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ABSTRACT

We propose to use the family of Matérn kernels for implicit surface reconstruc-
tion, building upon the recent success of kernel methods for 3D reconstruction
of oriented point clouds. As we show from a theoretical and practical perspec-
tive, Matérn kernels have some appealing properties which make them particu-
larly well suited for surface reconstruction—outperforming state-of-the-art meth-
ods based on the arc-cosine kernel while being significantly easier to implement,
faster to compute, and scalable. Being stationary, we demonstrate that Matérn ker-
nels allow for tunable surface reconstruction in the same way as Fourier feature
mappings help coordinate-based MLPs overcome spectral bias. Moreover, we the-
oretically analyze Matérn kernels’ connection to SIREN networks as well as their
relation to previously employed arc-cosine kernels. Finally, based on recently
introduced Neural Kernel Fields, we present data-dependent Matérn kernels and
conclude that especially the Laplace kernel (being part of the Matérn family) is
extremely competitive, performing almost on par with state-of-the-art methods in
the noise-free case while having a more than five times shorter training time.1

1 INTRODUCTION

Recovering the shape of objects from sparse or only partial observations is a challenging task. For-
mally, let Ω ⊂ Rd and X = {x1, x2, . . . , xm} ⊂ Ω be a set of m points in d dimensions which
forms, together with associated per-point normals, a dataset D = X ×{n1, n2, . . . , nm} ⊂ Ω×Rd.
The goal of surface reconstruction is to recover the object’s shape from D. The shape of objects
may be represented as dense point clouds, polygonal meshes, manifold atlases, voxel grids, or (as
the zero-level set of) implicit functions, which is the representation we chose to focus on in this
work. Specifically, if f : Rd −→ R denotes an implicit function, such as a Signed Distance Func-
tion (SDF), then, from a practical perspective, implicit surface reconstruction aims at finding an
optimal solution f̂ to the following Kernel Ridge Regression (KRR) problem:

f̂ = argmin
f∈H

{
m∑
i=1

|f(xi)|2 + ∥∇f(xi)− ni∥2 + λ∥f∥2H

}
, (1)

where the function space H := H(Ω) is usually taken to be a Reproducing Kernel Hilbert Space
(RKHS) with associated reproducing kernel k : Ω × Ω −→ R, and λ > 0. Once f̂ at hand, the
reconstructed object’s surface is implicitly given as Ŝ = {x : f̂(x) = 0} ⊂ Rd and can be extracted
using Marching Cubes (Lorensen & Cline, 1987). It is quite easy to observe that, as λ → 0, the
optimization problem in Eq. (1) turns into the constrained minimization problem,

minimize
f∈H

∥f∥H s.t. f(xi) = 0 and ∇f(xi) = ni ∀i ∈ {1, 2, . . . ,m} (2)

which makes it easier to see how the predicted surface behaves away from the input points. As
seen from Eq. (2), while Ŝ should interpolate the given points X exactly, the behavior in be-
tween and away from those points is solely determined by the induced norm ∥f∥H of the func-
tion space, H , over which we are optimizing. The properties of ∥f∥H are uniquely defined by

1Code available at: https://github.com/mweiherer/matern-surface-reconstruction.
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Figure 1: Matérn kernels with associated spectral densities. We propose to use the family of
Matérn kernels for tunable implicit surface reconstruction, parametrized by a smoothness parameter,
ν > 0, that controls the differentiability of the kernel, and a bandwidth parameter h > 0. Both
parameters allow explicit manipulation of the kernel and its spectrum. Importantly, Matérn kernels
recover the Laplace kernel for ν = 1/2 and the Gaussian kernel as ν → ∞.

the reproducing kernel, k; this is a direct consequence of the Representer Theorem (Kimeldorf &
Wahba, 1970; Schölkopf et al., 2001) which states that solutions to Eq. (1) are of the form f(x) =∑m

i=1 αik(x, xi), yielding ∥f∥2H = α⊤Kα. Here, α ∈ Rm and K = (K)ij = k(xi, xj) ∈ Rm×m.
This shows that the behavior of the norm and hence, estimated surfaces Ŝ, can be explicitly con-
trolled by the kernel function, enabling easy injection of inductive biases (such as smoothness as-
sumptions) into the surface reconstruction problem. Even further, if the chosen kernel has adjustable
parameters, they can be used to adaptively (on a shape-by-shape basis) manipulate the inductive bias.

Although already used in the mid-90s and early 2000s (Savchenko et al., 1995; Carr et al., 1997;
2001), only recently, kernel-based methods for 3D implicit surface reconstruction became extremely
competitive, with Neural Kernel Surface Reconstruction (NKSR; Huang et al. (2023)) eventually
evolving as the new state-of-the-art. While early works mostly focused on (polyharmonic) radial
basis functions such as thin-plate splines, recent work (Williams et al., 2021; 2022) employ the first-
order arc-cosine kernel. Introduced by Cho & Saul (2009), arc-cosine kernels have been shown to
mimic the computation of (two-layer) fully-connected ReLU networks; indeed, if the layer-width
tends to infinity, the first-order arc-cosine kernel is identified with the Neural Tangent Kernel (NTK;
Jacot et al. (2018)) of the network. One important aspect of this kernel is that it does not have
adjustable parameters. While this can be advantageous in some situations, it also prevents users
from tuning their reconstructions. If the arc-cosine kernel fails to accurately recover a surface, then
there is no possibility (except for using more observations) to improve the result.

