
Published as a conference paper at ICLR 2024

UNLOCKING THE POWER OF REPRESENTATIONS
IN LONG-TERM NOVELTY-BASED EXPLORATION

Alaa Saade∗, Steven Kapturowski∗, Daniele Calandriello∗, Charles Blundell,
Pablo Sprechmann, Leopoldo Sarra†, Oliver Groth, Michal Valko, Bilal Piot.
Google Deepmind
{alaas,skapturowski,dcalandriello,
cblundell,psprechmann,leopoldo.sarra,ogroth,valkom,piot}@google.com

ABSTRACT

We introduce Robust Exploration via Clustering-based Online Density Estimation
(RECODE), a non-parametric method for novelty-based exploration that estimates
visitation counts for clusters of states based on their similarity in a chosen embed-
ding space. By adapting classical clustering to the nonstationary setting of Deep
RL, RECODE can efficiently track state visitation counts over thousands of episodes.
We further propose a novel generalization of the inverse dynamics loss, which
leverages masked transformer architectures for multi-step prediction; which in
conjunction with RECODE achieves a new state-of-the-art in a suite of challenging
3D-exploration tasks in DM-HARD-8. RECODE also attains state-of-the-art perfor-
mance in hard exploration Atari games, and is the first agent to reach the end screen
in Pitfall!

1 INTRODUCTION

Exploration mechanisms are a key component of reinforcement learning (RL, Sutton & Barto, 2018)
agents, especially in sparse-reward tasks where long sequences of actions need to be executed before
collecting a reward. The exploration problem has been studied theoretically (Kearns & Singh, 2002;
Azar et al., 2017; Brafman & Tennenholtz, 2003; Auer et al., 2002; Agrawal & Goyal, 2012; Audibert
et al., 2010; Jin et al., 2020) in the context of bandits (Lattimore & Szepesvári, 2020) and Markov
Decision Processes (MDPs, Puterman, 1990; Jaksch et al., 2010). One simple yet theoretically-sound
approach for efficient exploration in MDPs is to use a decreasing function of the visitation counts as
an exploration bonus (Strehl & Littman, 2008; Azar et al., 2017). However, this approach becomes
intractable for large or continuous state spaces, where the agent is unlikely to visit the exact same
state multiple times, and some form of meaningful generalization over states is necessary. Several
approximations and proxies for visitation counts and densities have been proposed to make this form
of exploration applicable to complex environments. Two partially successful approaches in deep RL
are: the parametric approach, which uses neural networks to estimate visitation densities directly, and
the non-parametric approach, which leverages a memory of visited states to guide exploration.

Parametric methods either explicitly estimate the visitation counts using density models (Bellemare
et al., 2016; Ostrovski et al., 2017) or use proxies for visitation such as the prediction error of a
dynamics model (Pathak et al., 2017; Guo et al., 2022), or from predicting features of the current
observation, e.g., features given by a fixed randomly initialized neural network as in RND (Burda
et al., 2019). While this family of methods provides strong baselines for exploration in many
settings (Burda et al., 2018), they are prone to common problems of deep learning in continual
learning scenarios, especially as slow adaptation and catastrophic forgetting. Parametric models
trained via gradient descent are generally unsuitable for rapid adaptation (e.g., within a single
episode) because it requires updates to the state representation before the exploration bonus can
catch up. Additionally, catastrophic forgetting makes parametric methods susceptible to the so-called
‘detachment’ problem in which the algorithm loses track of promising areas to explore (Ostrovski
et al., 2017). Non-parametric methods rely on a memory to store encountered states (Savinov et al.,
2018; Badia et al., 2020b). This facilitates responsiveness to the most recent experience as well as
preserving memories without interference. However, due to computational constraints, it is necessary
to limit the memory size which, in turn, requires a selection or aggregation mechanism for states.

∗Equal contributions, † Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, work
done while interning at DeepMind.

1

Published as a conference paper at ICLR 2024

To obtain the best of both worlds, Never Give Up (NGU, Badia et al., 2020b) combines a short-term
novelty signal based on an episodic memory and a long-term novelty signal based on RND into a
single intrinsic reward. However, the need to estimate two different novelty signals simultaneously
adds complexity and requires careful tuning. Moreover, as pointed out by Pathak et al. (2017), the
final efficacy of any exploration algorithm strongly depends on the chosen state representation. If the
state encoding is susceptible to noise or uncontrollable features in the observations, it can lead to
irrelevant novelty signals and prevent meaningful generalization over states. As NGU relies on RND for
representation, it also inherits its encoding deficiencies in the presence of noisy observations which
limits the applicability of the method in stochastic or complex environments.

Figure 1: A key result of RECODE is that it allows
us to leverage more powerful state representations for
long-term novelty estimation. This enables new state-
of-the-art performances in the challenging 3D task suite
DM-HARD-8, where for the first time we achieve super-
human performance (i.e., exceed 100 in human normal-
ized score) in 6 out of 10 tasks.

In this paper, we tackle these issues by decom-
posing the exploration problem into two disen-
tangled sub-problems. First, (i) Representation
Learning with an embedding function that en-
codes a meaningful notion of state similarity
while being robust to uncontrollable factors in
the observations. Second, (ii) Count Estima-
tion that is able to provide a long term visitation-
based exploration bonus while retaining respon-
siveness to the most recent experience. Address-
ing (i), we extend the inverse dynamic model
proposed by Pathak et al. (2017) by leveraging
the power of masked sequence transformers (De-
vlin et al., 2018) to build an encoder which can
produce rich representations over longer trajec-
tories while suppressing the encoding of uncon-
trollable features. We refer to our representation
as CASM, for Coupled Action-State Masking. In
order to deliver on (ii) we introduce a novel,
non-parametric method called Robust Exploration via Clustering-based Online Density Estimation
(RECODE). In particular, RECODE estimates soft visitation counts in the embedding space by adapting
density estimation and clustering techniques to an online RL setting. Our approach tracks histories
of interactions spanning thousands of episodes, significantly increasing memory capacity over prior
art in non-parametric exploration methods which typically only store the most recent history like
the current episode. In the presence of noise, we show that it strictly improves over state-of-the-art
exploration bonuses such as NGU or RND. RECODE matches or exceeds state-of-the-art exploration
results on Atari and is the first agent to reach the end-screen in Pitfall!, a notoriously difficult task due
to strict in-game time limits that require discovering an efficient route that explores and backtracks
across 255 rooms. Beyond 2D, our method also performs well in much harder 3D domains and in
conjunction with CASM, sets new state-of-the-art results in the challenging DM-HARD-8 suite (Fig. 1)
in terms of human normalized score (HNS, Mnih et al. (2015)).

2 BACKGROUND

We consider a discrete-time interaction (McCallum, 1995; Hutter, 2004; Hutter et al., 2009; Daswani
et al., 2013) between an agent and its environment. At each time step t ∈ N the agent receives
an observation ot ∈ O, that partially captures the underlying state s ∈ S of the environment and
generates an action at ∈ A. We consider policies π : O → ∆A, that map an observation to a
probability distribution over actions. Finally, an extrinsic reward function re : S ×A → R maps an
observation to a scalar feedback. This function can be combined with an intrinsic reward function ri
to encourage the exploratory behavior which might not be induced from re alone.

The observations provided to the agent at each time step t are used to build a representation of the
state via an embedding function fθ : O → E , associating ot with a vector et = fθ(ot). Typically,
the embedding space E is the vector space RD where D ∈ N∗ is the embedding size. Common
approaches to learn fθ include using an auto-encoding loss on the observation ot (Burda et al., 2018),
an inverse dynamics loss (Pathak et al., 2017), a multi-step prediction loss at the latent level (Guo
et al., 2020; 2022), or other similar representation learning methods. In particular, Pathak et al.
(2017) and Badia et al. (2020b) highlight the utility of the inverse-dynamics loss to filter out noisy or
uncontrollable features, e.g., an on-screen death timer as in Pitfall!.

2

Published as a conference paper at ICLR 2024

A popular and principled approach to exploration in discrete settings is to provide an intrinsic reward
inversely proportional to the visitation count (Strehl & Littman, 2008; Azar et al., 2017). However,
in large or continuous spaces the same state may be rarely encountered twice. Badia et al. (2020b)
remedy this issue by introducing a slot-based memory M , which stores all past embeddings in the
current episode, and replaces discrete counts with a sum of similarities between a queried embedding
et = fθ(ot) and its k-nearest-neighbors Neighk(et) under the kernel K:

rt ∝
1√

N(fθ(ot))
≈ 1√∑

m∈Neighk(et)
K(et,m)

. (1)

Since storing the full history of embeddings throughout training would require a prohibitive amount
of space, this slot-based memory is typically relegated to short-term horizons only, and in NGU
it is reset at the end of every episode. As a consequence, slot-based memory must be combined
with a separate mechanism capable of estimating long-term novelty; resulting in additional method
complexity and trade-offs. In the following, we present a simple and efficient slot-based memory
which can effectively track novelty over thousands of episodes.

