A OVERVIEW OF FUSION TECHNIQUES AND RELATED WORKS

Multimodal fusion has been a heavily researched area for decades (Osadciw and Veeramachaneni,
2009; Varshney, [1997). Such models have been used for tasks ranging from video classification
(Yang et al.,[2016)), action recognition (Cabrera-Quiros et al., 2019), and speech enhancement (Hou
et al., 2017) to brain studies|Sui et al.|(2012)), ecological applications (Taheri and Toygar, |2018)), and
monitoring systems (Varshneyl, |1997 |Li and Seignez| 2018). However most models have primarily
focused either on architectural changes or designing new fusion layers (Yan et al., 2021)).

Early Fusion Figure [[a]illustrates a general early fusion scheme. Early fusion, sometimes also
called feature fusion in the early literature (Ayache et al.,|2006; |Chair and Varshney, | 1986)), creates a
multimodal representation by combining unimodal information before they are processed. One can
broadly interpret an Early Fusion scheme as one that integrates unimodal features before ‘learning
high level concepts’. Early fusion models have the ability to model highly complex dependencies
between different modalities, however they generally face problems when dealing with heterogenous
sources such as text and images.

Late Fusion In contrast to early fusion, late fusion designs learn ‘high level semantic concepts’
directly from unimodal features. Late fusion allows an easy way to aggregate information from di-
verse modalities and can easily incorporate pre-trained models (e.g. [Rahman et al.| (2020))). As such,
late fusion has been the more commonly utilized framework for multimodal learning (Ramachan-
dram and Taylor, 2017} |Simonyan and Zisserman, [2015)). However, late fusion models, illustrated
in Figure [Ib] run the risk of missing cross-modal interactions in the mixed feature space.

Architecture Changes Due to the wide variety of applications and tasks which require multimodal
fusion, over the years a plethora of different architectures have been used. Some of the recent works
include that of |Vielzeuf et al.| (2018)), [Sankaran et al.| (2021), [Pérez-Rua et al. (2019), Hazarika
et al.| (2020), and Khan et al.| (2012). |Vielzeuf et al.| (2018)) proposed a multimodal fusion design
called CentralNet that is based on aggregative multi-task learning. |Sankaran et al.| (2021) bring
together ideas from CentralNet and Cycle-GAN (Zhu et al.l [2017) and design a Refiner Fusion
Network (Refnet). The Refnet design uses a de-fusion model trained via cyclic losses to align both
unimodal and multimodal representations in a common latent space. [Pérez-Rua et al.[(2019) used
neural architecture search to find a good architecture for convolutional networks. The discovered
architecture is a multistep fusion model that fuses information from different individual unimodal
layers multiple times. [Hsu and Glass| (2018)) and |Khattar et al.|(2019) used ideas from unsupervised
learning to use multimodal autoencoders to learn better representations. [Tsai et al.|(2019b) improved
upon the factor model based approach of |[Hsu and Glass|(2018) by incorporating prior matching and
discriminative losses. [Nagrani et al.|(2021) modify the multimodal transformer [Tsai et al.| (2019a)
to incorporate bottlenecks.

Our proposed method, though technically an architecture change, is a single change that treats the
existing model as given. It is closer in spirit to a black-box change, compared to the aforemen-
tioned methods. Hence it is complementary to this line of work. We experiment with many of the
aforementioned models to show how our proposal consistently improves performance.

Fusion Techniques Other than basic fusion layers such as pooling and concatenation, other com-
mon layers use include aggregation (Khan et al., |2012)), tensor factorisation (Liu et al., 2018)), at-
tention modules (Zadeh et al., [2018a} [Tsai et al.l 2019a), channel-swaps [Wang et al.| (2020b) and
non-local gating (Hu et al.l [2019; Wang et al.| 2018}, [Liu et al., 2019). Rahman et al.| (2020) used
pre-trained transformer (Siriwardhana et al., 2020) along with|Wang et al.|(2019) modulation gate to
achieve state of the art results on the multimodal sentiment benchmarks MOSI|Wollmer et al.|(2013))
and MOSEI Zadeh et al.|(2018c). LFN (Zadeh et al., 2017) combined information via pooling pro-
jections of high dimensional tensor representation of multimodal features. These works propose
specific fusion techniques, they design specific forms of the F' function (see Figure [T). Our pro-
posed technique is agnostic to the choice of the fusion function F' and thus is orthogonal to these
ideas.

