
A Appendix424

A.1 Considerations for Sampling Around the Offline Dataset425

In this subsection, we explore an alternative sampling strategy for the pseudo-labeling process. Instead426

of generating new samples around the current optimization point, this strategy generates samples427

directly around the offline dataset D. To ascertain the effectiveness of our chosen strategy against this428

alternative, we perform experiments on two tasks: D’Kitty (continuous) and TF8 (discrete).429

Table 4 showcases the results. For both tasks, our strategy consistently yields higher scores, affirming430

its superior performance over the alternative. The advantage of our chosen strategy can be attributed431

to its dynamic nature. By sampling around the current optimization point, we gather more insightful432

information for the local fine-tuning of the proxy. This strategy allows the co-teaching process to433

adapt and evolve according to the optimization trajectory, leading to improved performances.434

Table 4: Comparison of Sampling Strategies.
Method Sampling along Gradient Path (Ours) Sampling from D

TF8 0.958± 0.008 0.871± 0.067
D’Kitty 0.968± 0.020 0.955± 0.006

A.2 Comparative Performance Analysis using Median Scores435

In addition to the maximum scores discussed in the main paper, we also present the median (50th436

percentile) scores across all seven tasks. The best design in the offline dataset, denoted as D(best),437

along with the mean and median rankings are provided for comprehensive comparison.438

Performance in Continuous Tasks. Table 5 illustrates the performances of ICT compared with other439

methods in continuous tasks. It is noteworthy that ICT exhibits performance on par with the best-440

performing methods. Compared with the vanilla gradient ascent (Grad), ICT demonstrates superior441

performance, thus affirming its effectiveness in addressing out-of-distribution issues. Moreover, ICT442

is generally better than the mean ensemble (Mean), which demonstrates the effectiveness of our443

strategy. These results support the use of ICT as a robust baseline for offline MBO.444

Table 5: Experimental results on continuous tasks for comparison (median).
Method Superconductor Ant Morphology D’Kitty Morphology Hopper Controller
D(best) 0.399 0.565 0.884 1.0
BO-qEI 0.300± 0.015 0.567± 0.000 0.883± 0.000 0.343± 0.010

CMA-ES 0.379± 0.003 −0.045± 0.004 0.684± 0.016 −0.033± 0.005
REINFORCE 0.463± 0.016 0.138± 0.032 0.356± 0.131 −0.064± 0.003

CbAS 0.111± 0.017 0.384± 0.016 0.753± 0.008 0.015± 0.002
Auto.CbAS 0.131± 0.010 0.364± 0.014 0.736± 0.025 0.019± 0.008

MIN 0.336± 0.016 0.618± 0.040 0.887± 0.004 0.352± 0.058
Grad 0.321± 0.010 0.559± 0.032 0.856± 0.009 0.354± 0.010
Mean 0.334± 0.003 0.569± 0.010 0.876± 0.003 0.386± 0.003
Min 0.354± 0.026 0.571± 0.011 0.883± 0.000 0.359± 0.004

COMs 0.316± 0.026 0.560± 0.002 0.879± 0.002 0.341± 0.009
ROMA 0.372± 0.019 0.479± 0.041 0.853± 0.007 0.389± 0.005
NEMO 0.318± 0.008 0.592± 0.000 0.880± 0.000 0.355± 0.002

BDI 0.412± 0.000 0.474± 0.000 0.855± 0.000 0.408± 0.000
IOM 0.352± 0.021 0.509± 0.033 0.876± 0.006 0.370± 0.009

ICT(ours) 0.399± 0.012 0.592± 0.025 0.874± 0.005 0.362± 0.004

Performance in Discrete Tasks. The median scores for discrete tasks are reported in Table 6.445

ICT consistently demonstrates high performance for both TF Bind 8 and TF Bind 10. However,446

for the NAS task, which has a higher dimensionality than the two tasks, the optimization process447

becomes notably more complex. Further, the simplistic encoding-decoding strategy employed in the448

design bench may not accurately capture the intricacies of the neural network’s accuracy, potentially449

contributing to ICT’s suboptimal performance on the NAS task.450
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Table 6: Experimental results on discrete tasks & ranking on all tasks for comparison (median).
Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.439± 0.000 0.467± 0.000 0.544± 0.099 7.7/15 8/15

CMA-ES 0.537± 0.014 0.484± 0.014 0.591± 0.102 8.4/15 6/15
REINFORCE 0.462± 0.021 0.475± 0.008 −1.895± 0.000 10.9/15 14/15

CbAS 0.428± 0.010 0.463± 0.007 0.292± 0.027 12.9/15 13/15
Auto.CbAS 0.419± 0.007 0.461± 0.007 0.217± 0.005 13.4/15 13/15

MIN 0.421± 0.015 0.468± 0.006 0.433± 0.000 7.7/15 9/15
Grad 0.528± 0.021 0.519± 0.017 0.438± 0.110 7.7/15 8/15
Mean 0.539± 0.030 0.539± 0.010 0.494± 0.077 5.3/15 5/15
Min 0.569± 0.050 0.485± 0.021 0.567± 0.006 3.7/15 4/15

COMs 0.439± 0.000 0.467± 0.002 0.525± 0.003 8.4/15 8/15
ROMA 0.555± 0.020 0.512± 0.020 0.525± 0.003 5.6/15 5/15
NEMO 0.438± 0.001 0.454± 0.001 0.564± 0.016 7.7/15 7/15