3 RECODE
We will now introduce our method, Robust Exploration via Clustering-based Online Density Esti-
mation (RECODE), to compute intrinsic rewards for exploration. RECODE takes inspiration from the
reward of NGU (Badia et al., 2020b), but while NGU stores individual embedded observations in M and
uses periodic resets to limit space complexity, RECODE controls its space complexity by aggregating
similar observations in memory. This requires storing a separate counter associated with each element
in the memory and new observations need not be directly added to the memory, but will typically be
assigned to the nearest existing element whose counter is then incremented. Since the counters are
never reset and the merged observations have a better coverage of the embedding space, RECODE’s
memory is much longer-term than a simple slot-based approach, yielding state-of-the-art performance
in many hard-exploration tasks. It also simplifies the estimation of novelty to only one mechanism
vs. two as in NGU. Moreover, the RECODE architecture is highly flexible, allowing it to be easily
combined with a variety of RL agents and most importantly different representation learning methods.
As we show in the experiments, methods that can better leverage priors from learned representations,
such as RECODE, outperform those that need to estimate novelty directly on raw observations, like
RND (and in turn NGU). We now present more in detail RECODE, summarized in. Alg. 1.

Approximating visitation counts. Our estimator is based on a finite slot-based container M =

{mj}|M |
j=1, where |M | is the memory size. We refer to mj ∈ E as atoms since they need not correspond

to a single embedding as in Badia et al. (2020b;a) We also store a separate count vector c such that ci
is an estimate of the visitation count of mi. In particular, ci does not only reflect the number of visits
to mi but also captures any previous visit sufficiently close to it.

Given a new embedding e, we estimate its soft-visitation count (Alg. 1:L3-4) as the weighted sum of
all atoms close to e in the memory, according to a similarity kernel:

NK(M, e) =
∑

l
(1 + cl)K(ml, e; dema). (2)

In particular, we choose our kernel function as:

K(ml, e) =
1

1 +
∥e−ml∥2

2

ϵd2
ema

1{∥e−ml∥2
2<d2

ema} , (3)

where ϵ ∈ R+ is a fixed parameter. Eq. (3) is similar to Badia et al. (2020b), but we replace their
sum over e’s top-k neighbors with a sum over all atoms within a dema distance from e. This choice
prevents a counter-intuitive behaviour that can occur when using the k-NN approach with counts.
In particular, it is desirable that the soft-visitation count of a given embedding should increase after
adding it to the memory. However, adding atoms to the memory can change the k-NN list. If an
atom displaced from this list has a large count, this might actually reduce nearby soft-visitation count
estimates instead of increasing them. Conversely, our approach is not affected by this issue.

Finally, we return r as in Eq. (1), but add a small constant n0 to the denominator for numerical
stability and normalize r by a running estimate of its standard-deviation as in Burda et al., 2019.

3

Published as a conference paper at ICLR 2024

Algorithm 1 RECODE

1: Input: Embedding e, Memory M = {ml}|M|
l=1 , atom visitation counts {cl}|M|

i=l , number of neighbors k,
relative tolerance to decide if a candidate new atom is far κ, squared distance estimate d2ema, d2ema’s decay
rate τ , discount γ, insertion probability η, kernel function K, intrinsic reward constant n0

2: Output: Updated memory M = {ml}|M|
l=1 , updated atom visitation counts {cl}|M|

i=l , updated squared
distance d2ema, intrinsic reward r

3: Compute NK(M, e) =
∑|M|

l=1(1 + cl)K(ml, e);

4: Compute intrinsic reward r =
(√

NK(M, e) + n0

)−1

5: Find nearest k atoms to the embedding e: Neighk(e) = {mj}kj=1

6: Update dema estimate: d2ema ← (1− τ) d2ema +
τ
k

∑
m∈Neighk(e)

∥m− e∥22
7: Discount all atom counts cl ← γ cl ∀l ∈ {1, · · · , |M |}
8: Find nearest atom m⋆ = argminm∈M,m ̸=mj

∥m− e∥2
9: Sample uniformly a real number in [0, 1]: u ∼ U [0, 1]

10: if ∥m⋆ − e∥22 > κd2ema and u < η then
11: Sample atom to remove mj with probability P (j) ∝ 1/c2j
12: Find atom m† nearest to mj : m† = argminm∈M,m ̸=mj

∥m−mj∥2
13: Redistribute the count of removed atom: c† ← cj + c†
14: Insert e at index j with count 1: mj ← e , cj ← 1

15: else
16: Update nearest atom position m⋆ ← c⋆

c⋆+1
m⋆ + 1

c⋆+1
e

17: Update nearest atom count c⋆ ← c⋆ + 1

18: end if

Building the memory. To build our memory we rely on the same aggregation principle we used
to estimate soft-visitation counts, drawing a parallel between our atoms mi and the centroids of
a clustering of observations. We take inspiration from classical clustering and density estimation
approaches such as k-means or DP-means Kulis & Jordan (2011); and adapt them to deal with the
challenges posed by our large scale RL setting: memory size is limited and cannot store all past data,
observations arrive sequentially, their distribution is non-stationary, and even the representation used
to embed them changes over time. We now describe how RECODE tackles these problems.

At every step we must update the memory M to reflect the impact of seeing e on the soft-visitation
counts, while keeping the size |M | fixed. Intuitively, two possible ways come to mind: either replace
an existing atom with the new embedding, or update the position and count of an existing atom to be
closer to e. Let m⋆ be the closest atom to e in M . We adopt the following rules (Alg. 1:L8-18) to
integrate new embeddings into the memory, which are closely related to the DP-means clustering
algorithm Kulis & Jordan (2011):

• If e satisfies ||m⋆ − e||2 < κd2ema, where dema is an adaptive threshold and κ > 0 a fixed
parameter, it is “assigned” to the cluster encoded by m⋆ and we update m⋆’s value according
to the convex combination of the counts of the existing embedding and the new one:

m⋆ ←−
c⋆

c⋆ + 1
m⋆ +

1

c⋆ + 1
e (4)

Its weight c⋆ is also incremented by 1;

• If there is no close-by atom, we randomly decide whether to create a new one by flipping
a coin with probability η. If the coin-flip succeeds, we introduce the new embedding as a
new atom, and we also remove an existing atom using a procedure described in the next
paragraph. If the coin-flip fails, we instead update m⋆ as in equation 4.

The random coin-flip is introduced to increase the stability of the clustering algorithm to noise. In
particular, an embedding far away from the memory will be inserted only after it is seen on average
1/η times, making one-off outliers less of a problem. At the same time, once a far away embedding is
observed multiple times and becomes relevant for the soft-visitation counts, there is a high chance that
it will be added to improve the coverage of the memory. But to keep memory size finite, an existing
atom must be removed. We investigate three different strategies to select an atom mi for removal

4

Published as a conference paper at ICLR 2024

Figure 2: Coupled Action-State Masking (CASM) architecture used for learning representations in
partially observable environments. The transformer takes masked sequences of length k consisting
of actions ai and embedded observations ei = fθ(oi) as inputs and tries to reconstruct the missing
embeddings in the output. The reconstructed embeddings at time t− 1 and t are then used to build a
1-step action-prediction classifier. The embedding function used as a representation for RECODE is fθ.
Masked inputs are shaded in pink, N = 4 masked sequences are sampled during training (indicated
by the stacks of a, e and z in the diagram).

based on its cluster count ci: (a) removing with probability∝ 1
c2i

; (b) removing with probability∝ 1
ci

;
(c) removing the atom with the smallest ci. An ablation study over removal strategies in App. D.2
(Figures 8 and 9), empirically shows that strategy (a) works best for the settings we consider, but also
that results are generally quite robust to the specific choice.

Whenever an atom i is removed, its count ci is redistributed to the count of its nearest neighbor in order
to preserves the total count of the memory. The update rule of RECODE can be also interpreted from
the theoretical point of view as an approximate inference scheme in a latent DP-means probabilistic
clustering model. We provide a more detailed connection in App. D.

Dealing with non-stationary distributions. The distance scale between embedded observations
can vary considerably between environments and throughout the course of training, as a result of
non-stationarity in both the policy and embedding function fθ. To deal with this issue, we include an
adaptive bandwidth mechanism as in NGU Badia et al. (2020b). In particular, we update the kernel
parameter d2ema whenever a new embedding e is received, based on the mean squared distance of the
new embedding to the k-nearest existing atoms (Alg. 1:L5-6). To allow for faster adaptation of dema,
we replace the running average used in NGU with an exponential moving average with parameter τ .

We note, however, that this mechanism is insufficient to cope with non-stationarity in fθ over
long timescales. The original NGU memory is not strongly impacted by this issue since it is re-
set after every episode, leaving little time for the representation to change significantly. How-
ever, in RECODE, these changing representations can end up corrupting the long-term memory if
old clusters are not updated frequently. In particular, an atom might achieve a high count un-
der a representation, but become unreachable (and thus useless) under a different representation
while still being unlikely to be removed. To counteract this we add a decay constant γ which
discounts the counts of all atoms in memory at each step as ci ←− γci, with γ < 1 (Alg. 1:L7).

Figure 3: Content of an agent memory when it
learns to reach Pitfall!’s end screen.

This effectively decreases the counts of stale
atoms over time and increases the likelihood of
their removal during future insertions: clusters
that do not get new observations ‘assigned’ to
them for a long time are eventually replaced. At
the same time, relevant clusters are kept alive
much longer than previous methods. Fig. 3 re-
ports the histogram of cluster ages for clusters
contained in the memory of an agent that has
learned how to reach Pitfall!’s end screen. The
red line in Fig. 3 denotes the maximum possible
number of steps in an single episode, which is enforced by Pitfall!’s in-game death timer, and would
represent the maximum memory horizon for methods that reset their memory every episode. As we

5

Published as a conference paper at ICLR 2024

can see, most of the clusters are much older than one episode, with earliest memories reaching back
thousands of episodes. We consider the effect of discounting in more detail in App. D.2 (Figures 10
to 12 and 14). Importantly, we note that unlike NGU where each actor maintains its own copy of the
memory, RECODE shares the memory across all actors in a distributed agent, which greatly increases
the frequency of updates to each atom resulting in less representation drift between memory updates.