Matérn 3/2Arc-cosineInput points Ground truth

Figure 2: Tunable Matérn kernels lead to bet-
ter surface reconstructions than the previ-
ously employed arc-cosine kernel. Here, we
show surface reconstructions from sparse point
clouds of just 1,000 points.

In this work, we suggest a different family of
kernels (with parameters ν, h > 0) for implicit
surface reconstruction: Matérn kernels (Matérn,
1986; Stein, 1999), see Figures 1 and 2. Con-
trary to arc-cosine kernels, Matérn kernels are
stationary (hence translation invariant), spatially
decaying (thus leading to sparse Gram matri-
ces), and unify a variety of popular kernel func-
tions, including the Laplace and Gaussian kernel.
As we will show, Matérn kernels have appeal-
ing properties, making them the ideal candidate
for kernel-based surface reconstruction. From a
practical perspective, we demonstrate that a sim-
ple change of the kernel function from arc-cosine
to Matérn leads to a consistently improved re-
construction accuracy and a significant speedup.
From a theoretical perspective, we argue that
Matérn kernels allow for tunable surface recon-
struction in the same way as Fourier feature map-
pings (Tancik et al., 2020) enable coordinate-
based Multi-layer Perceptrons (MLPs) to learn
high-frequency functions in low-dimensional do-
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mains, effectively overcoming spectral bias (the slow convergence towards high-frequency details).
In addition, we prove that, as the layer-width approaches infinity, Matérn kernels are identified with
the NTK of two-layer SIREN (fully-connected MLPs with sine activations; Sitzmann et al. (2020))
networks—together with Fourier feature mappings the two arguably most influential methods to
overcome spectral bias in coordinate-based MLPs. Lastly, we establish a connection between arc-
cosine and Matérn kernels by showing that the Laplace kernel (Matérn kernel with ν = 1/2) and the
arc-cosine kernel are equal up to an affine transformation when restricted to the sphere. In summary,
our key contributions are:

• We propose to use Matérn kernels for tunable implicit surface reconstruction.
• We theoretically analyze Matérn kernels, relating them to Fourier feature mappings, SIREN

networks, and arc-cosine kernels. Moreover, we derive practical insights into how to choose
the tunable bandwidth parameter based on a new bound of the L2 reconstruction error.

• We propose data-dependent (i.e., learnable) Matérn kernels by leveraging the Neural Kernel
Field (NKF) framework (Williams et al., 2022).

Our experimental evaluation reveals that Matérn 1/2 and 3/2 are extremely competitive, outperform-
ing the arc-cosine kernel while being significantly easier to implement (essentially two lines of stan-
dard PyTorch code), faster to compute, and scalable. In addition to geometry, we show that Matérn
kernels surpass the arc-cosine kernel in reconstructing other high-frequency scene attributes, such
as texture. Finally, we demonstrate that learnable Matérn kernels (1) outperform the data-dependent
arc-cosine kernel (as implemented in the original NKF framework) while being more than four times
faster to train, and (2) perform almost on par with highly sophisticated and well-engineered NKSR
in the noise-free case while having a more than five times shorter training time.

2 RELATED WORK

We briefly review some relevant literature about 3D implicit surface reconstruction from oriented
point clouds, focusing on kernel-based methods. For a more in-depth overview, including neural-
network-based reconstruction methods, see surveys by Berger et al. (2017); Huang et al. (2022b).

Early kernel-based 3D surface reconstruction methods mostly employ Radial Basis Functions
(RBFs) such as thin-plate splines (Savchenko et al., 1995), biharmonic RBFs (Carr et al., 1997;
2001), or Gaussian kernels (Schölkopf et al., 2005). Nowadays, the most widely used surface recon-
struction technique is Screened Poisson Surface Reconstruction (SPSR; Kazhdan & Hoppe (2013))
which, however, can itself be viewed as kernel method (Williams et al., 2021). Only recently, Neural
Splines (NS; Williams et al. (2021)) proposed to use the so-called (first-order) arc-cosine kernel,

kAC(x, y) =
∥x∥∥y∥

π
(sin θ + (π − θ) cos θ) , where θ = cos−1

(
x⊤y

∥x∥∥y∥

)
(3)

for implicit surface reconstruction, achieving state-of-the-art results that outperform classical surface
reconstruction techniques and non-linear methods based on neural networks by a large margin. This
method laid the cornerstone for Neural Kernel Fields (NKFs; Williams et al. (2022)) which attempts
to make arc-cosine kernels learnable by passing input points through a task-specific neural network
before evaluating the kernel function, similar to Deep Kernel Learning (Wilson et al., 2016). Based
on SPSR, NeuralGalerkin (Huang et al., 2022a) proposed to learn basis functions inferred by a
sparse convolutional network instead of using a fixed Bézier basis as in SPSR, hence can be seen
as kernel method in the broader sense. Neural Kernel Surface Reconstruction (NKSR; Huang et al.
(2023)) built upon NKF and NeuralGalerkin and proposed an all-purpose, highly scalable surface
reconstruction method that is robust against noise and eventually became state-of-the-art.