Model Agnostic Methods A number of alignment and information based losses have also been
explored to improve fusion by inducing semantic relationships across the different unimodal repre-

14

sentations (Abavisani et al.| [2019; [Bramon et al 2011} Liang et al.| |2021b} Liu et al., [2021; |Han
et al., 2021) . These are purely train-time objectives and can be generally applied to most multi-
modal fusion models. Recently Wang et al.| (2020a) proposed a new approach that can be applied
to any multimodal architecture. Their approach called Gradient Blending (GB) tackles the problem
of joint learning when different unimodal networks have varying capacity, by learning individual
modality weights factors based on the model performances. Our proposal instead of adding losses
or adding reweighing factors instead adds backprojective connections. So, these model-agnostic
proposals are in general complementary to our approach, and can be combined with it to achieve
further improvements.

Memory based Fusion Existing works using multiple fused representation computed over time,
have been used for sentiment analysis (Gammulle et al., [2017} [Zadeh et al., 2018azb)). The purpose
of memory in those methods is retaining history for easier learning of interactions across time steps
in a sequential input. On the other hand, in our proposal, context vector serves the purpose of making
late-fusion features accessible to the unimodal network processing models/early stage features. Our
proposal is entirely independent of any temporal axis/sequential nature in the input. Secondly, these
methods capture historical relationships only in unimodal data, and memory is used directly over the
concatenated unimodal features. On the other hand our approach provides multimodal information
to unimodal feature generators.

Deep Unfolding Iterative neural networks (Chang et al., [2000; Hershey et al., [2014) have been
successful for a variety of problems in computer vision such as inverse problems (Adler and Oktem,
2017; (Chun et al.} 2020), super resolution (Neshatpour et al., 2019) and other tasks (Chang et al.,
2000; Balatsoukas-Stimming and Studer, 2019). Deep unfolding methods are specific recurrent
models which at each iteration, pass the results of inference from previous iterations onward. Most
such methods have been used for image super resolution (Zhang et al.l 2020; [Ning et al.l 2020)
and wireless communication systems (Balatsoukas-Stimming and Studer, [2019) While Pro-Fusion
shares an unrolling design with these works, it differs from these methods in the following ways:

* Unrolling is used primarily as a way to train the backward connections, and are not the
fundamental aspect of Pro-Fusion. ProFusion was specifically designed to solve a problem
in multimodal data fusion: the “fuse it or lose it” situation; by adding cross-modal backward
connections. In principle other methods such as equilibrium propagation (Ernoult et al.|
2020), balance-tuning (Zhang et al., 2018) or other methods can also be used to train a
self-iterative loop of Pro-Fusion models.

* Deep unfolding was not designed for multimodal data, nor adapted to it, to the best of our
knowledge. Deep unfolding/iterative models that do not cycle cross-modal information still
suffer from the “fuse it or lose it” problem. On the other hand, with ProFusion, unimodal
representations adapt to multimodal features, as the model can, in future iterations, extract
complementary information based on previous cross-modal features.

* Deep unfolding methods unroll a classical iterative algorithm such as “gradient descent” or
“orthogonal message passing” and introduce trainable parameters for the update step. On
the other hand, we consider a given multimodal fusion model as one step of the iteration.

* In our approach, parameters are shared between steps, which is not common in deep un-
folding literature, where every iteration typically introduces a new set of parameters.