Tuning RECODE. While we introduced Alg. 1 in its most general form, we observe experimentally
that performance is robust w.r.t. most of the hyper-parameters introduced (see App. L). In particular,
we note that the choice of discount γ and memory size have the largest impact on performance. All
other hyper-parameters were chosen via coarse independent sweeps on two to three values and held
constant across all experiments (see Sec. 5 and App. F for more details).

4 REPRESENTATION LEARNING METHODS

As discussed in Section 2, the choice of the embedding function fθ : O → E can have a significant
impact on the quality of exploration; with many different representation learning techniques being
studied in this context (Burda et al., 2018; Guo et al., 2020; 2022; 2021; Erraqabi et al., 2021).
In the following, we focus on action prediction embeddings, introducing first the standard 1-step
prediction formulation (Pathak et al., 2017; Badia et al., 2020b;a). The embedding function fθ is
parameterized as a feed-forward neural network taking ot, the observation at time t, as input. We
define a classifier gϕ that, given the embeddings of two consecutive observations fθ(ot), fθ(ot+1),
outputs an estimate pθ,ϕ(at|ot, ot+1) = gϕ (fθ(ot), fθ(ot+1)) of the probability of taking an action
given two consecutive observations (ot, ot+1). Both fθ and gϕ are then jointly trained by minimizing
an expectation of the negative log likelihood:

min
θ,ϕ
L(θ, ϕ)(at) = − ln(pθ,ϕ(at|ot, ot+1)) , (5)

where at is the true action taken between ot and ot+1. These embeddings proved to be helpful in
environments with many uncontrollable features in the observation (Badia et al., 2020b), such as
in Atari’s Pitfall!, where the observations contain many spurious sources of novelty even when the
agent is standing still.

While RECODE can be used with an arbitrary embedding function, e.g. one tailored for the domain of
interest, the choice of a meaningful representation is also a key factor for the final performance. A
major downside of the standard, 1-step action-prediction method is the simplicity of the prediction
task, which can often be solved by learning highly localized and low-level features (e.g. how a single
object shifts under a transition), which need not be informative of the global environment structure.
In contrast, an ideal embedding should capture higher-level information about the environment, such
as the agent’s position or relative location of previously observed landmarks; which might not be
simultaneously present in the individual observations ot and ot+1. In order to achieve this, a wider
context of time-steps may be needed.

However, the prediction task would become even easier if we simply provided the full trajectory to
the predictor. In order to address this limitation, we propose to use a stochastic context, ht, where at
each timestep k ≤ t, either fθ(ok) or ak−1 is provided.1 The main intuition being that the model can
still predict at by learning to infer the missing information from fθ(ot) given (ht−1, at−1). In this
way, the action predictor would not solely rely on the information provided by fθ(ot), but it would
also construct redundant representations within ht.

From an implementation standpoint, we first build a sequence of observation embeddings and actions,
(fθ(o0), a0, fθ(o1), . . . , at−1, fθ(ot)). Then, inspired by masked language models (Devlin et al.,
2018), at each timestep t, we randomly substitute either fθ(ot) or at with a special token indicating
missing information. These masked sequences are then fed to a causally-masked transformer, whose
output is then projected down to the size of the embedding (dim zt = dim fθ(ot)), and the difference
between the two is input into a final MLP classifier gϕ. As with 1-step action prediction, we train
the representation using maximum likelihood. We refer to this approach as Coupled Action-State
Masking (CASM) in the following. During training, we randomly sample multiple masked sequences
per trajectory (N = 4) to help reduce gradient variance. Note that the final embedding that we

1We avoid masking both fθ(ok) and ak−1 simultaneously as this would increase the likelihood that the
prediction task is indeterminable.

6

Published as a conference paper at ICLR 2024

Figure 4: Comparison of RECODE against other exploration bonuses on Atari’s hard exploration
games. All agents are based on MEME and use the same representation learning mechanism (AP). Note
that the high variance in Q*bert is due to a bug in the game that, when exploited, allows to obtain
significantly higher scores (Chrabaszcz et al., 2018).

provide to RECODE is et = fθ(ot), i.e. the transformer inputs, to avoid leaking information about the
agent’s trajectory. Figure 2 shows a diagram of the architecture.

5 EXPERIMENTS

In this section, we experimentally validate the efficacy of our approach on two established benchmarks
for exploration in 2D and 3D respectively: a subset of the Atari Learning Environment (ALE,
Bellemare et al., 2013) containing eight games such as Pitfall and Montezuma’s Revenge which
are considered hard exploration problems (Bellemare et al., 2016); and DM-HARD-8 (Gulcehre et al.,
2019), a suite of partially observable 3D games. All games pose significant exploration challenges
such as very long horizons (O(10K) steps), the necessity to backtrack, sparse rewards, object
interaction and procedural environment generation. Our method achieves state-of-the-art results
across both benchmarks and even solves two previously unsolved games: in Atari’s Pitfall! our
method is the first to reach the end screen and on DM-HARD-8’s Push Block we are the first to achieve
super-human performance. We also perform a set of ablations to shed more light on the influence of
the representation learning mechanism and the robustness w.r.t. noisy observations.

All candidate architectures evaluated in the following experiments (and in App. L), are composed of
three main modules: (1) a base agent, responsible for core RL tasks such as collecting observations
and updating the policy, (2) an algorithm responsible for generating the exploration bonus, and (3)
an embedding mechanism responsible for learning meaningful representations of observations. Our
nomenclature reflects the choice of modules as AGENT-EXPLORATION-EMBEDDING. For example, the
MEME agent described in Kapturowski et al. (2022) is denoted as MEME-NGU-AP. We use the MEME agent
across all experiments, but vary the exploration and representation mechanisms. For exploration we
consider EMM (pure episodic memory), NGU and RECODE whereas for representation we experiment
with AP and CASM. We provide a full list of hyper-parameters for all agents and baselines in App. F.

5.1 ATARI

The hard-exploration subset of Atari as identified by Bellemare et al. (2016) poses a considerable
challenge in terms of optimization horizon with episodes lasting up to 27, 000 steps using the standard
action-repeat of four. Additionally, rewards vary considerably in both scale and density. Across all our
experiments in the Atari domain, we set the memory size of our agent to 5 · 104 atoms. We evaluate
all agents following the regime established in prior work (Mnih et al., 2015; Van Hasselt et al.,
2016) using 30 random no-ops, no ‘sticky actions’ (Machado et al., 2018) and average performance
over 6 seeds. We compare the game scores obtained using our exploration bonus, RECODE, against
other methods while keeping agent architecture and representation mechanism fixed. The results
presented in Fig. 4 show that our method achieves state-of-the-art, super-human performance across
all eight games while using a conceptually simpler exploration bonus compared to MEME-NGU-AP.
The MEME-EMM-AP and MEME-RND ablations in Fig. 4 reveal the respective shortcomings of short-term

7

Published as a conference paper at ICLR 2024

Figure 5: Performance of RECODE compared to NGU and BYOL-Explore on the single-task version of
DM-HARD-8. The BYOL-Explore results correspond to the final performance reported in Guo et al.
(2022) after 1e10 environment frames. All results have been averaged over 3 seeds.

and long-term novelty when used in standalone fashion. EMM on its own cannot solve Montezuma’s
Revenge because it requires long-term memory. Conversely, RND on its own cannot solve Pitfall!
because of the presence of many uncontrollable features in the observations and its inability to
leverage the AP embeddings. In contrast, RECODE is able to leverage the AP representation for short-
term and long-term novelty due to the clustering-based memory integrating over a long horizon which
enables solving both games with a single intrinsic reward.

5.2 DM-HARD-8

DM-HARD-8 (Gulcehre et al., 2019) consist of eight exploration tasks, designed to challenge an RL
agent in procedurally-generated 3D worlds with partial observability, continuous control, sparse
rewards, and highly variable initial conditions. Each task requires the agent to interact with specific
objects in its environment in order to reach a large apple that provides reward (cf. Fig. 16 in the
Appendix for an example). The procedural generation randomizes object shapes, colors, and positions
at every episode. Across all our experiments in the DM-HARD-8 domain, we set the memory size of
our agent to 2 · 105 atoms. We also use the more powerful CASM representation over AP as the default
in these experiments but present an ablation on the influence of the representation in Sec. 5.3. All
performances reported for evaluation are averaged across three seeds.

We compare RECODE with NGU and the recently proposed BYOL-Explore (Guo et al., 2022) in this
domain. The results presented in Fig. 5 show that our method is able to solve six out of eight tasks
with super-human performance which sets a new state-of-the-art on this benchmark and marks the
first time that the human baseline has been beaten on Push Blocks. To control for the contribution of
the representation, we also run a version of NGU which uses the more powerful CASM representation
instead of its default AP one. Switching AP with CASM improves NGU’s performance significantly and
stresses the importance of incorporating information over longer trajectories in the representation
mechanism for this domain to combat the challenge of partial observability. However, only RECODE
is able to take full advantage of the representational power afforded by CASM as it is able to leverage
it for both short-term and long-term novelty bonuses.

