Appendix

A Details of Network Architecture

We provide additional information about our network ar-
chitecture. The backbone of our network is based on a
standard PyTorch implementation of multi-scale grouping
PointNet++. It is followed by a single MLP layer that ex-
tracts a D-dimensional feature for each point. In our imple-
mentation, we set D = 128.

The detailed structure of the transformer module can be seen
in Fig. 5. The self-attention layer follows the official code of
the point transformer layer, while the cross-attention layer
employs a multi-head attention mechanism with position-

wise feed-forward networks. In our configuration, we set £
the number of attention heads to h = 8, the head dimen- (a) Self-Attention Layer
sion to dj, = 16, and use k-nearest neighbor sampling with
k = 16. The inner layer of the feed-forward network has a
dimensionality of d; = 256.

(b) Cross-Attention Layer
Figure 5: Detailed structure of the at-
tention layers.

Regarding the primal-dual descriptor, we set its feature dimension to d = 256.

B Analysis on Primal-dual Descriptor

0035

0.030

0.025

0020

- 0015

- 0010

- 0005

-0.00 —!-- -0.00

it] = = ~0000
X from masked primal-dual descriptor X from unmasked single-view descriptor X from masked single-view descriptor

Figure 6: Comparison between the doubly-stochastic soft matching matrix X computed by different
types of descriptors.

We conducted an analysis to compare the results obtained using the primal-dual descriptor and the
standard single-view descriptor. Before passing the affinity metric computed from the single-view
descriptor to the Sinkhorn layer, a common practice is to mask out the diagonal sub-matrix to prevent
self-self alignment. For clarity, we refer to the masked and unmasked versions of the primal-dual and
single-view descriptors to denote whether this masking operation has been applied or not.

In Fig. 6, we provide a visualization of the doubly-stochastic matrix X computed by the Sinkhorn
algorithm using four types of descriptors: (1) the unmasked primal-dual descriptor, (2) the masked
primal-dual descriptor, (3) the unmasked single-view descriptor, and (4) the masked single-view
descriptor. The visualization depicts an example object with 3 pieces and 58 fracture points. The X
obtained from the primal-dual descriptor clearly demonstrates its ability to differentiate between the
two viewpoints and avoid aligning a point to itself. In contrast, the single-view descriptor exhibits
a diagonal peak, resulting in self-self alignment. Even when the diagonal sub-matrix is masked
to prevent self-self alignment, the soft matching computed from the single-view descriptor is less
distinct compared to that computed from the primal-dual descriptor.

Furthermore, we conducted evaluation on the everyday object subset of Breaking Bad dataset, using
the unmasked primal-dual descriptor and the masked primal-dual descriptor. The results indicate that
the unmasked primal-dual descriptor achieves comparable performance to the masked one, with only
a slight difference: a decrease of 0.2° in rotation error (MAE(R)) and an improvement of 0.7 x 102
in translation error (MAE(T)). We attribute this minor difference to the fine characteristics of the
primal-dual descriptor that prevent self-self alignment, thus resulting in consistent performance.

14

C Experiment Details

C.1 Dataset

We leverage Breaking Bad dataset [4] to evaluate our method and all baseline methods. As we have
stated in section 4, the training of all methods were on the training subset of everyday, and testing
were on the testing subset of both everyday and artifact object. Each object within the dataset has
been fragmented into pieces, represented by triangle meshes, and all the pieces are in their original
poses. By assembling these pieces together directly, the surface of the original object is seamlessly
restored. The triangle meshes of the pieces solely consist of exterior faces that are visible from the
outside.

In generating the point cloud for our experiments, we employ two sampling strategies for the compared
methods: “sampling by piece” and “sampling by object”. The “sampling by piece” strategy, originally
utilized in the Breaking Bad benchmark [4], involves sampling an equal number of points within each
fragment. However, this approach leads to excessively dense sampling on small fragments, while
larger fragments suffer from sparser point distributions, resulting in an imbalance in the representation
of point density across fragments. To better mirror real-world scanning technology, we opt for the
“sampling by object” strategy. With this approach, we sample a fixed number of points within each
object, and the number of sampled points for each fragment is determined based on its surface area.
In essence, smaller fragments receive fewer points, whereas larger ones receive more, ensuring a
more realistic representation. Additionally, we ensure that each fragment is sampled with a minimum
of 30 points to include even the tiniest fragments in multi-part matching. Detailed parameter settings
can be found in Table 1. Our analysis of the average fragment numbers and experiments conducted
using DGL [&] indicate that the choice between the two sampling strategies has negligible impact on
the baseline performance.

For each sampled point p on F;, its fracture label c,, is
determined by the distance from p to its nearest neighbor
q among points from all other pieces:

=1(min p- 1
=1 (mi p-dla<n) a9

where 7 is set to 0.02 for all the objects. The ground-truth
matching point ¢ of a fracture point p € P; is set to

j = argmin ||p — ¢||>. (16)
1 q/egé\ B =4 Figure 7: An example of surface segmen-

o tation over the point cloud of a bottle bro-
where O, P; denotes the set of fracture points in O and P;. ken into 7 major pieces. Fracture points
During the training process, ¢, was applied to segment are marked with green in the predicted
the fracture points and during testing the predicted ¢, was result of our method (left) and red in the
used instead. An example is shown in Fig. 7. ground-truth (right).

After the ground-truth labeling and matching were com-
puted based on the pieces at their original pose, all pieces were recentered to the origin and a random
rotation was applied to each piece.

To ensure a fair comparison with baseline methods [26, 10, 27, 8], we adopted the same implemen-
tation as of the benchmark code of [4], which sampled the same number of point each piece. For
PREDATOR, we applied the same sample routine as the baseline methods, and we paired the adjacent
pieces for training and testing.