B FURTHER EXPERIMENTS

B.1 SYNTHETIC EXPERIMENTS

We further explore the setting implied by the generative model described in Section[3.1] For this we
generate data as from a generative model matching the dependencies in Figure[2] We set the function
h to be leaky-Relu and g to be the sine function. We choose f such that f o & is linear. Note that
the specific choice of h, g makes the function h + g non-invertible. Z was sampled from a uniform
distribution on [-2.5,2.5] and all linear transform matrix were also sampled from the standard normal
distribution. The specific generative equations are presented in the equations below.

15

Z ~U[-25,2.5] (1)
Wi ~N(0,1), Wy ~ N(0,1), W, ~N(0,1)

2
X1 =Relu(W1Z) — 2% |n|sin(WaZ) + &1

3)
XQ = Sil’l(WQZ) + 092e2 (4)
Y=W,Z+¢, 4)

(6)

Figure 7

=
o

Change %

o

/’7,? s 6 0 '

) Figure 9: AUC change for pro-fusion model over
Figure 8: Percentage Improvement over normal fusion over varying levels of modality de-
varying levels of modality dependence. pendence. Since the metric is error, lower AUC is
Note that this is percent improvement in better
MSE so higher is better

All noise terms ¢ are sampled from a standard normal distribution. We train a 3 layer MLP to solve
this regression task. Fusion was done via plain concatenation of the second layer. For the pro-
fusion model, the same fusion vector was linearly transformed and fed along with the input. We
varied the strength 7 of corruption in X; and of o the noise in X+, and ran for each such value 30
trials. In close to 90% of all trials we found the pro-fusion model to perform better with an average
improvement of 8%. We plot the contours for multiple different runs in Figures 8]

We also do robustness evaluation of this model over different values of noise parameters. We use
the AUC (area under ROC curve) metric for this purpose. In Figure [0] we plot the improvement in
AUC of the pro-fusion model over direct fusion against the different values of 1/o9

B.2 EXPLORATORY EXPERIMENTS

In this section we explore various aspects of the backprojecting connections, such as the layer at
which backprojecting connection joins, the number of unrolling steps and the inference complexity.

We measure the training time and inference time for pro-fusion with different architectures relative
to that for the base model for different number of unrolling steps R. The straightforward way in
which the current pro-fusion design uses the base model, suggests that both training and inference
time should vary proportionately to the number of steps. This expectation is brought out in our
experiments and can be seen in Figure [T0b]

We also conduct experiments with determining at which upstream layer should the fused out should
be connected back to. For this once again we run trials on the AVMNIST data. Our results are

depicted in Figure[I0a]

16

— LFN — LFN
1012 q MFM 1 MFM
— Refnet —— Refnet

«

I
o
=
5]
-

Relative Accuracy
= =
o o
S S
& @
w

Relative Inference Time
o

1.004

Layer Index T 3 H 3 : .
. . R
(a) Performance against layer index of backpro-

jecting connection (b) Inference time vs R

C FINANCIAL DATA DETAILS

The data itself is not licensed but following Liang et al.| (2021a); Sardelich and Manandhar| (2018])
can be gathered from online records of historical stock prices and events.

* FB is composed of S&P 500 stocks which are part of food, meats and restaurant chains and
includes the tickers CAG, CPB, DRI, GIS, HRL, HSY, K, MCD, MKC, SBUX, SIM, TSN,
YUM.

« HEALTH is composed of following health-care and pharmaceutical sector tickers MRK,
WST, CVS, MCK, ABT, UNH, TFX, PFE, GSK, NVS, WBA.

* TECH is composed of technology and information service stocks from NASDAQ. We
include tickers AAPL, ADBE, AMD, AMZN, GOOG, HPQ, IBM, INTC, MSFT, MSI,
NVDA, ORCL, QCOM, ZBRA.

C.1 ROBUSTNESS COMPUTATION

We use the area under the performance-noise curve as the measure of robustness. This measure
of robustness is the same as the one used by [Liang et al.| (2021a); [Taori et al.| (2020), and can be
computed via the following integral:

ROBUSTAUC =7 = /Perf(f7 o) — Perf(b,o)do

where Per f(., o) is the performance metric evaluated on a dataset corrupted with noise level o, f
is the model to be evaluated and b is a baseline model. Basically, the model is evaluated on the same
dataset corrupted on an equally spaced grid of noise levels and the performance is averaged over all
the noise configurations is used. Note that the Per f as used by [Shankar et al.|(2017); Taori et al.
(2020) is a positive metric like accuracy. For inverse metrics like MSE one has to use the negative
of the above integral. For computing robustness we our experiments we use a transformer model as
the baseline.