3 MATÉRN KERNELS FOR TUNABLE SURFACE RECONSTRUCTION

We propose to use the family of Matérn kernels (Matérn, 1986; Stein, 1999) for implicit surface
reconstruction, being defined as

kν(x, y) = Φν(∥x− y∥) = Φν(τ) =
21−ν

Γ(ν)

(√
2ντ

h

)ν

Kν

(√
2ντ

h

)
, (4)
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where ν > 0 is a smoothness parameter that explicitly controls the differentiability, and h > 0 is
known as the shape parameter (or bandwidth) of the kernel. Γ denotes the Gamma function, and Kν

is the modified Bessel function of the second kind of order ν. Matérn kernels generalize a variety of
other kernel functions; the most popular ones can be written in closed form as

ν = 1/2 : Φ1/2(τ) = exp
(
− τ

h

)
, (5)

ν = 3/2 : Φ3/2(τ) = exp

(
−
√
3τ

h

)(
1 +

√
3τ

h

)
, (6)

ν = 5/2 : Φ5/2(τ) = exp

(
−
√
5τ

h

)(
1 +

√
5τ

h
+

5τ2

3h2

)
, (7)

where Φ1/2 is known as the Laplace kernel. In the limiting case of ν → ∞, Matérn kernels recover
the popular Gaussian kernel:

Φ∞(τ) := lim
ν→∞

Φν(τ) = exp

(
− τ2

2h2

)
. (8)

For more information about Matérn kernels, please refer to Porcu et al. (2023). Next, we revisit
some basic properties of Matérn kernels and place them in the context of surface reconstruction.

3.1 BASIC PROPERTIES

Differentiable. Matérn kernels allow for controlled smoothness, being exactly ⌈ν⌉ − 1 times dif-
ferentiable (in the mean-square sense). Since functions f in an RKHS H inherit the differentiability
class of the inducing kernel k due to the reproducing property, the from Eq. (1) reconstructed sur-
face Ŝ enjoys the same smoothness properties as k. In the context of 3D surface reconstruction,
this allows an easy injection of inductive biases into the reconstruction problem; for instance, if the
roughness or noisiness of the objects to be reconstructed is known in advance, one can adjust the
smoothness of the kernel accordingly. This is not possible with the arc-cosine kernel.

Stationary. Matérn kernels are stationary, i.e., they only depend on the difference x − y between
two points x, y ∈ Ω. If the distance is Euclidean, Matérn kernels are also isotropic; they only
depend on ∥x − y∥. As a result, Matérn kernels are rotation and translation invariant, hence being
independent of the absolute embedding of points X (based on the reproducing property, translating
input points does not change the reconstructed surface). Consequently, since the kernel’s value only
depends on the relative positions, objects in a scene (or parts of an object) with similar geometric
properties will be reconstructed consistently as long as the relative distances between points on
each instance (or part) remain the same. This is in contrast to the arc-cosine kernel, whose value
depends on the absolute position of points, see Eq. (3); hence, it is not translation invariant (thus
non-stationary), and multiple instances of an object in a scene will generally not yield the same
surface reconstruction. See Appendix A for further discussion.

Spatially decaying. As opposed to arc-cosine kernels, Matérn kernels are spatially decaying; they
tend to zero as the distance ∥x − y∥ becomes large. Consequently, although Matérn kernels are
technically not compact (or locally supported), because their value decays exponentially fast (Porcu
et al., 2023), they can be considered effectively compact. From a computational perspective, this is
a very desirable property as it leads to sparse Gram matrices when truncated with a special kernel
(Genton, 2001), allowing the use of highly efficient and scalable sparse linear solvers. Finally, we
note that simply truncating any kernel does not yield a valid, positive definite kernel in general.

We now derive new theoretical insights into Matérn kernels, ultimately aiming to provide arguments
as to why we believe this family of kernels is particularly well suited for surface reconstruction.