5.3 ABLATIONS

Concluding our experiments, we perform two ablation studies to gauge the sensitivity of our approach
to the presence of noisy observations and the choice of the underlying representation mechanism.

Robustness to observation noise. Noise in the observation space is one of the most significant
adversarial conditions exploration methods must to overcome to deliver utility for any practical
scenario which always features imperfect sensors. The ‘noisy TV problem’ (Schmidhuber, 2010;
Pathak et al., 2017) is a common metaphor which describes a failure mode of exploration methods
getting stuck on the prediction of noise as a meaningless signal of novelty. In order to assess our
method’s robustness w.r.t. observation noise, we construct a noisy version of Montezuma’s Revenge

8

Published as a conference paper at ICLR 2024

Figure 6: Robustness to observation noise. Top: Performance of RECODE
compared to NGU on Noisy Montezuma. Bottom: A frame of Noisy
Montezuma where the noise is concatenated to the original frame.

Figure 7: Comparing AP to CASM
on DM-HARD-8 for both RECODE
and NGU.

by concatenating a frame containing white noise in the range [0, 255] to the game’s original 210×160
greyscale observations along the image height dimension. We compare RECODE to NGU in this setting
using the same AP backbone to suppress uncontrollable noise on the representation level and assess
the sensitivity of the exploration bonus to it. The results of this experiment are presented in Fig. 6.
We find that the performance of MEME-NGU-AP deteriorates significantly in the presence of noise.
This can be attributed to the fact that NGU relies on RND to compute the long-term exploration bonus,
which degenerates to random exploration in the presence of uncontrollable noise (Kapturowski et al.,
2018). This effectively restricts the baseline to short-term exploration within one episode. In contrast,
RECODE’s mean performance is not degraded significantly and achieves a similar score as in Fig. 4,
albeit with a higher variance.

Leveraging different representation mechanisms. The experiments on DM-HARD-8 demonstrate
the importance of employing more powerful representation learning techniques in more complex,
partially observable environments. However, while a richer representation often provides a flat
boost to downstream task learning, it cannot solve the exploration problem in itself. In Fig. 7, we
compare the contribution of AP and CASM to the aggregated performance of NGU and RECODE on
DM-HARD-8. The results consistently demonstrate that CASM is a superior representation to AP in this
domain, leading to significant performance gains with both exploration methods. However, RECODE
outperforms NGU for both representations, indicating that leveraging the representational power for
both short-term and long-term novelty signals is a key benefit of our proposed method.

6 CONCLUSION

In this paper we introduce RECODE, a principled yet conceptually simple exploration bonus for
deep RL agents that allows to perform robust exploration by estimating visitation counts from a
slot-based memory. RECODE improves over prior non-parametric exploration methods by increasing
the effective memory span by several orders of magnitude using an online clustering mechanism. Our
method sets a new state-of-the-art in task performance on two established exploration benchmarks,
Atari’s hard exploration subset and DM-HARD-8. It is also the first agent to reach the end screen in
Pitfall! within the time limit which exemplifies RECODE’s efficiency of leveraging both long-term (i.e.
previous experience) and short-term (i.e. within an episode) novelty signals. Beyond the benchmarks,
RECODE’s performance also remains unaffected by noisy observations – an adversarial condition
which significantly degrades prior approaches such as RND and NGU. Additionally, we show that our
method is agnostic to the concrete representation technique chosen for embedding the observations
and scales well with increasingly powerful representations, e.g. using multi-step sequence prediction
transformers like our proposed CASM architecture. However, RECODE is still limited by the choice
of the representation and cannot by itself overcome deficiencies stemming from an inappropriate
state representation. We also acknowledge that the controllability prior chosen for CASM is a strong
assumption suitable for the video game environments we experimented with, but this might need
to be revisited when RECODE is deployed in more realistic, real-world domains. Further details on
those limitations are provided in Appendix B. In conclusion, we believe that RECODE can serve as
a simple yet robust drop-in exploration method compatible with any RL agent and representation
learning method which directly translates improvements in representation learning to improvements
in exploration performance.

9

Published as a conference paper at ICLR 2024

REFERENCES

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
In Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In COLT, pp. 41–53. Citeseer, 2010.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 263–272. JMLR. org, 2017.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International Conference on Machine Learning, pp. 507–517. PMLR, 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies. In International Conference on
Learning Representations, 2020b.

André MS Barreto, Doina Precup, and Joelle Pineau. Practical kernel-based reinforcement learning.
The Journal of Machine Learning Research, 17(1):2372–2441, 2016.

Marc Bellemare, Joel Veness, and Erik Talvitie. Skip context tree switching. In International
conference on machine learning, pp. 1458–1466. PMLR, 2014.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, pp. 1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Ronen Brafman and Moshe Tennenholtz. R-max – a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2003.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Seventh International Conference on Learning Representations, pp. 1–17, 2019.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. Back to basics: Benchmarking canonical
evolution strategies for playing atari. arXiv preprint arXiv:1802.08842, 2018.

Mayank Daswani, Peter Sunehag, and Marcus Hutter. Q-learning for history-based reinforcement
learning. In Asian Conference on Machine Learning, pp. 213–228. PMLR, 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko.
Kernel-based reinforcement learning: A finite-time analysis. In Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 2783–2792. PMLR, 2021a.

Omar Darwiche Domingues, Corentin Tallec, Rémi Munos, and Michal Valko. Density-based bonuses
on learned representations for reward-free exploration in deep reinforcement learning. In ICML
2021 Workshop, 2021b.

10

Published as a conference paper at ICLR 2024

Akram Erraqabi, Mingde Zhao, Marlos C Machado, Yoshua Bengio, Sainbayar Sukhbaatar, Ludovic
Denoyer, and Alessandro Lazaric. Exploration-driven representation learning in reinforcement
learning. In ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Caglar Gulcehre, Tom Le Paine, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer, Richard
Tanburn, Steven Kapturowski, Neil Rabinowitz, Duncan Williams, et al. Making efficient use
of demonstrations to solve hard exploration problems. In International conference on learning
representations, 2019.

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multitask
reinforcement learning. In International Conference on Machine Learning, pp. 3875–3886. PMLR,
2020.

Zhaohan Daniel Guo, Mohammad Gheshlagi Azar, Alaa Saade, Shantanu Thakoor, Bilal Piot,
Bernardo Avila Pires, Michal Valko, Thomas Mesnard, Tor Lattimore, and Rémi Munos. Geometric
entropic exploration. arXiv preprint arXiv:2101.02055, 2021.

Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché,
Corentin Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al. Byol-
explore: Exploration by bootstrapped prediction. arXiv preprint arXiv:2206.08332, 2022.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691, 2019.

Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic probabil-
ity. Springer Science & Business Media, 2004.

Marcus Hutter et al. Feature reinforcement learning: Part I. unstructured MDPs. De Gruyter Open,
2009.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pp. 4870–4879. PMLR,
2020.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101:99–134, 5 1998. ISSN
00043702. doi: 10.1016/s0004-3702(98)00023-x.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Steven Kapturowski, Víctor Campos, Ray Jiang, Nemanja Rakićević, Hado van Hasselt, Charles
Blundell, and Adrià Puigdomènech Badia. Human-level atari 200x faster. arXiv preprint
arXiv:2209.07550, 2022.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232, 2002.

Brian Kulis and Michael I Jordan. Revisiting k-means: New algorithms via bayesian nonparametrics.
arXiv preprint arXiv:1111.0352, 2011.

Branislav Kveton and Georgios Theocharous. Kernel-based reinforcement learning on representative
states. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

11

Published as a conference paper at ICLR 2024

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdinov.
Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for
general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

R Andrew McCallum. Instance-based utile distinctions for reinforcement learning with hidden state.
In Machine Learning Proceedings 1995, pp. 387–395. Elsevier, 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine Learning, 2002.

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2721–2730. JMLR. org, 2017.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathe-
matical Statistics, 33, 1962. ISSN 0003-4851. doi: 10.1214/aoms/1177704472.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Jason Pazis and Ronald Parr. Pac optimal exploration in continuous space markov decision processes.
In Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech, Oriol Vinyals, Demis
Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. ICML, 2017.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
Mathematical Statistics, 27, 1956. ISSN 0003-4851. doi: 10.1214/aoms/1177728190.

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. In International Conference
on Learning Representations, 2018.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. CoRR,
abs/1511.05952, 2015.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In International Conference on
Machine Learning, pp. 9443–9454. PMLR, 2021.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

12

Published as a conference paper at ICLR 2024

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan,
John Schulman, Filip DeTurck, and Pieter Abbeel. #Exploration: A study of count-
based exploration for deep reinforcement learning. In Advances in Neural Information
Processing Systems, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3a20f62a0af1aa152670bab3c602feed-Paper.pdf.

Ruo Yu Tao, Vincent François-Lavet, and Joelle Pineau. Novelty search in representational space for
sample efficient exploration. Advances in Neural Information Processing Systems, 33:8114–8126,
2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

13

https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf

Published as a conference paper at ICLR 2024

A RELATED WORKS

In this section, we give a brief and non-exhaustive overview of past works computing visitation
counts or estimating densities in RL. We classify them as either parametric or non-parametric.