D EXPERIMENTAL DETAILS

In this section we present the total results of all the experiments. We include metrics such as CORR
(pearson correlation) which were not reported in the main body. We also report the average deviation
of the scores in these tables.

D.1 AUC MEASURES AND AVERAGE DEVIATION ON FINANCIAL DATA
Our results on financial time-series prediction, while qualitatively similar to results of (Liang et al.,

2021a)), is different because of using more number of target stocks and different time period. For
completeness we also report the error on the dataset provided by them in Table

17

F&B HEALTH TECH
Model MSE | ROBUSTAUC 1 | MSE | ROBUSTAUC 1 | MSE | ROBUSTAUC 1
EFLSTM Base | 0.73 (0.03) 0.35 0.308 (0.005) 0.018 0.742 (0.006) 0.027
Our | 0.70 (0.04) 0.40 0.306 (0.003) 0.029 0.738 (0.004) 0.028
LELSTM Base | 0.77 (0.05) 0.29 0.331 (0.009) 0.016 0.736 (0.006) 0.028
Our | 0.73 (0.05) 0.33 0.315 (0.007) 0.026 0.737 (0.005) 0.028
GB Base | 0.690 (0.04) 0.39 0.318 (0.03) 0.022 0.740 (0.006) 0.029
Our | 0.688 (0.02) 0.39 0.305 (0.003) 0.035 0.738 (0.005) 0.029
LF Transformer Base | 0.838 (0.004) 0.09 0.337 (0.004) 0.012 0.757 (0.005) 0.027
Our | 0.788(0.004) 0.15 0.331 (0.004) 0.015 0.755 (0.005) 0.028
MulT Base | 0.814(0.005) 0.13 0.333 (0.004) 0.001 0.763 (0.005) 0.025
Our | 0.765 (0.006) 0.19 0.329 (0.005) 0.002 0.757 (0.004) 0.026
EF transformer Base | 0.836(0.009) O. 0.335(0.001) 0. 0.755 (0.004) 0.
Our | 0.827(0.009) 0.01 0.326 (0.004) 0.02 0.750 (0.004) 0.00

Table 6: Results on stock prediction on the three sectoral datasets. The performance is evaluated on
the Mean Sqaured Error (MSE) and ROBUSTAUC metric. Note we have already flipped the AUC
sign for the inverse metric.

Table 7: Results on multimodal dataset of [Liang et al.|(2021a)) in the finance domain

Dataset F&B HEALTH TECH
Metric MSE | MSE | MSE |
Base Our Base Our Base Our
EF-LSTM 1.836 1.753 | 0.521 0.511 | 0.119 0.124
LF-LSTM 1.891 1.786 | 0.545 0.522 | 0.120 0.121
LF-Transformer | 2.157 2.112 | 0.572 0.566 | 0.143 0.144
MulT 2.056 2.032 | 0.554 0.553 | 0.135 0.132

D.2 MULTIMEDIA

Complete results on AVMNIST along with the standard deviations of the performance are reported
in Table[9]

D.3 HYPERPARAMETER DETAILS

For the AVMNIST dataset, we used LeNet style unimodal feature generators. For the image encoder
we used a 4 layer network with filter sizes [5,3,3,3] and max-pooling with width of 2. For the audio
encoder the networks was a 6 layer networks with filter sizes [5,3,3,3,3,3] and max-pooling of width
2. The channel width was doubled after each layer. For GB models, the validation size was 0.8 and
the model is fine-tuned for gradient blending for 30 epochs. For the optimization process we tried
random search on a logarithmic scale on the interval [le-5, Se-2]. We experimented with Adam,
Adagrad, RMSProp, SGD optimizer with default configurations.