3.2 EIGENVALUE DECAY, SPECTRAL BIAS, AND RECONSTRUCTION ERROR

Eigenvalue decay and spectral bias. We begin by showing that Matérn kernels allow for tunable
surface reconstruction in the same way as Fourier feature mappings help coordinate-based MLPs
overcome spectral bias. As investigated in Tancik et al. (2020), a rapid decrease of the NTK’s eigen-
values implies an associated MLP’s slow convergence to high-frequency components of the target
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Figure 3: Eigenvalue decay of Matérn kernels. While we fix h = 1 and vary ν on the left, the EDR
for ν = 1/2 and different values of h is shown on the right. Larger values of ν and h, i.e., smoother
kernels, lead to faster eigenvalue decay; hence, slow convergence to high-frequency details.

function (up to the point where the network is practically unable to learn these components). Con-
sequently, a smaller eigenvalue decay rate (EDR), i.e., a slower eigenvalue decay, leads to faster
convergence to high-frequency content—in the context of implicit surface reconstruction, more de-
tailed geometry. To overcome this slow convergence, a phenomenon known as spectral bias, Tancik
et al. (2020) use a Fourier feature mapping of the form

γ(x) = [a1 cos(2πb
⊤
1 x), a1 sin(2πb

⊤
1 x), . . . , aq cos(2πb

⊤
q x), aq sin(2πb

⊤
q x)]

⊤ (9)

applied to the inputs x ∈ Rd before passing them to the MLP, effectively transforming the MLP’s
NTK, kNTK, into a stationary kernel, kNTK(γ(x)

⊤γ(y)) = kNTK(kγ(x− y)) =: k′NTK(x− y) whose
spectrum can be tuned through manipulation of the Fourier basis frequencies, bi ∈ Rd, and corre-
sponding coefficients, ai ∈ R, of the kernel kγ(x − y) =

∑q
i=1 a

2
i cos(2πb

⊤
i (x − y)). This shows

that γ enables explicit control over the NTK’s EDR, overcoming spectral bias.

Matérn kernels, being stationary, allow for the same degree of control over the EDR as a Fourier
feature mapping; their spectrum can also be tuned (by varying ν and/or h, see Figure 1). This is in
stark contrast to previously employed, non-stationary and parameter-less arc-cosine kernels, whose
spectrum is not tunable. To further study the dependence of the EDR on ν and h, we use:
Theorem 1 (Seeger et al. (2008), Theorem 3). The eigenvalues of Matérn kernels decay polynomi-
ally at rate

Θ
(
h−2νs−(1+2ν/d)

)
with bandwidth parameter h > 0, and for finite smoothness 0 < ν < ∞.

Figure 3 visualizes the EDR for different values of ν and h along with the EDR of the non-tunable,
first-order arc-cosine kernel which equates to Θ(s−(1+d)/d) and has only been very recently proven
by Li et al. (2024) for general input domains and distributions. As seen, the smoother the kernel
(i.e., the larger ν) and the greater h, the faster the eigenvalues decay. This implies less detailed
surface reconstruction (with a higher error) for smoother kernels and larger h; indeed, this is exactly
what we observe in practice, see Figure 4. Contrary, by lowering both parameters, one can achieve
faster convergence to high-frequency geometric details, effectively leading to more nuanced surface
reconstruction and a smaller reconstruction error.

Reconstruction error. We proceed by investigating the bandwidth’s influence on the L2 reconstruc-
tion error, which is defined (and can be bounded) as

∥f − f̂∥L2 =

(∫
Ω

(
f(x)− f̂(x)

)2
dx

)1/2

≤ C
(ν+d)/2
X ,Ω ∥f∥Hν , (10)

where CX ,Ω is a constant that only depends on X and Ω, and

∥f∥2Hν
= h2ν

(
(2π)d/2Cd,ν

)−1
∫
Rd

(
2ν

h2
+ (2π∥ω∥)2

)ν+d/2

|F [f ](ω)|2dω (11)

is the norm of the RKHS induced by a Matérn kernel with bandwidth h and smoothness ν. Moreover,
Cd,ν := (2dπd/2Γ(ν + d/2)(2ν)ν)/Γ(ν), and F [f ] denotes the Fourier transform of a function f .
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Figure 4: Matérn kernels are tunable. Surface reconstructions can be improved in practice by
varying the bandwidth parameter, h, effectively tuning the kernels’ EDR (see also Figure 3). How-
ever, setting h too small (< 0.5) results in overfitting, while setting h too big (> 10) oversmooths
(i.e., underfits) the true surface. This is also reflected in the reconstruction error (measured using
Chamfer distance), plotted as a function of h on the right.

For more information on the bound, including details on CX ,Ω, please see, e.g., Santin & Schaback
(2016). By inspecting Eq. (10), we notice that the magnitude of the RKHS norm has a considerably
high influence on the reconstruction error. Based on this observation and the fact that ∥f∥Hν depends
on h, our goal is now to further study the effect of h on the RKHS norm. As a first result, we have:

Proposition 2. The RKHS norm of Matérn kernels as defined in Eq. (11) can be bounded by

∥f∥2Hν
≤ h2ν

(
1

h2ν+d
C1

d,ν(F [f ]) + C2
d,ν(F [f ])

)
,

where h > 0, and C1
d,ν and C2

d,ν are functions of F [f ] that do not depend on h.

A proof can be found in Appendix B. We immediately see that ∥f∥2Hν
→ ∞ in either cases, h → 0

and h → ∞. Moreover, based on Proposition 2, it is easy to show that the norm, as a function of h,
decreases as h → h∗ from the left, and increases as h → ∞, where h∗ is given as

h∗ =

(
d

2ν
Q

)1/(2ν+d)

with Q =
C1

d,ν(F [f ])

C2
d,ν(F [f ])

(12)
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Figure 5: RKHS norm as a func-
tion of h. We plot the bound from
Proposition 2 as a function of h.