Parametric methods. Bellemare et al. (2016) and Ostrovski et al. (2017) propose to com-
pute pseudo-visitation counts using density estimators on images such as Context Tree Switching
(CTS,Bellemare et al., 2014) or PixelCNN (Van den Oord et al., 2016). On the other hand, Tang et al.
(2017) use locality-sensitive hashing to map continuous states to discrete embeddings, where explicit
visitation counts are computed. Some methods such as RND (Burda et al., 2019) can be interpreted as
estimating implicitly the density of observations by training a neural network to predict the output of
a randomly initialized and untrained neural network which operates on the observations. Hazan et al.
(2019); Pong et al. (2019); Lee et al. (2019); Guo et al. (2021) propose algorithms that search a policy
maximizing the entropy of its induced state-space distribution. In particular, the loss optimized by
Guo et al. (2021) allows to compute a density estimate as well as maximizing the entropy. Finally,
Domingues et al. (2021b) computes a density estimation on top of learned representations, which are
inspired by bonuses used in reward-free finite MDPs.

Non-parametric methods. Non-parametric density estimates that we build on date back to Rosen-
blatt (1956); Parzen (1962) (Parzen–Rosenblatt window) and are widely used in machine learning as
they place very mild assumptions on the data distribution. Non-parametric, kernel-based approaches
have been already used in RL and shown to be empirically successful on smaller-scale environments
by Kveton & Theocharous (2012) and Barreto et al. (2016) and are theoretically analyzed by Or-
moneit & Sen (2002); Pazis & Parr (2013); Domingues et al. (2021a). In NGU (Badia et al., 2020b),
Agent57 (Badia et al., 2020a) and MEME (Kapturowski et al., 2022), a non-parametric approach
is used to compute a short term reward at the episodic level. Liu & Abbeel (2021) propose an
unsupervised pre-training method for reinforcement learning which explores the environment by
maximizing a non-parametric entropy computed in an abstract representation space. The authors
show improved performance on transfer in Atari games and continous control tasks. Seo et al. (2021)
use random embeddings and a non-parametric approach to estimate the state-visitation entropy, but
do not generalize to concurrently learned embeddings. Tao et al. (2020) show that K-NN based
exploration can improve exploration and data efficiency in model-based RL. While non-parametric
methods are good models for complex data, they come with the challenge of storing and computing
densities on the entire data set. We tackle this challenge in Sec. 3 of the main text by proposing a
method that estimates visitation counts over a long history of states, allowing our approach to scale to
much larger problems than those considered in previous works, and without placing assumptions on
the representation, that can be trained concurrently with the exploration process and doesn’t need to
be fixed a priori.

B LIMITATIONS

While Atari possesses several challenging sparse reward tasks, the observations are quite simplistic
and there is little variation in the environment between episodes. DM-HARD-8 has much richer
observations and several procedurally generated elements such as colors, object shapes, and initial
position and orientation; but the level layouts are essentially static. It would be important to understand
what additional challenges might be encountered with more complex procedurally-generated elements,
and if different representation learning methods might be needed to obtain good generalization across
episodes in this setting.

Also, we are aware that concurrent training of embeddings can place some restriction on the maximum
discount γ that can be effectively used. While this does not limit our method on commonly used RL
benchmarks, where episodes tend to be relatively short (e.g. Atari maxes out at 27, 000 steps for the
standard action repeat of 4), it could potentially be an issue for environments with significantly larger
timescales, or if there were many more options for what the agent could try between episodes.

RECODE can be thought of as a general solution to the exploration problem in RL by biasing the policy
towards uniform coverage of the representation space. If the representation does not allow for aliasing
together semantically similar states (e.g. if the representation is tabular), exploration can become
intractable in large scale environments, since most observations encountered throughout training are

14

Published as a conference paper at ICLR 2024

unique. As such, RECODE does not obviate the need to come up with a meaningful representation for
the environment at hand. CASM relies on a controllability prior that we find to be well-suited to the
RL environments considered in this work, but the question of determining which priors are useful for
more general classes of environments remains largely open.

C GENERAL NOTATION

We consider the usual Reinforcement Learning setting, where an agent interacts with an environment
to maximize the sum of discounted rewards, with discount γ ∈ [0, 1), as in Sutton, 1988. In
particular, the environment can be described as a Partially-Observable Markov Decision Process
(POMDP) Kaelbling et al. (1998). First, we define a Markov Decision Process (MDP) through
a tuple (S,A, T,R), where S is the set of states, A is the set of possible actions, T a transition
function, which maps state-actions to distributions over next states, and R : S × A → R is the
reward function. In particular, a Markov Decision Process is a discrete-time interaction process
McCallum (1995); Hutter (2004); Hutter et al. (2009); Daswani et al. (2013) between an agent and
its environment. In a Partially-Observable MDP, the agent does not receive a state from S, but
an observation o ∈ Ω, where O is the function mapping unobserved states to distributions over
observations. An observation o will only contain partial observations about the underlying state
s ∈ S . This function can be combined with an intrinsic reward function ri to enable the exploratory
behavior. The environment responds to an agent’s action a ∈ A by performing a transition to a state
s′ ∼ T (·|s, a); the agent receives a new observation o′ ∼ Ω(·|s′) and a reward r ∼ R(s, a). At step
t, we can indicate with ht = {o0, a1, o1, . . . , at, ot} ∈ Ht the history of past observations-actions,
whereHt = Ht−1 ×A×O,H0 = O and the overall history space isH =

⋃
t∈NHt. We consider

policies π : H → ∆A, that map a history of past observations-actions to a probability distribution
over actions.

D RECODE FROM A CLUSTERING POINT OF VIEW

The update rules RECODE’s memory structure in Algorithm 1 of the main text can be interpreted as an
approximate inference scheme in a latent probabilistic clustering model. We explore this connection
here as means to better understand and justify the proposed algorithm as a density estimator. The
rule has a close connection to the DP-means algorithm of Kulis & Jordan (2011), with two key
differences:

• the counts of the cluster-centers are discounted at each step, allowing our approach to deal
with the non-stationarity of the data due to changes in the policy and the embedding function,
effectively reducing the weight of stale cluster-centers in the memory,

• when creating a new cluster-center, we remove an underpopulated one, so as to keep the
size of the memory constant.

The adaptations are necessary to accommodate the additional complexities of our setting, which
follows a streaming protocol (i.e. data must be explicitly consumed or stored as it arrives, and data
that are not stored cannot be accessed again) and is non-stationary (i.e. data are not assumed to be
identically distributed as time advances). The clustering algorithm resulting from these adaptations
is shown in Algorithm 2. RECODE implements such an algorithm to update the memory, and it also
calculates an intrinsic reward for the observed embedding e, as described in Section 3 .

15

Published as a conference paper at ICLR 2024

Algorithm 2 A streaming clustering algorithm.

1: Parameters:
Number of clusters |M |
Number of nearest cluster centres k
Discounting of counts at each step γ

Distance threshold to propose the creation of a new cluster κ
Probability of accepting the creation of a new cluster η

2: State:
Threshold to create new cluster (i.e. average cluster distance) d = 0

Cluster centres ml = 0 ∀l ∈ 1 . . . |M |
Cluster counts cl = 0 ∀l ∈ 1 . . . |M |
Indices of k-nearest neighbours of point e: Neighk(e)

3: Implementation:
4: for all received embedding e ∈ {e0, e1, e2, . . . } do
5: Update average inter-cluster distance d← (1− τ)d+ τ

k

∑
l∈Neighk(e)

∥ml − e∥22
6: Discount all cluster-center counts cl ← γ cl ∀l ∈ 1, . . . , |M |
7: Find index of nearest cluster center m⋆ = argminm∈M ∥ml − e∥2
8: if ∥mi − e∥22 > κd and with probability η then
9: Sample index j of cluster center to remove with probability P (j) ∝ 1/c2j

10: Find index of nearest cluster center to mj : m† = argminm∈M,l ̸=j ∥ml −mj∥2
11: Redistribute the counts of removed cluster center: c† ← cj + c†
12: Replace cluster j with a the new cluster at e: mj ← e , cj ← 1

13: else
14: Update nearest cluster center m⋆ ← c⋆

c⋆+1µi +
1

c⋆+1e

15: Update nearest cluster-center count c⋆ ← c⋆ + 1

16: end if
17: end for

0 25 50 75 100

0

20

40

60

80

100

t=
50

0

P(j) 1/cj

0 25 50 75 100

0

20

40

60

80

100
P(j) 1/c2

j

0 25 50 75 100

0

20

40

60

80

100
argminj(cj)

0 25 50 75 100

0

20

40

60

80

100

t=
50

k

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

Figure 8: Effect of removal strategy on evolution of cluster centers and counts (with counts corre-
sponding to the size of the marker). At each timestep t we sample a batch of 64 2D-embeddings from
a square of side min(100, t). After t = 100 the distribution remains stationary and we would like the
distribution of cluster centers and counts to be to become approximately uniform after enough time
has passed. For a deterministic removal strategy which selects the clusters with the lowest counts,
the cluster centers can remain skewed long after the distribution has stopped changing. For both
probabilistic removal strategies, the cluster centers become approximately uniform, but only for the
1/c2j removal strategy we observe that both cluster centers and counts become uniform. Note that we
use a discount of γ = 0.9999.

16

Published as a conference paper at ICLR 2024

D.1 ADDRESSING FINITE-MEMORY LIMITATIONS.

We first address the modifications introduced to deal with the memory limitations of the streaming
setting: 1) each datum (embedding et in our notation) is incorporated into a cluster distribution
approximation once, then discarded; 2) the total number of clusters is stochastically projected
down onto an upper limit on the number of clusters (otherwise they would grow without bound–
albeit progressively more slowly). Both modifications allow our method to maintain constant space
complexity in the face of an infinite stream of data.