For the MFAS model, we did not do architecture search but instead used the final model presented
by [Pérez-Rua et al.| (2019). That model is shows in Figure[TT] While we have tried to stay close to
the method described in |Pérez-Rua et al.|(2019); Liang et al.| (2021a) for creation of this dataset, our
version of AVMNIST is potentially different from the earlier reported results as no standard dataset
is available. For financial time series prediction, we used 128 dimensional RNNs. For transformers
we used a 3 layer network with 3 attention heads. The sequence length used for BPTT in all cases
was 750. The optimization process was chosen in a similar way as mentioned previously.

Parameter Sizes

Models on MOSI/MOSEI, use and fine-tune BERT (or another similar large language model). The
total number of trainable parameters for these models is >20M, and so the additional parameters
introduced by ProFusion are especially small (relatively). In table [T0] we present a comparison of
the parameter size for the AVMNIST experiments.

18

| | Accr t Accy 1 MAE| CORRT |

FLSTM

Base | 31.2(0.5) 75.9(0.5) 1.01 0.64

Our | 31.8(04) 76.8(0.3) 1.0 0.66
LEN

Base | 31.2(0.4) 76.6(0.4) 1.01 0.62
Our | 32.1(0.6) 77.2(0.2) 1.01 0.62
MAFBERT

Base | 40.2 (0.4) 83.7(0.3) 0.79 0.80
Our | 40.8(0.4) 84.1(0.3) 0.79 0.80
MAGXLNET

Base | 43.1(0.2) 852(04) 0.76 0.82
Our | 43.5(0.3) 855(0.2) 0.76 0.83
MIM

Base | 45.5(0.1) 81.7(0.2) 0.72 0.75
Our | 46.3(0.2) 83405 0.71 0.77
Accr Acco T MAE| CORR 1

FLSTM
Base | 44.1(0.2) 75.1(03) 0.72 051
Our | 44.8(0.5) 75.8(0.3) 0.72 0.52
LEN

Base | 44.9(0.3) 753 (0.4) 0.72 052
Our | 46.1(0.3) 76.4(0.3) 0.71 0.52
MAFBERT

Base | 46.9 (0.7) 83.1(0.4) 0.59 0.76
Our | 47.1(0.7) 83.6(0.2) 0.58 0.77
MAGXLNET

Base | 46.7 (0.4) 83.9(0.3) 0.59 0.77
Our | 47.1(0.3) 84.2(0.3) 0.57 0.77
MIM

Base | 53.3(0.5) 79.1(0.3) 059 0.71
Our | 54.1(0.8) 80.1(0.2) 0.57 0.73

Table 8: Results on sentiment analysis on a) CMU-MOSI and b) CMU-MOSEIL. Accy, Acco denote
accuracy on 7, 2 classes respectively. M AFE is Mean Absolute Error and Corr is the Pearson corre-
lation.

Accuracy T
Model | Base | Ours

LE 714 (0.4) | 71.6 (0.4)
LEN | 71.1(0.3) | 71.8 (0.3)
MFM | 71.4 (0.4) | 72.2 (0.6)
GB 68.9 (0.6) | 69.3(0.5)
Refnet | 70.6 (0.7) | 71.2 (0.5)
MFAS | 72.1(0.5) | 72.5 (0.3)

Table 9: Results on digit classification task with AVMNIST for various fusion architectures. The
performance metric is Accuracy. Scores outside the average range of baseline models have been
highlighted.

E TECHNICAL ANALYSIS

Given a base model F with input © = (x;, 2, ..z)), we want to create an augmented model F:
X x R? — Y with additional input ¢ € R such thatc = 0 = F(z,c) = F(z). Recall that the
function 7 mentioned in Section 2.1]is given by F(z) = P(F(G1(z1), Ga(22), .Gk (zK))).

19

Figure 11: MFAS (Pérez-Rua et al., 2019) based Multimodal Fusion Architecture for AVMNIST.
Every arrow into the activation corresponds to a linear layer. The A4 and AS represent the fourth
and fifth layer of the audio encoder. Similarly 12 and I3 represent the second and third layer of the
image encoder.