C.2 Evaluation Metrics

The mean absolute error MAE(R) and square-rooted mean squared error RMSE(R) of rotation were
computed as
1 -
MAE(R) = g||R — R9Y||s,
1
V3

a7

RMSER) = —||R — R%||,,

15

Table 4: Comparison of training and influence time with Tesla V100 GPUs. For Jigsaw, the time used
in the forward is 1.30s/batch and the rest of the time is used on Hungarian and global alignment.

\ Jigsaw Predator[16] DGL [33] LSTM [33] Global [33]

120H/ 4 96H / 4 11H/1 16H /1 21H/1
7.67(1.30)/8 1.28/28 2.46/32 1.63/32 1.65/32

Training Time / GPUs
Influence Speed (s/batch) / batch size

Table 5: Detailed quantitative results of Jigsaw on Breaking Bad dataset (mean and STD by 3 runs).

Method RMSE (R) | MAE (R) | RMSE(T) | MAE (T) | PA 1
degree degree x1072 x1072 %
Results on the everyday object subset.
Jigsaw | 4234003 | 363+£006 | 107+0.02 | 8.7£0.02 | 57.3+0.012
Results on the artifact object subset.
Jigsaw | 5244009 | 454+014 | 2224005 | 1934004 | 456+0015

for each piece, where R and R9 were predicted rotation and ground-truth rotation represented in
Euler angles. The error over each object was computed as the mean error of all the pieces and the total
error was the mean error of all the object. For translation, MAE(T) and RMSE(T) were computed in
the same way

1 -
MAE(T) = g|\t — 9|4,
(18)

RMSE(T) = t — 9o,

|
V3
where ¢ and t9' were the predicted translation and ground-truth translation.

D Implementation Details

D.1 Additional Configuration of parameters

For PREDATOR [16], we carefully follow the parameters presented in its open sourced code, and the
threshold for overlap recall to add saliency loss is set to be 0.3. For Jigsaw, we start training with only
the segmentation loss. We add matching loss after first 10 epochs, and rigidity loss after 200 epochs.

D.2 Running time

Our framework is implemented in Pytorch. All methods are trained over Tesla V100-SXM2-32GB
GPUs and distributed data parallel strategy is applied for multi-GPU training. The training and
influence time for Jigsaw and baseline methods are shown in Table 4.

E Additional Results

E.1 Detailed Quantitative Results

Fig. 8 gives a detailed distribution of each error metric with respect to the number of fractured pieces.
Our approach exhibits a clear advantage in each of the metrics evaluated, and this advantage becomes
more pronounced as the number of pieces decreases.

In addition, we present the mean and standard deviation (STD) of three runs of our method in Table 5.
These values demonstrate the stability of our method across different random seeds and variations in
the sampled point cloud. The consistent performance and low standard deviation affirm the robustness
of our proposed approach.

16

method
e Global
. LSTM

Q@@@@.

method
- Global
. LSTM

14 16 17 18 19 20

RMSE(R)

MAE(R)

method
- Global
LSTM

- DGL
- Jigsaw

20

method
- Global
. LSTM
m DGL

%

20

method
s Global
- LSTM

DGL
- Jigsaw

12 13 14 15 16 17 18 20

Part Accuracy
o o o o < -
g 8 2 8
S —
|

1

2 3 4 5 6 7 8 9 10

Pieces

Figure 8: Detailed analysis of the quantitative results obtained by each method on the everyday
object subset. We provide results for each metric, categorized by the number of pieces involved.
The shadowed area in the figures represents the distribution of each metric across the corresponding
number of pieces. The horizontal line indicates the mean value of the metric for that specific number
of pieces. Different hues represent different methods.

E.2 More Qualitative Results

We collect additional visualizations of the assembled objects in Fig. 9. Even with a large number of
pieces to assemble, our method remains robust in restoring major pieces to their original pose.

E.3 Additional Registration Baseline

We have received advice to consider GeoTransformer [30] as a state-of-the-art baseline for low
overlap registration. However, training GeoTransformer proves to be exceedingly slow (about 15
days over 4 V100 GPUs), primarily due to the significant scale of Breaking-Bad in comparison
to the 3D registration datasets on which it was originally tested. On pairwise transformations
GeoTransformer achieves MAE(R)=72.4(degree), RMSE(R)=84.8(degree), RMSE(T)=14.3(x10~2),
MAE(T)=11.6(x10~2), PA=3.1%. These findings align with the claims we’ve put forth in our paper,
and we believe that presenting the full results of PREDATOR adequately reflects how registration
baselines perform on the assembly task.

17

L3R gy ¥Y AT
«eon s O Y uad

,aea. e Q9082 Q

0]
T
>

INw, s Wnis g sd g
VRN OO O H @
'.'.Wv" \6“\

® o
VIS 99 @ @ @
L N
< b= —
mmmmLm mmmmLm
EE 5 3 g & e & g g &

visualization of assembly results.

Figure 9: More

18

	Introduction
	Related Works
	Joint learning framework for 3D fracture assembly
	Front-end Feature Extractor
	Surface segmentation
	Multi-part Matching
	Global Fracture Alignment

	Experiments
	Protocols
	Performance

	Conclusion and Limitations
	Details of Network Architecture
	Analysis on Primal-dual Descriptor
	Experiment Details
	Dataset
	Evaluation Metrics

	Implementation Details
	Additional Configuration of parameters
	Running time

	Additional Results
	Detailed Quantitative Results
	More Qualitative Results
	Additional Registration Baseline