BDI 0.439± 0.000 0.476± 0.000 0.517± 0.000 6.7/15 8/15
IOM 0.439± 0.000 0.477± 0.010 −0.050± 0.011 7.9/15 7/15

ICT(ours) 0.551± 0.013 0.541± 0.004 0.494± 0.091 4.3/15 3/15

Summary. ICT excels by achieving the best median ranking and a top-two mean ranking. These451

rankings consolidate ICT’s standing as a strong method for both continuous and discrete tasks.452

A.3 Hyperparameter Setting453

We report the details of hyperparameters in our experiments. The number of iterations, T , is set454

to 200 for continuous tasks and 100 for discrete tasks. For most continuous and discrete tasks, we455

employ the Adam optimizer [32] to fine-tune the proxies. The learning rates are set at 1e− 3 and456

1e − 1 for continuous tasks and discrete tasks, respectively. In the case of the Hopper Controller457

task, the input dimension is significantly larger, at 5126, and we adopt a smaller learning rate 1e− 4458

for fine-tuning to ensure stability of the optimization process. Regarding the learning rate for the459

meta-learning framework, we use the Adam optimizer [32] with a learning rate 2e− 1 for continuous460

tasks and 3e− 1 for discrete tasks, respectively.461

A.4 Analysis of Co-teaching and Sample Reweighting Efficacy462

In our analysis, we focus on two key steps of our method: (1) pseudo-label-driven co-teaching and463

(2) meta-learning-based sample reweighting. We evaluate the efficacy of these steps by comparing464

generated samples with their corresponding ground truth. It’s important to note that during the training465

phase, ground-truth scores are inaccessible to all algorithms and are used strictly for evaluation. Our466

method incorporates three proxies fθ1(·), fθ2(·), and fθ3(·). We employ fθ1(·) for pseudo-labeling467

and fθ2(·), fθ3(·) for co-teaching. We run ICT over 50 time steps for both D’Kitty (continuous) and468

TF8 (discrete) tasks.469

Pseudo-label-driven co-teaching. The step involves selecting 64 samples with smaller losses for470

fine-tuning the proxies while ignoring the remaining 64 samples. To assess the effectiveness of471

this strategy, we calculate LSel, the mean squared error (MSE) between the pseudo-labeled and472

ground truth scores of the selected 64 samples, and LIgn, the MSE for the ignored samples. These473

calculations are averaged over 50 steps. We find that for D’Kitty, LSel is 0.124 lower than LIgn and474

for TF8, it’s 0.006 less than LIgn. These results validate the efficacy of this step, as the selected475

samples more closely align with the ground truth.476

Meta-learning-based sample reweighting. In this step, we aim to assign larger weights to cleaner477

samples and smaller weights to noisier ones among the total of 64 samples. We measure the efficacy478

of this step by calculating LLarge, the MSE between the pseudo-labeled and ground-truth scores of479

the 32 samples with larger weights, and LSmall, the MSE for the 32 samples with smaller weights.480

These calculations are averaged over 50 steps. We observe that for D’Kitty, LLarge is 0.010 lower481

than LIgn. For TF8, LLarge is 0.005 less than LSmall. These findings indicate that the samples with482

larger weights are indeed closer to the ground truth, substantiating the effectiveness of this step.483
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A.5 Examining Hyperparameter Sensitivity Further484

Figure 5: Extended Analysis on Hyperparameter Sensitivity.

Building on the analysis from Sec 4.6, we delve deeper into hyperparameter sensitivity, focusing on485

the TF8 task. Specifically, we investigate the influence of the number of selected samples (K) in the486

first step, and the learning rate (β) in the second step.487

• Figure 5 (a) displays the 100th percentile normalized ground-truth score as a function of the time488

step T for different K values (8, 16, 32, 64). ICT demonstrates stability over a specific range for489

varying K values, showcasing its robustness. Notably, ICT reaches optimal designs around t = 20490

and maintains this level, further validating its resilience against different optimization steps T .491

• Figure 5 (b) plots the 100th percentile normalized ground-truth score as a function of the learning492

rate (β) in TF8. ICT maintains a consistent performance across diverse β values, corroborating its493

robustness concerning the hyperparameter β in TF8.494

Furthermore, we evaluate the effect of the fine-tuning learning rate α in both TF8 and D’Kitty495

tasks. Figures 5 (c) and 5 (d) reveal a consistent performance across varied α values for both tasks,496

highlighting ICT’s robustness towards the fine-tuning learning rate.497

A.6 Limitation498

We validate the effectiveness of ICT across a broad spectrum of tasks. Nevertheless, certain evaluation499

methodologies do not completely represent authentic situations. For instance, in the superconductor500

task [5], we adhere to the established convention of utilizing a random forest regression model as501

the oracle, in line with previous studies [1]. Regrettably, this model may not perfectly mirror the502

complexities of real-world cases, resulting in discrepancies between our oracle and the ground-truth.503

Future collaborations with domain experts can potentially refine these evaluation methods. Overall,504

given the straightforward formulation of ICT, combined with empirical proof of its robustness and505

effectiveness across diverse tasks in the design-bench [1], we maintain confidence in its capability to506

effectively generalize to other scenarios.507
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