Model Base Ours
LEN 1626k 1655k
MFM 1142k 1163k
RefNet 582k 607k
GB 659k 671k

Table 10: Parameter size comparison for models tested on AVMNIST

We create the desired network F by providing c to the unimodal feature generators G;. We

use the output of the fusion layer F' and project it back into the network as ¢; via the ma-
trix/function W;. Specifically we choose a modified generator Gi X x R% to be given by
Gi(zi,¢) = Gj([xi, Wi(c)]), where W; represents a matrix/network. This creates a recurrence
relation which we unroll for R steps. The final vector cp after R steps serves as the output of fusion

which is then provided to the predictor model P.

Mathematically, we can write the overall operation as :

Gi(wi, 1) = Gj(wi + Wiler-1)) @
c = E(F(él(fﬂl, thl)v ooy GK(xKa thl))) ®)
Y = P(CR) (9)

(10)

with the initial value ¢y = 0. We would like to draw the readers attention to the lack of [t] subscript
on the inputs z in Equation[7]above. This is because the iterations on ¢ are on a dimension unrelated
to any sequentiality in the input. Instead the model iteratively modifies its late-fusion features output,
and makes it available to the unimodal network processing models/early stage features via the vector
¢;. This is different from models like (Zadeh et al.| 2018a) which use memory to store fusion vectors
across different time-steps in the input, i.e. their networks processes x; to produce fusion output.

E.1 LINEAR MODEL

Consider a simple linear model with multiple outputs and two input modalities. The two modalities
are each R? and the number of outputs is K. We consider the late and early fusion model of Figure
with only 1 layer between the input and fusion and from fusion to output. We take the fusion
layer F' to be a concatenating operation. While the figure includes non-linearity, we will in this
discussion look at the linear case.

Analysis The early fusion model works by concatenating the two inputs together, a linear transform
to R2? followed by another transform to R”. On the other hand the late fusion model corresponds
to two modality wise transform to R¢ which are then concatenated and transformed to R¥. Note
that in either case the second transformation is a 2d x K matrix.

20

Fip Foo| (Wi Wig| | Xy| _ [FuWi+ FioWar FiuuWis + FiaWas| | Xy
Iy Fog| |War Waa| | X2 Fy Wiy + FoyWag FopyWig + FoaWaa | | Xo

Late fusion on the other hand is expressible in the same formula by zeroing the off diagonal terms
of W

Fip Frg| (W 0 1| Xy | [FuWin FioWa| | Xy
Iy Fy 0 Wal | X2 oy Wi FoaWao| | Xo

First note that the rank of the effective matrix in early fusion is necessarily higher than that in late
fusion. However even in cases when the rank of the effective matrix remains the same the matrix
in late fusion is more constrained. To see this, consider a simple case where all F;; are diagonal
matrices; in which case the ratio between the rows in the top-left quadrant (i.e. F1W71) is the same
as the one in the bottom-left quadrant (i.e. F»;Wj1) (and the same is true for the other quadrants as
well). Similar constraints hold more generally. For example take the case of d = 1,D =2, K = 2.
The net transformation in this case is a 4x2 matrix of the form:

f11w11 f11w12 f21w21 f21w22
frowir frowiz foowar faowaa

One can see that the ratio of the elements of the first column and second column is the same. The
same holds for third and fourth columns. Evidently not all rank two 4x2 matrices are of this form.
As such there are functions in the early fusion variant which cannot be expressed in the late fusion
design.

Next we compare this to the pro-fusion design presented in this work. We use a variant where the
concatenated late vector is projected back as an input to the input encoders|I c| and the entire network
is unrolled once.

The composite action of the backward connection plus unrolling is still linear and is given by the
following composition

Fii Fia| |[Wi +GuWi G12Was Xy
Fyr Py GaiWi Wag + GoaWaa | | Xo

The presence of off-diagonal entries which similar to early fusion breaks the structure imposed by
late fusion in the earlier case. However this model is not as expressive as early fusion as there can
be some dependencies between the matrix entries.