The step-wise justification of the Algorithm 2 is relative straightforward. At step t, for embedding et,
we show that the following objective is minimised:

min
l∈1,...,|M |

∥ml − et∥22 (6)

s.t. ∥ml − et∥22 ≤ κd

Working backwards: updating the cluster center reduces the objective directly and will not violate
the constraint (unless it was already in violation; this excluded in the precondition of this branch).
This accounts for the “else” branch. The “if” branch introduces a new cluster center precisely at et,
thus equation 6 is minimised completely: it is zero for this branch. Finally, selecting the index of the
nearest cluster center directly minimises placement of the branch according to equation 6, ignoring
the constraint (which is latest ensured by the “if/else”). Note that the hard constraint of equation 6
takes the place of the soft cluster penalty of DP-means (Kulis & Jordan, 2011).

The updates to the cluster centers, unlike k-means and DP-means, are done in an exponentially-
weighted moving average of the embeddings, rather than as global optimisation step utilising all of
the data. Consequently, and importantly, what happens to equation 6 evaluated for es, where s ̸= t,
is of significant interest, as objectives for k-means and DP-means account for all data, rather than a
single datum.

We tested the qualitative behavior of different removal strategies in Fig. 8. This study suggested
that a stochastic removal of a cluster with probability ∝ c−2 was more stable and better tracked
a non-stationary distribution. The intuition we got from these toy examples is also confirmed in
ablation experiments ran on the Atari environment, as shown in Fig. 9, where we compare RECODE
runs with different removal rules.

Figure 9: Effect of removal strategy on performance. All choices of removal strategy considered
result in a viable algorithm, but there are some environments (most notably Pitfall!) where the chosen
strategy of 1/c2 appears to be more robust.

D.2 DEALING WITH NON-STATIONARY EMBEDDING DISTRIBUTIONS.

We now turn to the question of how to deal with the non-stationarity of the embedding distribution.
We introduced the following modifications to deal with the non-stationarity of our data stream:

1. the cluster count decays,
2. two clusters can be merged to accommodate a new one,

17

Published as a conference paper at ICLR 2024

3. the use of an exponentially weighted moving average update of cluster centers.

In k-means, all of the data are retained. This makes k-means costly: at each step of fitting the entire
data set is examined to update the cluster assignments and update the cluster means. Instead, we take
a distributional approximation to the data associated with each cluster, and when re-adjusting cluster
assignments according to equation 6, we do so in terms of this distributional approximation.

In particular, each cluster is approximated by a Gaussian distribution with precision 1 and whose
mean is unknown but with prior zero and precision 1. Specifically:

µl ∼ N (0, c0), ei|µl ∼ N (µl, 1)

whereN (µ, τ) denotes a Gaussian (or normal) distribution with mean µ and precision τ (precision is
the inverse variance). Since the prior on µl is conjugate to the likelihood on ei, we know that the
posterior on ml will have the form N (µl, cl). Updating this posterior with a single embedding ei has
the form:

m← cl
cl + 1

m+
1

cl + 1
ei, cl ← cl + 1

This is precisely the update in Algorithm 2.

Note that in this model, the counts cl are also the precision parameters of the distribution, representing
the inverse spread (or the concentration) of each cluster. At each step of Algorithm 2, these counts are
decayed. Effectively, this causes the variance of the distribution representing each cluster to spread
out: thus at each time step, each cluster becomes less concentrated and more uncertain about which
data points belong to it. The hyperparameter γ captures the rate of diffusion of all clusters in this
manner. This uncertainty increase applied at each step acts as a “forgetting" mechanism that helps
the algorithm to deal with a changing data distribution.

Cluster re-sampling, as already justified for et above in terms of equation 6, ensures that the number
of clusters is bounded by |M |. There are two details to examine: what is merged, and how it is
merged. As cj 7→ 0, the probability assigned by the Gaussian likelihood of cluster j to any new datum
approaches zero also, thus the cluster with the lowest counts is likely to have the least impact on
future density estimates (as it is most diffuse). When cj ≫ 0, however, it is not so clear which cluster
should be removed. Therefore, we stochastically select which cluster to remove with probability
inversely proportional to the square of the counts (using the square of the counts emphasizes small
differences in counts more than 1/cj). The cluster could potentially be removed completely, but we
instead choose to re-assign its counts to the nearest cluster as we experimentally found this strategy
to be less sensitive to the choice of hyperparameters.

To help build some intuition about the effects of the discount factor, we illustrate its effects on a toy
example with a non-stationary embedding distribution in Fig. 10. We find that tuning the discount γ
allows to smoothly interpolate between short-term and long-term memory.

Figure 10: Non-stationary density estimation using RECODE on a toy example. For step t = 0, . . . , 100,
we sample a batch of 64 2D-embeddings uniformly from the square of side 1 +

√
t. The support

of the embedding distribution therefore expands over time to simulate a non-stationary distribution
similar to the distribution of states visited by an RL agent over the course of exploration. We plot the
atoms learned by RECODE with a size proportional to their count. We find that for a small enough
discount, RECODE exhibits a short-term memory, accurately approximating the distribution of the final
distribution. As we increase the discount, RECODE exhibits a longer-term memory, approximating
the historical density of states, as can be seen by the concentration of probability mass in the
bottom-left corner.

18

Published as a conference paper at ICLR 2024

To confirm the practical necessity of cluster discount, we perform additional ablations on the Atari
environment. If we don’t train the representation during the exploration, but start with a pretrained
one, we see that RECODE can perform reasonably well also without using discount (see Fig. 12).
However, as shown in Fig. 11, as soon as we also train the representation at the same time, the
ability to forget old observations allows to compensate distribution-shift and achieves quite better
performance.

Figure 11: Effect of discount on performance. As embeddings evolve throughout the training it may
happen that older clusters stop being meaningful under the current representation. Deactivating the
discount (i.e. γ = 1) results in a significant degradation in performance, especially in hard-exploration
settings like Montezuma’s Revenge and Pitfall!.

Figure 12: Pretrained vs concurrently-trained embeddings and sensitivity to discount. We take a
snapshot of the embeddings at 400M frames and then the agent is trained again from scratch with
these frozen embeddings. We find that we can achieve similar performance even with a γ = 1 (i.e.
no discount). Interestingly, we also observe that the agent can achieve much higher scores than those
the original agent had achieved at the time the snapshot was taken.

E ANALYZING EXPLORATION WITH RECODE

In this section, we present a simple example to show a simple example to illustrate how the exploration
process unfolds for RECODE. We use a variant of the Random Disco Maze: a grid-world environment
proposed in Badia et al., 2020b to show the the importance of estimating the exploration bonus using
a controllable state representation, depicted in Fig. 13 (left). The agent starts each episode in a fixed
position of a fully observable maze of size 21x21. The agent can take four actions {left, right, up,
down}. The episode ends if the agent steps into a wall, reaches the goal state or reaches a maximum
of 500 steps.

Crucially the environment presents random variation in the color of each wall fragment at every time
step. Specifically, the color of each wall fragment is randomly and independently selected from a set

19

Published as a conference paper at ICLR 2024

of five possible colors. This introduces a great deal of irrelevant variability into the system, which
presents a serious challenge to exploration bonus methods based on novelty. The reason for this is
that the agent will never see the same exact state twice, as the colors of the wall fragments will always
be different each time step.

We ran RECODE for 100 million steps. The agent is able to find the goal after collecting around 50
to 60 million steps. In Fig. 13 (right) shows how the distribution of clusters changes as the agent
explore this environment. As the agent always starts in the same position (bottom-left corner of the
maze), the distribution is heavily skewed towards over-representing this points. We can see that as
time progresses the cluster centers uniformly cover all the maze.

Figure 13: (Left) Random Disco Maze (Right) Evolution of the distribution of the clusters learned by
RECODE over time, see text for details.

We investigate how far back the memory of RECODE goes in Montezuma’s Revenge. The results are
shown in Fig. 14. We find that the distribution of the age of the clusters learned by RECODE (i.e.
how many steps ago each atom has been inserted in the memory) exhibits a mode around 2 · 106
actor steps, which corresponds to hundreds of episodes, with a significant number of clusters ten
times older than that. We remind that NGU’s short-term non-parametric novelty estimated at most one
episode (red line in the Figure).

Figure 14: Age distribution of the clusters learned by RECODE on Montezuma’s Revenge. RECODE’s
memory horizon spans much more than a single episode. We set γ = 0.999 as in the experiments of
Fig. 4. We indicate in red the average length of an episode, showing that in this setting, RECODE’s
memory reaches back thousands of episodes.

20

Published as a conference paper at ICLR 2024

Table 1: Atari Hyper-parameters.