(see Appendix C for details). Our analysis shows that the re-
construction error can not be made arbitrarily small by just
lowering h; if h is chosen too small, the reconstruction error
starts to increase again, i.e., it overfits the true surface. Con-
versely, if h is set too high, the resulting surface is too smooth
(underfits the true surface), ultimately leading to increased er-
rors. The optimal trade-off is reached if h = h∗. This is also
observed in practice, see Figure 4. As seen from Figure 5,
however, the described effect is more pronounced for smoother
Matérn kernels (large ν), as, at some point, the norm (hence,
the reconstruction error) increases rapidly for large h. Our the-
oretical analysis reveals several practical insights. First, the
reconstruction error is generally more sensitive to very small
values of h. Second, a good starting point is always h = 1.

3.3 RELATION TO NEURAL NETWORKS AND THE ARC-COSINE KERNEL

Relation to neural networks. Next, we study the connection between Matérn kernels and neural
networks. It is well known that the first-order arc-cosine kernel mimics the computation of a two-
layer, infinite-width ReLU network f : Rd −→ R, f(x) = m−1/2

∑m
i=1 vi[w

⊤
i x + bi]+ when the

bottom layer weights W = (w1, w2, . . . , wm) ∈ Rd×m and biases b = (b1, b2, . . . , bm) ∈ Rm

are fixed from initialization and drawn from a standard normal distribution, see, e.g., Cho & Saul
(2009); Williams et al. (2021). Here, [x]+ := max{0, x} denotes the ReLU activation function.

6
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Under similar assumptions, we now show that Matérn kernels mimic the computation of two-layer
SIRENs (Sitzmann et al., 2020) if the layer-width approaches infinity. We claim the following:
Theorem 3. Consider a two-layer fully-connected network f : Rd −→ R with sine activation
function, m hidden neurons, and fixed bottom layer weights W = (w1, w2, . . . , wm) ∈ Rd×m and
biases b = (b1, b2, . . . , bm) ∈ Rm. Let h, ν > 0 and Cd,ν be defined as in Eq. (11). If wi is
randomly initialized from

pν(ω) = h−2νCd,ν

(
2ν

h2
+ (2π∥ω∥)2

)−(ν+d/2)

and bi ∼ U(0, 2π), the NTK of f is a Matérn kernel with bandwidth h and smoothness ν as m → ∞.

A proof can be found in Appendix D. This result establishes for the first time a connection between
SIRENs and kernel methods. While explicitly shown for Matérn kernels, as we argue in the Appendix
D, the arguments of Theorem 3 in fact apply to all stationary kernels, making it a powerful tool to
study the connection between widely used SIRENs and any stationary kernel function.

Matérn kernels vs. arc-cosine kernels. Lastly, we aim to compare Matérn kernels with the previ-
ously used first-order arc-cosine kernel. Our analysis is based on:
Theorem 4 (Chen & Xu (2021), Theorem 1). When restricted to the hypersphere Sd−1, the RKHS
of the Matérn kernel with smoothness ν = 1/2 (the Laplace kernel) include the same set of functions
as the RKHS induced by the NTK of a fully-connected (L ≥ 2)-layer ReLU network.

In other words, Theorem 4 shows that the RKHS of the Laplace kernel (a Matérn kernel with smooth-
ness ν = 1/2) is the same as the RKHS induced by the NTK of a fully-connected ReLU network
when inputs are restricted to Sd−1. Based on Theorem 4, we obtain the following connection be-
tween Laplace and the first-order arc-cosine kernel:
Corollary 5. When restricted to the hypersphere Sd−1, (1) the RKHS of the Matérn kernel with
smoothness ν = 1/2 (the Laplace kernel) is equal to the RKHS induced by the first-order arc-cosine
kernel, implying that (2) the Laplace and arc-cosine kernel are equal up to an affine transformation.

See Appendix E for a proof. For general input domains, our empirical results presented next support
(at least for (L = 2)-layer networks) the widely believed claim that the NTK is not significantly
different from standard kernels (Belkin et al., 2018; Hui et al., 2019; Geifman et al., 2020), such as
the Laplace kernel. Indeed, we show that the Laplace kernel even outperforms the arc-cosine kernel.

4 EXPERIMENTS AND RESULTS

We systematically evaluated the effectiveness of Matérn kernels in the context of implicit surface
reconstruction, presenting results on ShapeNet (Chang et al., 2015) and the Surface Reconstruction
Benchmark (SRB; Berger et al. (2013)) in Section 4.1. Moreover, Section 4.2 demonstrates Matérn
kernels’ ability to reconstruct high-frequency textures on the Google Scanned Objects (GSO; Downs
et al. (2022)) dataset and Objaverse (Deitke et al., 2023). Leveraging Neural Kernel Fields (Williams
et al., 2022), we present and evaluate learnable Matérn kernels in Section 4.3.