E.2 MULTIPLICATIVE NONLINEARITY

While in the linear case, the extra freedom allowed by progressive fusion need not be very useful,
the presence of multimodal interaction/ off-diagonal terms can have larger effects when dealing with
non-linearity.

Consider a multiplicative non-linear layer H : RP” — R¢ with the ability to provide any d
features obtained via pairwise multiplication of input features. For example for a vector input
[x1, 22,23, 74] and output dimension d = 3, we can get any 3 of the 10 pairwise outputs i.e
(22,23, 2%, 23, 1122, ¥123, T124, T2T3, To 4, T374). Using multiplicative non-linearity is useful for
analysis as using the distributive property one can directly include behaviour of linear transforma-
tions. In Figure we depict three simple non-linear fusion models with such non-linearity added
in the layers. We denote the input features as X', X2 for the two modalities, and their individual
components are denoted by X1, X1, X? etc. We would also refer by w?-? the weight matrix applied
on modality p in the layer q of the network.

Analysis After the first layer in the late-fusion design, the unimodal features are Zwilj':lX L
> wfleJQ respectively. Then after the non-linearity, we get

1,1 1,1 1 1
E :wik wy X X

21

Late Fusion Early Fusion Pro-Fusion

Y

/' Multiplicative Layer

Figure 12: Representative Multimodal Fusion Architectures of Late fusion , Early fusion and Pro-
fusion. The round green layer is the fusion layer (assumed to be concatenation). We also depict on
the figure the location of multiplicative non-linearity with triangle, and highlight in red the back-
projections of the pro-fusion design

These are then concatenated across modalities, and passed through another multiplicative non lin-
earity. Hence the features obtained after this layer are given by

1,1 1,1 21 21vivlyl vl
W Wy wie, wy, X Xy X X

Effectively we have a linear combination of degree 4 terms that are symmetric in modalities i.e.
{XIXIXPX2, X2XZXPX2, X! XIX) X))

However in the late fusion design the unimodal features are concatenated first, and then passed
through the non-linearity. This produces after the first layer features of the form
1/2,1 11/2 y-1/2
w; X, "X j

where w'/? and X'/2 mean that choice over modalities 1 and 2 can be applied to w and X respec-
tively. More simply one gets all pairwise terms from both modalities, instead of pairwise terms from
only individual modalities. The next non-linearity, produces further multiplicative terms and we get
linear combination of all degree 4 terms i.e. X Zl 2x Jl 2x ,1/ ’X 71,1/ 2

Note here that no choice of linear operators between the layers can produce non-symmetric cross
modal terms in the late fusion; and hence early fusion model has access to more features. On
the other hand the first non-linearity in the early fusion case scales quadratically in the number
of modalities. Specifically if the input dimensionality of each modality is D, and the number of

modalities is n, then in early fusion the first non-linearity produces ("2D) feature outputs, whereas

late fusion produces n(%). Here (}) refers to the binomial coefficient, also sometimes depicted

as "C}, In the next non-linearity where a second multiplicative pairing occurs, early fusion needs
(”DQCQ) parameters whereas late fusion needs (" DQCZ) . As such one needs many more samples
to learn an early fusion model compared to a late fusion approach. The back-projections of Pro-
fusion model however alleviates the lack of feature diversity in late fusion. The back-projections
provides access to some cross-modal features before the fusion layer. This allows pro-fusion access
to any given single asymmetric degree 4 term; however due to the limited dimensionality of the
backprojected activations, not all combination of such degree 4 terms are accessible. For example
if the backprojecting layer has size 2, then one can get only two pairs of independent asymmetric
cross modal feature terms. Hence pro-fusion is more expressive pro-fusion but not as rich as early
fusion.