Parameter Value

RECODE memory size 5× 104

RECODE discount γ 0.999
RECODE insertion probability η 0.05
RECODE relative tolerance κ 0.2
RECODE reward constant c 0.01
RECODE decay rate τ 0.9999
RECODE neighbors k 20
IM Reward Scale βIM 1.0
Max Discount 0.9997
Min Discount 0.97
Replay Period 80
Trace Length 160
Replay Ratio 6.0
Replay Capacity 2× 105 trajectories
Batch Size 64
RL Adam Learning Rate 3× 10−4

Emedding Adam Learning Rate 6× 10−4

RL Weight Decay 0.05
Embedding Weight Decay 0.05
RL Torso initial stride 4
RL Torso num blocks (2, 3, 4, 4)
RL Torso num channels (64, 128, 128, 64)
RL Torso strides (1, 2, 2, 2)

F HYPER-PARAMETERS AND COMPUTATIONAL RESOURCES

We implemented RECODE and all the baseline agents and novelty mechanisms in a distributed setting
(see App. G and H). We report here the total computational infrastructures used by each distributed
agent, (including multiple actors, learner and RECODE memory mechanism where applicable). One
seed for an Atari experiments (e.g., for MEME-RECODE-AP and MEME-NGU-AP) took 24h to
execute using multiple servers with a total of 64 CPUs, 1TB RAM, and 5 TPUv4. One seed for a
DM-HARD-8 experiment (e.g., for MEME-RECODE-CASM and MEME-NGU-CASM) took 90h to
execute using multiple servers with a total of 512 CPUs, 1TB RAM, and 5 TPUv4.

We also report here the precise hyper-parameter values used in our experiment, Table 1 for Atari and
Table 2 for DM-HARD-8 We omit hypers which do not differ from the base MEME agent Kapturowski
et al. (2022).

We emphasize that the relevant hyperparameters for RECODE, i.e. those for which the algorithm is
sensitive to changes, are only

• RECODE memory size

• RECODE discount γ

See the previous Appendix D and the main text for the discussion of their interpretation. The other
parameters are particular choices, for which the algorithm proved to be robust in many different
environments, and we did not need to retune them. We ran additional experiments sweeping across all
permutations of η ∈ 0.05, 0.2 and memory size ∈ [5× 104, 2× 105] in both Atari and DM-HARD-8
and found that performance in most environments had little sensitivity to these choices.

21

Published as a conference paper at ICLR 2024

Table 2: DM-HARD-8 Hyper-parameters.

Parameter Value

RECODE memory size 2× 105

RECODE discount γ 0.997
RECODE insertion probability η 0.2
RECODE relative tolerance κ 0.2
RECODE reward constant c 0.01
RECODE decay rate τ 0.9999
RECODE neighbors k 20
IM Reward Scale βIM 0.1
Max Discount 0.997
Min Discount 0.97
Replay Period 40
Trace Length 80
Replay Ratio 2.0
Replay Capacity 5000 trajectories
Batch Size 128
RL Adam Learning Rate 1× 10−4

Embedding Adam Learning Rate 3× 10−4

RL Weight Decay 0.1
Embedding Weight Decay 0.1
RL Torso initial stride 2
RL Torso num blocks (2, 4, 12, 6)
RL Torso num channels (64, 128, 128, 64)
RL Torso strides (1, 2, 2, 2)

Table 3: CASM Hyper-parameters.

Parameter Value
Transformer Type GatedTransformerXL
State Mask Rate 0.8
Num Masks Per Trajectory 4
Action Embedding Size 32
Num Layers 2
Attention Size 128
Num Attention Heads 4
MLP Hidden Sizes (512,)
Predictor Hidden Sizes (128,)

G ARCHITECTURE OF A DISTRIBUTED AGENT USING RECODE

We now detail how RECODE can be efficiently integrated in a typical distributed RL agent (Espeholt
et al., 2018; Kapturowski et al., 2018) that comprises several processes that run in parallel and interact
with each other, allowing for large-scale experiments. Classically, a Learner performs gradient steps
to train a policy πθ and an embedding (representation) function fθ, forwarding the parameters θ to
an Inference Worker. A collection of independent Actors query the inference worker for actions
that they execute in the environment and send the resulting transitions to the Learner, optionally
through a (prioritized) Replay (Mnih et al., 2015; Schaul et al., 2015). When using RECODE, the
Actors additionally communicate with a shared Memory implementing Algorithm 1: at each step
t, they query from the Inference Server an embedding fθ(ht) of their history and send it to the
shared Memory which returns an intrinsic reward rt that is then added to the extrinsic reward to
train the policy in the Learner process. A diagram giving an overview of the typical architecture of a
distributed agent using RECODE is given in Figure 15.

22

Published as a conference paper at ICLR 2024

Figure 15: Overview of the architecture of a distributed agent using RECODE.

H AGENT TAXONOMY

All methods evaluated in the experiments in the main paper and the extended experiments in App. L
are composed by three main components.

• A base agent that oversees the overall RL learning process (e.g., executing actions and
collection observations, computing adjusted returns, updating the policy, ...). We focus on
MEME (Kapturowski et al., 2022), a recent improvement over Agent57 (Badia et al., 2020a)
that achieves much greater sample efficiency and is the current state-of-the-art on Atari, and
a VMPO-based agent (Guo et al., 2022) that is the current state-of-the-art on DM-HARD-8.

• A representation learning mechanism to generate observation embeddings which are fed
to the intrinsic reward generator. We consider both Action Prediction (AP) and CASM
embeddings. Note that some intrinsic reward modules cannot make effective use of the
representation learning module (e.g., RND), while others merge both second and third module
in a single approach (e.g., BYOL-Explore)

• An algorithm to generate intrinsic rewards. In addition to RECODE, we also consider the
recent BYOL-Explore Guo et al. (2022), NGU Badia et al. (2020b) and NGU’s two building
blocks, RND Burda et al. (2019) and Episodic Memory (EMM) Pritzel et al. (2017).

For example, in our more detailed taxonomy the original MEME agent described in Kapturowski et al.
(2022) is denoted as the MEME-NGU-AP baseline, and compared against our novel MEME-RECODE-AP
agent where the only modifications is the changed exploration reward. Table L reports more details
on all combinations available present in our experiments.

Table 4: Taxonomy of agents used in the experiments.

Agent name Base agent Intrinsic reward Representation learning
MEME-NGU-AP Kapturowski et al. (2022) MEME NGU AP
MEME-RND (ablation) MEME RND N/A(a)

MEME-EMM-AP (ablation) MEME EMM AP
MEME-RNDonAP (ablation) MEME RND AP (b)

MEME-RECODE-AP (this paper) MEME RECODE AP
MEME-RECODE-CASM (this paper) MEME RECODE CASM
MEME-NGU-CASM (ablation) MEME NGU CASM
VMPO-BYOL-Explore Guo et al. (2022) VMPO BYOL-Explore BYOL-Explore (c)

(a) As in the original paper RND takes as input raw observations.
(b) To test RND’s ability to cope with non-stationary representations, we train an AP encoder concurrently with the
policy and use it to create embeddings of the observations that are fed in RND (i.e., running RND on top of AP).
(c) The BYOL-Explore mechanism internally trains a neural network to predict the dynamical evolution of the
observations. This provides the agent with both a reward/novelty signal (prediction error) as well as an embedded
representation of the observations (that can be extracted from the last few layers of the network).

23

Published as a conference paper at ICLR 2024

I EXPLORATION IN THE DM-HARD-8 ENVIRONMENT

The three-dimensional tasks in DM-HARD-8 can have an extremely large state space to explore.
Consider for example the Baseball task, as shown in Fig. 16: the agent needs to look at the scene,
find the bat, pick it up, throw the ball down, pick up the ball and be able to get the apple.

Look for bat Pick bat Throw ball down

Pick ball Place ball on sensor Enter chamber Pick apple (final goal)

1st frame

Figure 16: First-person-view snapshots of an agent solving the DM-HARD-8 Baseball task. Images
are ordered chronologically from left to right and top to bottom. Each image depicts a specific stage
of the task. The agent must interact with specific objects in the environment in order to solve the task.

J AGGREGATED RESULTS

In this section, we show the aggregated results over all different environments, both for the Atari suite
and for DM-HARD-8. To ensure that no single environment dominates due to larger reward scales we
use the Human Normalized Score (Mnih et al., 2015) in each environment, and then cap scores above
100% prior to averaging.

As Fig. 17 shows, (Left), the uncapped score can swing significantly over time, which in this case is
simply an artifact the high variance present in Q*bert. This variance arises due to a bug in Q*bert,
which allows for much larger scores to be obtained if exploited.

Figure 17: Aggregated results on Atari. (Left): Mean Human-Normalized Scores of MEME-RECODE-AP
compared to MEME-NGU-AP on Atari games. (Right): Capped Human-Normalized Scores.

In Fig 18, we present our main results aggregated over all environments in each DM-HARD-8 task
suite. Table 6 summarizes the results and compares the performance of the RECODE novelty reward
mechanism with that of NGU. We emphasize how effective our approach is when applied to three-
dimensional environments like DM-HARD-8, if compared to alternatives like BYOL-Explore.

24

Published as a conference paper at ICLR 2024

Figure 18: Aggregated results on DM-HARD-8. Mean Capped Human-Normalized Scores of MEME-
RECODE-CASM are compared to VMPO-BYOL-Explore.

Table 5: Aggregated results over DM-HARD-8 environment tasks.

Game Human MEME-NGU-AP MEME-NGU-CASM MEME-RECODE-AP MEME-RECODE-CASM

Baseball 7.90 0.00 ± 0.00 0.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Drawbridge 12.30 0.00 ± 0.00 4.15 ± 6.62 12.41 ± 0.07 12.86 ± 0.13
Navigate Cubes 7.80 3.33 ± 5.33 9.76 ± 0.25 10.00 ± 0.00 10.00 ± 0.00
Push Blocks 8.40 0.00 ± 0.00 0.24 ± 0.24 1.07 ± 0.62 4.06 ± 2.14
Remember Sensor 7.60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Throw Across 5.70 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 9.72 ± 0.31
Wall Sensor 9.10 0.00 ± 0.00 0.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
Wall Sensor Stack 8.60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 6: Aggregated results over Atari environment tasks.

