3D keypoints of the simulated object to the original point
cloud and thus recover the position and orientation of the generated object.

D BACKGROUND INPAINTING

We generate a static background by inpainting the robot and object regions in the first video frame
with LaMa Suvorov et al. (2021). We visualize the results of background inpainting for 4 different
scenes in Bridge Dataset Walke et al. (2023b) in Figure 10.

E SYSTEM IDENTIFICATION

To improve the simulation fidelity of the robot’s open-loop motion, we apply system identification
(SysID) to tune the proportional–derivative (PD) controller gains, kp and kd. The goal is to minimize
the discrepancy between simulated and real end-effector trajectories, using only the joint position
commands as input. For each trajectory in a dataset, we extract the end-effector pose sequence and
run a physics-based simulation using the same joint commands. The simulated robot is controlled
with a PD controller, and the gains are optimized to minimize the difference in end-effector positions
over time.

kp∗, kd∗ = argmin
kp,kd

T∑
t=1

(
∥xgt

t − xt∥2 + arcsin

(
1

2
√
2
∥Rgt

t −Rt∥F
))

(12)

where xgt
t and Rgt

t denote the ground-truth end-effector position and orientation from the real world
dataset, xt and Rt denote those of the simulated robot, and ∥ · ∥F denotes the Frobenius norm.
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Note that we exclude the gripper from the system identification process, as its state in the dataset
is typically represented by a binary open/close signal, which does not support continuous control
tuning.

To search for optimal parameters, we use a gradient-free Simulated Annealing (SA) strategy. In each
iteration, a candidate set of gains is evaluated in parallel using the Genesis simulator Authors (2024).
All environments are initialized simultaneously, and the same candidate gains are applied to each. At
each step:

• Inverse kinematics is solved in batch to produce joint targets for each trajectory.

• PD control is applied in each environment using the current candidate (kp,kd).

• The mean Euclidean distance between the simulated and dataset end-effector positions is
computed.

• The SA policy perturbs the parameters and accepts new candidates based on the change in
average error.

Gains are optimized over 5000 steps of SA. Each iteration involves simulating all trajectories for a
fixed number 5000 of steps (typically ), making the process feasible in parallel with GPU acceleration.
We use the following parameter ranges for the search: kp ∈ [2000, 15000], kd ∈ [10, 2000].

A visual comparison for Bridge Dataset Walke et al. (2023b) before and after system identification is
shown in Figure 11, where the dataset (red) and simulated (blue) end-effector trajectories are overlaid
on the XY plane.

(a) before the system identification (b) after the system identification (c) before the system identification (d) after the system identification

Figure 11: Inferring robot control gains for matching robot trajectories in reality and simulation.
The end-effector trajectory, projected onto the XY plane, is shown for both the pre-identification (a,c)
and post-identification (b,d) stages. After system identification, the simulated trajectory (blue) aligns
closely with the recorded dataset trajectory (red), whereas significant deviations are observed prior to
identification.

F BridgeSim ENVIRONMENT VISUALIZATIONS

We present additional visualizations of results from our Real2Sim pipeline in Figure 12.

G ENVIRONMENT PERTURBATIONS

To quantify policy robustness under realistic visual and spatial variability, we systematically introduce
four controlled environment perturbations.

G.1 BACKGROUND CHANGE (∆BG)

For each scene, we replace the original background with five different inpainted backgrounds
generated by our Reality-to-Simulation pipeline and keep all foreground objects exactly the same, so
that for every scene we have five ’background flipped’ variants that differ only in their contextual
appearance, as illustrated in Figure 14.
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Figure 12: Visualizations of a subset of BridgeSim Environments

Figure 13: Visualizations of a subset of DROIDSim Environments

G.2 COLOR SHIFT (∆COLOR)

For each scene, we leave the foreground (objects, lighting, dynamics) completely unchanged and
apply only a low-level color perturbation to the background by remapping its RGB channels to BGR
and blending back at four intensity levels. Concretely, for every background pixel with the original
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Figure 14: Background Change Example. The top-left image shows the original image without
background perturbations.

Figure 15: Color Shift Example. The leftmost image shows the original image without color
perturbations.

color vector [R,G,B], we compute:

C ′(α) = (1− α)

[
R
G
B

]
+ α

[
B
G
R

]
,

where
α ∈ {0.00, 0.33, 0.66, 1.00}

corresponds respectively to 0%, 33%, 66% and 100% BGR swap intensity. This yields four “color-
swapped” background variants per scene, as illustrated in Figure 15.

G.3 OBJECT POSE CHANGE (∆OBJPOSE)

For each scene containing N distinct assets with original world-space positions {xi}Ni=1, we perform
N independent random permutations {π(k)}Nk=1 (including the identity permutation for the original
layout). For permutation k, we reassign asset i to the position of asset π(k)(i), yielding

x
′(k)
i = xπ(k)(i), i = 1, . . . , N.

This procedure generates N scene variants that differ only in object arrangement, as illustrated in
Figure 16.