22

F TRAINING BACKPROJECTION LAYERS

For training of backprojecting layers, we first build an augmented model F by first extending the
unimodal feature generators in the the base model. Next we add the backprojecting networks W; for
each modalities. We pass the fused output to the unimodal generators through the backprojecting
networks. Finally we fix a number of iterations, and unroll the model by applying the augmented
network in a loop. The entire process is now differentiable, and autograd can compute the gradients.

base model is assumed given in the layers
class FusModel(nn.Module) :
def __init(unimodal_-layers, fusion_layer, hp):
self .unimodals = nn.ModuleList(xunimodal_layers)
self.fusion_layer = fusion_layer
self .num_modalities = len(unimodal_layers)

def forward(inputs):
uni-reps = [self.unimodals[-](inputs[-]) for - in range(self.num_modalities)]
fused_rep = self.fusion_layer(uni_reps)
return fused.rep

class LateFusModel (nn.Module) :
def __init(unimodal_layers, fusion_layer, head, hp):
self.base_model = FusModel(unimodal_layers , fusion_layer , head, hp)
self.head = head
self .num_modalities = len(unimodal_layers)

def forward(inputs):

fused_rep = self.base_model(inputs)
return self.head(fused_rep)

class ProFusModel (nn.Module) :

def __init(num.modalities, unimodal_layers, fusion_layer , head, hp):
self . back_projecting_layers = nn.ModuleList ([self.build_back_layers(unimodal_layers[i
], fusion_layer.output_-dim, hp) for i in num_-modalities])

self.augmented_readers = nn.ModuleList ([self.extend_-layer(unimodal_layers[i], hp) for
i in num_modalities])

self.model = FusModel(self.augmented_readers, fusion_layer , hp)

self .output_head = head

self .hp = hp

def forward(self, inputs):

context_-t = torch.zeros ([inputs [0].shape[0], self.context_size])
context-t = [self.back_projecting_-layers(context_t) for _ in range(self.hp.
num_modalities)]
for - in range(self.hp.num_unroll_steps):
context_t = model_out = self.model(inputs, context_t)
context_t = [self.back_projecting_layers (model_out) for _ in range(self.hp.

num_modalities)]
return self.output_head (model_-out)

def train_epoch(model, optimizer, criterion, hp, train_loader):
for i_batch , batch_data in enumerate(train_loader):
modalities , tgt = batch_data
optimizer.zero-grad ()
preds = model(modalities)
loss = criterion (preds, tgt)
loss += model.regularizer (hp)
loss .backward ()
optimizer.step ()

23

Figure 13: Example unimodal iterative network for ablation against ProFusion

G EXPLORING THE REPRESENTATIONS

Next, we analyze how the unimodal representations evolve over the unrolling steps. For this purpose,
we consider the activations of unimodal networks Gj (equivalently, the inputs for the late fusion
layer) as the unimodal representations. For these of experiments, we use LFN, MFM and Refnet
models on AVMNIST. We train a linear classifier based on the unimodal representations from the
training data and find its accuracy on the test data.

In Figure[6]we plot the relative test accuracy of both the audio and image features against the iteration
number for all the models. We can see gains in all models after one step of unrolling. Since the
individual modalities are quite incomplete on AVMNIST (< 60% accuracy on individual modalities)
and the accuracy of only image modality at the first step is close to 60%; this increase is suggestive
of greater information integration. Along with the overall trend, this suggests that the model is
incorporating more multimodal information in each unimodal representation.

24

	Introduction
	Background and Related Work
	Multimodal Fusion
	Prior Approaches to Fusion

	Progressive Fusion (Pro-Fusion)
	Motivating Example
	Pro-Fusion

	Experiments
	Synthetic Dataset
	Multimedia Classification
	Sentiment Prediction
	Financial Data
	Ablation Experiments

	Conclusion
	Overview of Fusion Techniques and Related Works
	Further Experiments
	Synthetic Experiments
	Exploratory Experiments

	Financial Data Details
	Robustness Computation

	Experimental Details
	AUC Measures and Average deviation on Financial Data
	Multimedia
	Hyperparameter Details

	Technical Analysis
	Linear Model
	Multiplicative Nonlinearity

	Training Backprojection layers
	Exploring the Representations