4.1 SURFACE RECONSTRUCTION ON SHAPENET AND SRB

ShapeNet. We compare Matérn kernels in a sparse setting against the arc-cosine kernel on ShapeNet
(using train/val/test split provided by Mescheder et al. (2019)). To do so, we randomly sample m =
1, 000 surface points with corresponding normals for each shape. We implemented Matérn kernels in
PyTorch and took the official CUDA implementation of the arc-cosine kernel from NS, eventually
integrated into a unified framework to ensure fair comparison. Notably, we did not use Nyström
sampling as in NS and employed PyTorch’s direct Cholesky solver to solve the KRR problem in Eq.
(1) instead of an iterative conjugate gradient solver. Moreover, similar to NS, we approximate the
gradient part in Eq. (1) with finite differences. See Appendix F for details.

Quantitative results in terms of F-Score (with a threshold of 0.01) and Chamfer distance (CD; always
reported × 103) can be found in Table 1. Matérn 1/2 and 3/2 consistently outperform the arc-cosine
kernel as well as popular SPSR (Kazhdan & Hoppe, 2013). In addition, our experiments show

7
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F-Score ↑ CD ↓
0.5 1 2 0.5 1 2

Matérn 1/2 93.6 93.7 93.7 4.05 4.02 4.02
Matérn 3/2 94.6 94.8 94.9 4.05 4.00 4.09
Matérn 5/2 92.4 93.8 92.9 6.42 5.65 6.91
Matérn ∞ 59.3 52.4 40.9 57.56 50.59 48.38

Arc-cosine 92.8 4.67

NS 90.6 4.74
SPSR 84.3 6.26

CD ↓ HD ↓
Matérn 1/2 0.21 4.43
Matérn 3/2 0.18 2.93
Matérn 5/2 0.58 22.52
Matérn ∞ 3.83 33.27

NS* 0.19 3.19

NS 0.17 2.85
SPSR 0.21 4.69
FFN 0.28 4.45
SIREN 0.19 3.86
SAP 0.21 4.85
DiGS 0.18 3.55
VisCo 0.18 2.95
OG-INR 0.20 4.06

Table 1: Results on ShapeNet (left) and SRB (right) for non-learnable kernels. Arc-cosine
kernel and Matérn ν ∈ {1/2, 3/2, 5/2,∞} are implemented in a unified framework and based on
the exact same parameters. ”NS*” denotes the best result we could achieve by running the official
implementation of NS, see Appendix G. Bold marks best result, underline second best.

Ground truthMatérn 3/2Matérn 1/2NKF NKSRMatérn 1/2 Matérn 3/2NS

Figure 6: Qualitative results for non-learnable kernels on SRB (left) and learned kernels on
ShapeNet (right). Please see Appendices G and I for more qualitative results.

that the bandwidth parameter, h, can be used to tune the surface reconstruction (lower the error),
while not being too sensitive in practice. Matérn 5/2 and the Gaussian kernel (for ν → ∞) perform
significantly worse, being simply too smooth. Figure 2 and Appendix F shows qualitative results.

Time

Matérn 1/2 9.85
Matérn 3/2 12.47
Matérn 5/2 15.26
Matérn ∞ 12.76

NS* 19.89

NS 11.91
SPSR 1.65

Table 2: Runtime com-
parison on SRB. Time in
seconds.

SRB. Next, we evaluate Matérn kernels on the challenging Surface Re-
construction Benchmark which consists of five complex shapes simu-
lated from incomplete and noisy range scans with up to 100,000 points.
For this, we implemented a highly scalable version of Matérn ker-
nels, closely following the NS framework to solve the KRR problem
in Eq. (1) using Nyström sampling (with 15,000 samples) and the
FALKON (Rudi et al., 2017) solver. We compare against NS and SPSR,
as well as kernel-free methods, Fourier Feature Networks (FFNs; Tan-
cik et al. (2020)), SIREN, SAP (Peng et al., 2021), DiGS (Ben-Shabat
et al., 2022), VisCo (Pumarola et al., 2022), and OG-INR (Koneputu-
godage et al., 2023). All methods are optimization-based (FFN and
SIREN are overfitted to a single shape) and use surface normals. For
Matérn kernels, we did a modest parameter sweep over h ∈ {0.5, 1, 2}
and took the reconstruction with the lowest Chamfer distance. Runtime
is measured on a single NVIDIA V100.

Quantitative results obtained by employing Chamfer and Hausdorff distance (HD) can be found in
Table 1, demonstrating that Matérn 3/2 performs on par with NS while being significantly faster to
compute (compared to what we measured for NS), see Table 2. Moreover, Matérn 3/2 outperforms
all evaluated state-of-the-art kernel-free methods (FFN, SIREN, SAP, DiGS, VisCo, and OG-INR).
Figure 6 (left) and Appendix G provide more qualitative results and per-object metrics.
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4.2 TEXTURE RECONSTRUCTION ON GSO AND OBJAVERSE

m Kernel PSNR ↑ LPIPS ↓

10,000 Matérn 3/2 19.61 2.05
Arc-cosine 19.34 2.07

2,500 Matérn 3/2 18.92 2.15
Arc-cosine 18.88 2.09

Table 3: Texture reconstruction on
GSO. Matérn kernels outperform the arc-
cosine kernel in dense and sparse settings.