Game Human MEME-NGU-AP MEME-RECODE-AP p-value
Final Performance

Montezuma’s Revenge 4753.3 10715.2 ± 4967.4 11591.94 ± 1112.67 0.1970
Pitfall! 6463.7 44947.6 ± 13020.0 77737.38 ± 14669.51 0.0043
Private Eye 69571.3 100796.2 ± 2.5 100794.7 ± 2.0 0.3496
Solaris 12326.7 19810.1 ± 5060.0 26152.5 ± 4503.0 0.1970
Seaquest 42054.7 782330.1 ± 159871.7 793697.7 ± 184030.5 0.4091
Hero 30826.4 187244.3 ± 27855.2 141638.4 ± 60803.2 0.0465
Q*Bert 13455 57751.0 ± 26942.8 182638.3 ± 98698.3 0.0465
Venture 1187.5 2552.2 ± 96.1 2502.4 ± 78.7 0.3496

AUC
Montezuma’s Revenge 6742.1 ± 2144.8 7498.1 ± 130.8 0.1970
Pitfall! 25784.5 ± 12320.7 26775.0 ± 6949.1 0.3496
Private Eye 86109.6 ± 3649.4 89980.2 ± 1377.6 0.1548
Solaris 15338.7 ± 2569.7 22454.0 ± 600.4 0.0011
Seaquest 631153.4 ± 67020.8 730154.4 ± 86270.1 0.0325
Hero 89115.6 ± 8964.1 71842.1 ± 16767.4 0.0898
Q*Bert 148095.1 ± 67841.9 166216.5 ± 13799.1 0.0898
Venture 2322.5 ± 27.3 2253.8 ± 61.6 0.1201

Mean HNS 543.6(477.9,600.8) 715.5(606.1,833.9) 0.0185
Median HNS 329.4(234.9,430.9) 357.9(270.1,473.6) 0.3551
Mean Capped HNS 95.7(89.4,100.0) 100(100,100) 0.0419

Table 7: Atari final performance and AUC. For individual games we use a one-sided Mann-Whitney
U test for difference in mean between RECODE and NGU and report the corresponding p-values. For
aggregate statistics (Mean and Median HNS) we compute p-values using a bootstrap estimate.

25

Published as a conference paper at ICLR 2024

K MULTITASK EXPERIMENTS

We also implemented RECODE in a VMPO-based agent similar to the one used with BYOL-
Explore (Guo et al., 2022), and compared our performance with BYOL-Explore in the multi-task
setting. This experiment serves two different purposes. First, this demonstrates the generality of
our exploration bonus, that is shown to be useful in widely different RL agents, be they value-based
or policy-based. Second, we can do a direct comparison with the state of the art BYOL-Explore
agent in the multi-task settings. However, we note that the representation learning technique used in
this experiment, 1-step Action Prediction, is based on a feed-forward embedding that discards past
history, and may therefore not be the best fit for exploration in Partially Observable MDPs (POMDPs).
Still, Fig. 19 shows that RECODE’s performance is competitive with that of BYOL-Explore, with
only one level missing to match its performance. Improving this performance using better-suited
representations, such as CASM, is left for future work.

Figure 19: Performance of RECODE compared to BYOL-Explore on the multi-task version of
DM-HARD-8. Our RECODE implementation in this experiments is based on VMPO, using a con-
tinuous action set.

L ADDITIONAL ABLATION STUDIES

L.1 MEMORY SIZE AND INSERTION PROBABILITY.

We report here additional results on the performance of RECODE (in particular a MEME-RECODE-AP
agent) on Atari for different memory sizes {2 · 105, 5 · 104} and η ∈ {0.2, 0.05}.

Figure 20: Ablation study on η and memory size for RECODE. The combination η = 0.05 and memory
size 50k is the one reported in the main paper.

26

Published as a conference paper at ICLR 2024

We see that for all combinations RECODE achieves a robust performance on most environments, never
failing to achieve super-human performance.

L.2 CASM MASKING

Here we analyze the performance of our technique when removing the masking strategy in CASM (see
main text). For each element of the sequence, instead of providing either the embedded observation or
the action, we always provide both, making the classifier upstream task too simple. Masking allows
to provide extra context (with respect to action-prediction) while keeping the prediction task hard
enough to require the encoding of high-level features in the representation.

Figure 21: CASM masking ablation. (Left): CASnotM is CASM without any masking applied to the
trajectory. Even by itself, the extra context provides a clear advantage over AP, but the masking
strategy is essential to solve Push Block. (Right): The loss for CASnotM is much lower than for both
AP and CASM suggesting that the additional context without any masking makes the prediction task
easier (but leading to a less robust representation).

L.3 RND ON TOP OF ACTION PREDICTION EMBEDDINGS

We adapt RND to leverage trained action-prediction embeddings, which we refer to as RNDonAP.
To that effect, we use a randomly initialized Multi-Layer Perceptron (MLP) to perform a random
projection of the embedding, and use a second, trained MLP, to reconstruct this random projection.
The reconstruction error provides an intrinsic reward for exploration, which we normalize by a
running estimate if its standard deviation as in Burda et al. (2019). We find that the resulting agent is
unable to solve some of the hardest exploration games such as Montezuma’s Revenge or Pitfall!.
The results of this ablation is shown in Fig. 22. Experiments with pre-trained embeddings do seem to
indicate that RNDonAP can obtain stronger performance in this setting, but the inability to concurrently
train the embeddings greatly limits the general applicability of the method.

Figure 22: Performance of RECODE compared to MEME and its ablations on 8 hard exploration Atari
games. We find that this approach does not allow to solve some of the hardest games such as
Montezuma’s Revenge or Pitfall!

27

Published as a conference paper at ICLR 2024

One possible explanation of this failure is the fact that a large RND error can be caused by either the
observation of a new state, or a drift in the representation of an already observed one. The failure of
RND to disentangle these two effects results in poor exploration.

L.4 RECODE VS NGU COMPARISON ON PRE-TRAINED EMBEDDINGS.

Figure 23: Performance with pretrained embeddings used with or NGU.

In this ablation we test how much the performance of NGU can be improved when using pre-trained
embeddings. As one of the main limitations of the RND component in NGU is the low compatibility
with concurrently-trained embeddings, we expect that when using high quality pre-trained and fixed
embeddings RND (and thus NGU) can perform much better.

We evaluate this in the two most representative games from the Atari suite, Montezuma’s revenge
and Pitfall!. For each game, we first run RECODE with concurrently-trained embeddings, and then
take a snapshot of the embeddings at 400M frames. The agent is then trained again from scratch
with these frozen embeddings using either RECODE (with further concurrent training) or NGU (further
training only for the EMM part). In Figure 23 we report results for the original RECODE run, the new
runs with pre-trained embeddings as well as a non-pretrained NGU run for reference. We find that on
Montezuma’s revenge, where there are less visual confounding factors and a policy learned directly in
pixel space is more effective, pre-training brings only small improvements for both RECODE and NGU.
However in Pitfall!, where it is important to have a good representation to filter out uncontrollable
elements, agents that leverage pre-trained embeddings can achieve much higher scores than those the
original agent had achieved at the time the snapshot was taken.

L.5 CASM IN ATARI

As CASM was specifically designed to aid representation learning in partially observable and 3D
environments, it might be expected to be less beneficial in environments such as Atari which have
a more limited degree of partial observability. Indeed, performance is quite similar between MEME-
RECODE-CASM and MEME-RECODE-AP across most games, with the notable exception of Hero, in which
CASM yields a significant performance boost.

28

Published as a conference paper at ICLR 2024

Figure 24: Comparison of CASM with AP on Atari. All CASM hypers are identical to those used in
DM-HARD-8 except for the state mask rate (set to 0.1 in these experiments, as we observed that high
values exhibited much higher variance between seeds on Pitfall!)

L.6 RECODE ON TOP OF BYOL EMBEDDINGS

To further show RECODE robustness to change of representation, in Fig. 25, we compare the per-
formance of the RECODE embedding on top of an action-prediction representation with respect to a
BYOL representation (as in Guo et al. (2022)).

Figure 25: Comparison of RECODE with AP vs BYOL embeddings. We observe that RECODE is able
to leverage BYOL embeddings to achieve superhuman performance on Montezuma’s Revenge and
achieve positive scores on Pitfall!, though significantly underperforming compared to AP embeddings.
For BYOL, we sweeped over embedding sizes of {32, 128, 512} and report the best performing size,
32.

29

	Introduction
	Background
	RECODE
	Representation Learning Methods
	Experiments
	Atari
	DM-HARD-8
	Ablations

	Conclusion
	Related Works
	Limitations
	General notation
	RECODE from a Clustering Point of View
	Addressing finite-memory limitations.
	Dealing with non-stationary embedding distributions.

	Analyzing Exploration with RECODE
	Hyper-parameters and computational resources
	Architecture of a distributed agent using RECODE
	Agent Taxonomy
	Exploration in the DM-HARD-8 environment
	Aggregated Results
	Multitask Experiments
	Additional ablation studies
	Memory size and insertion probability.
	CASM masking
	RND on top of Action Prediction Embeddings
	RECODE vs NGU comparison on pre-trained embeddings.
	CASM in Atari
	RECODE on top of BYOL embeddings