H AUTOMATED TASK PROGRESS SCORING WITH VLMS

We present the results for generative value learning based progressive score prediction in Figure 17
18 19.
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Figure 16: Object Position Perturbation Example. The top-left image shows the original image with
base permutation.

Figure 17: Example VLM-generated task evaluation curves on base environment. Left panels:
Representative frames sampled at low- and high-progress points. Right panels: VLM-assigned
completion score (y-axis) across frame ID (x-axis).

I VLM EVALUATIONS

In the Rh20TSim environment, Octo achieves a significantly higher VLM score than the other models.
Qualitative analysis reveals this is due to a minimalistic motion pattern; Octo just slowly lowers its
arm directly onto the workbench. This simple trajectory succeeds by coincidence, as the target object
happens to be positioned in the arm’s path. This shortcut solution scores higher than the baseline
policies, which engage in more extensive but ultimately unsuccessful exploration.

J HUMAN EVALUATIONS

To assess the reliability of our automated task success metrics, we conducted a validation study by
comparing them against human judgments collected through a user study. We developed a web-based
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Figure 18: Example VLM-generated task evaluation curves on perturbed environments. Top: A
high-progress moment immediately after the object lift, for which the VLM predicts a completion
score of approximately 70%. Bottom: An inconsequential action with no strong effect on task
progress, for which the VLM predicts a low completion score of approximately 10%.

Figure 19: Example VLM-generated task evaluation curves on perturbed environments. Top: A
successful pick-and-place execution—after the object lift the VLM score climbs steadily and correctly
shows task completion. Bottom: An unsuccessful trajectory with completion score remaining below
20%, demonstrating the VLM’s capacity to detect failure to complete the task.
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interface that presented annotators with two side-by-side videos, each showing a different policy
attempting the same task described by a natural language instruction. For each pair, participants are
first asked to provide descriptions of each robot’s attempt and then judge which policy performed
better or if it was a tie. An example of this interface is shown in Figure 20. To ensure high data
quality, we require participants to pass a qualification quiz by correctly evaluating at least 8 out of 10
video pairs. These pairs were intentionally chosen with clear performance differences, which makes
them straightforward to judge.

From a total pool of 70 Environments, we collected 7,104 pairwise comparisons on the Amazon
Mechanical Turk (AMT) platform, with each participant assigned a random subset to evaluate. All
participants were compensated according to the platform’s guidelines, ensuring a diverse pool of
evaluators and promoting reliable, unbiased annotations.

Figure 20: Human evaluation interface. Participants viewed two policies side-by-side and selected
the one that performed better or if it was a tie.

K ETHICS STATEMENT

This work complies with the ICLR Code of Ethics and established research integrity principles.
No human subjects, personal, or sensitive data were used for training or evaluating policies; all
human involvement in the benchmarking framework is limited to online preference annotation of
video content from robot simulation, with participants recruited and compensated through recognized
platforms according to their guidelines. Annotator tasks were designed to be non-intrusive, requiring
only high-level performance comparisons in a double-blind interface, and a qualification quiz was
used to promote reliable, unbiased evaluations. Research artifacts, algorithms, and datasets are
used in compliance with their licenses, and no intellectual property or privacy concerns are raised
by the experimental protocol. The study sought to anticipate and mitigate unfair outcomes and
measured bias and robustness across diverse input sources, including systematic stress-tests for failure
modes. Limitations concerning simulation realism and generalization beyond the studied benchmarks
are acknowledged, as discussed in the main text and the limitations section. The full evaluation
framework and results will be released for broad, equitable access by the research community.

L REPRODUCIBILITY STATEMENT

Significant effort has been devoted to ensuring that all results in this paper are reproducible. Details of
the reality-to-simulation translation pipeline, environment and object generation, evaluation method-
ology (including VLM progress scoring, human preference infrastructure, and global policy ranking
algorithm), as well as hyperparameter settings, are provided in the main text and in Appendices B–G.
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The codebase for environment construction, simulation, and scoring, along with evaluation logs and
benchmark scenarios, will be anonymously released as supplementary materials. Source datasets,
simulation assets, and parameter optimization procedures are fully documented in the Appendix and
will be indexed for direct replication. Further, systematic perturbation experiments and robustness
analyses can be reproduced using the public release. The aim is to enable independent verification and
extension of all primary claims and experimental findings using the open-source pipeline described
in the manuscript.

M LLM USAGE STATEMENT

In the development of this manuscript, Large Language Models (LLMs) were used as general-purpose
assistive tools for grammar checking, rewording, preparation of summary paragraphs, and technical
editing. No sections of the manuscript, experimental results, or research claims were generated solely
by an LLM. All original research content, analyses, and experiment design were authored by the stated
researchers. When LLMs contributed to polishing language or format, the outputs were reviewed,
edited, and verified for accuracy to ensure compliance with the ICLR Code of Ethics, integrity,
and originality. The authors take full responsibility for all content presented here and confirm that
no LLM-generated text constitutes plagiarism, fabrication, or any form of scientific misconduct.
LLMs are not considered authors and have not contributed to research ideation, methodology, or core
scientific findings
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