Lastly, we demonstrate Matérn kernels’ ability to rep-
resent other high-frequency scene attributes, such as
texture. To do so, we randomly sample m surface
points with corresponding normals and per-point RGB
color values from textured meshes, yielding an ex-
tended dataset D′ = D × {c1, c2, . . . , cm} ⊂ Ω ×
Rd × R3 for each shape. Then, instead of model-
ing an SDF f as in Eq. (1), we are seeking a func-
tion f ′ : Rd −→ R4 that, along with signed dis-
tances, also predicts per-point RGB values. Please find
more information in Appendix H about how we adapt
the KRR problem in Eq. (1) to estimate f̂ ′. Finally, we extract the object’s surface using
Marching Cubes and trilinearily interpolate RGB values at previously predicted surface points.
We present quantitative results in terms of PSNR and LPIPS on GSO in Table 3 (metrics evaluated
on the texture atlas; see Appendix H for further details). Matérn 3/2 surpasses the arc-cosine kernel
in the densely sampled setting using 10,000 surface points, as well as in the sparse setting. Notably,
we did not tune Matérn kernels’ bandwidth parameter for this experiment.

Matérn 3/2Arc-cosine Ground truth

Figure 7: Texture reconstruction on Objaverse. Matérn
kernels lead to fewer artifacts and sharper details than the
arc-cosine kernel.

We also show qualitative results on the
challenging Objaverse (Deitke et al.,
2023) dataset in Figure 7. We
chose Objaverse as it includes ex-
tremely high-resolution and complex
textures. Matérn 3/2 reconstructs high-
frequency texture details with great pre-
cision, overall yielding visually more
pleasant reconstructions than the arc-
cosine kernel. Reconstructed textures
have fewer artifacts and are generally
sharper, demonstrating that Matérn ker-
nels can overcome spectral bias much
better than the arc-cosine kernel. Note
that this perfectly confirms our theoret-
ical analysis presented in Section 3.2.

4.3 DATA-DEPENDENT MATÉRN KERNELS

We leverage the Neural Kernel Field (NKF) framework introduced by Williams et al. (2022) to make
Matérn kernels learnable. Specifically, NKF proposed to feed points x, y ∈ Rd through an input-
conditioned neural network φ : Rd −→ Rq before evaluating a kernel function, kφ(x, y;D) =
k ([x, φ(x;D)], [y, φ(y;D)]). We re-implemented the NKF framework since the authors did not
provide code. We set q = 32 for our experiments. Please see Williams et al. (2022) for details.

Sparse surface reconstruction and extreme generalization. We compare learned Matérn kernels
against the original NKF framework (with the arc-cosine kernel) and NKSR (Huang et al., 2023)
in a sparse setting on ShapeNet. Again, we sample m = 1, 000 surface points and corresponding
normals for each shape and set h = 1 for all Matérn kernels. Additionally, we evaluate Matérn
kernels’ out-of-category generalization ability in an extreme setting, in which we train only on chairs
and evaluate on the other 12 ShapeNet categories. Table 4 reports the results, quantified using
intersection-over-union (IoU), Chamfer distance, and normal consistency (NC). Learned Matérn 1/2
and 3/2 outperform the arc-cosine kernel while being significantly faster to train. Training NKF
on the entire ShapeNet dataset (consisting of approx. 30,000 shapes) takes about six days—almost
twice as long as for Matérn kernels, which require about three days (measured on a single NVIDIA
A100). Additionally, although Matérn 1/2 is not able to surpass NKSR, it comes very close (95.3
vs. 95.6 in IoU) while having a shorter training time. Regarding out-of-category generalization, we
observe that Matérn 1/2 performs best, followed by Matérn 3/2, NKF, and NKSR. Please see Figure
6 (right) and Appendix I for qualitative results.
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IoU ↑ CD ↓ NC ↑
Matérn 1/2 95.3 2.58 95.6
Matérn 3/2 94.9 2.70 95.3
Matérn 5/2 93.3 3.07 94.9
Matérn ∞ 92.1 3.39 94.2

NKF* 94.7 2.70 95.2

NKF 94.7 2.65 95.4
NKSR 95.6 2.34 95.4

Train only on chairs, test on all
IoU ↑ CD ↓ NC ↑ Time/epoch

Matérn 1/2 93.4 3.06 94.3 7.71 min
Matérn 3/2 92.8 3.34 94.2 8.26 min
Matérn 5/2 90.5 4.11 93.9 8.56 min
Matérn ∞ 84.7 6.70 92.6 7.74 min

NKF* 92.8 3.30 94.1 31.98 min

NKSR 89.6 2.70 94.1 41.66 min

Table 4: Results on ShapeNet for learned kernels. ”NKF*” denotes a re-implemented variant of
NKF. NKF* and Matérn ν ∈ {1/2, 3/2, 5/2,∞} are based on the same framework and parameters;
they differ only in the employed kernel. Runtime is measured on a single NVIDIA A100 with a
batch size of one to ensure fair comparison. Bold marks best result, underline second best.

No noise (σ = 0) Small noise (σ = 0.0025) Big noise (σ = 0.005)

IoU ↑ CD ↓ IoU ↑ CD ↓ IoU ↑ CD ↓
0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Matérn 1/2 93.3 93.6 93.5 2.88 2.85 2.87 91.9 92.1 92.1 3.03 3.04 3.07 89.5 89.6 89.6 3.37 3.36 3.39
Matérn 3/2 92.7 92.7 92.3 3.08 3.20 3.25 89.7 89.8 89.7 3.48 3.69 3.54 85.8 85.5 86.3 4.23 4.32 4.15
Matérn 5/2 91.8 90.5 88.8 3.58 3.69 4.18 87.9 87.6 87.0 4.29 4.48 4.43 83.4 82.2 84.3 4.90 5.03 5.11
Matérn ∞ 86.4 85.8 86.8 5.80 5.07 4.75 81.3 83.3 81.0 7.27 5.62 6.45 76.7 80.7 79.3 8.27 5.90 6.67

NKF* 93.2 2.97 92.0 3.12 89.5 3.39

NKSR 91.1 2.65 90.1 2.98 88.4 3.41

Table 5: Robustness against noise. We compare Matérn kernels’ robustness against noise on a
subset of the ShapeNet dataset using different noise levels, σ ∈ {0, 0.0025, 0.005} and bandwidths,
h ∈ {0.5, 1, 2}. Bold marks best result, underline second best.

Robustness against noise. We evaluate Matérn kernel’s robustness against different noise levels,
σ ∈ {0, 0.0025, 0.005}, on a subset of the ShapeNet dataset which includes approximately 1,700
shapes. To construct the dataset, we downsampled each ShapeNet category to include only 5% of
the shapes. Table 5 presents the results. NKSR, being specifically optimized to deal with noisy
inputs, degrades the least with increasing noise level (3% in IoU from no to big noise versus 4.3%
for Matérn 1/2). Moreover, Matérn 1/2 is slightly more robust against noise than NKF. Generally,
varying the bandwidth, h, helps increase the robustness against noise.
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ν→∞, h= 2

arc-cosine

Convergence speed. Finally, we analyze Matérn kernels’ conver-
gence speed in comparison to the arc-cosine kernel as implemented
in NKF, see inset figure on the right. As exemplified, Matérn 1/2
already converges after just 100 epochs, while the arc-cosine kernel
requires twice as many epochs, also never being able to reach the
same top accuracy. In general, we see that the smoother the kernel,
the slower the convergence—an observation that perfectly matches
our theoretical analysis in Section 3.2. Matérn 1/2 converges the
fastest, followed by Matérn 3/2, 5/2, and the Gaussian kernel.

5 CONCLUSION

In this work, we have proposed to use the family of Matérn kernels for implicit surface reconstruction
and showed that it consistently outperforms the recently employed first-order arc-cosine kernel—
both, in a non-learnable as well as learnable regime—while being significantly easier to implement,
faster to compute and train, and highly scalable. We demonstrated that Matérn kernels lead to
tunable surface reconstruction, and, based on a new bound of the L2 reconstruction error, derive
practical insights into how to choose their tunable bandwidth parameter. Moreover, we presented
an in-depth theoretical analysis, analyzing Matérn kernels’ relation to widely used Fourier feature
mappings, SIREN networks, and arc-cosine kernels.
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A ON THE STATIONARITY OF MATÉRN KERNELS

As noted in Section 3.1 of the main paper, Matérn kernels are stationary: they only depend on the
difference x − y between two points x, y ∈ Ω, hence being translation invariant. This is because
k(x − y) = k(x + t − (y + t)) for t ∈ Rd and all stationary kernels, k. In contrast, the arc-cosine
kernel is not translation invariant as its value depends on the absolute positions, x, y, see Eq. (3) of
the main paper (i.e., the arc-cosine kernel can not be written as a function of x − y). In fact, the
arc-cosine kernel is non-stationary. In the following and with the help of Figure 8, we will further
discuss why stationary kernels, such as Matérn kernels, might be a better choice for kernel-based
implicit surface reconstruction than non-stationary kernels, such as the arc-cosine kernel.

First, stationary kernels are naturally translation invariant. Consequently, they are independent of the
absolute embedding of the input points—translating them does not change the reconstructed surface
as the kernel’s value only depends on the relative distances between points. This is highly beneficial
from a practical perspective since no additional steps (such as centering the point cloud) have to be
taken before surface reconstruction. Being non-stationary, the arc-cosine kernel behaves differently.
If we would just use the kernel as in Eq. (3) of the main paper, the reconstructed surface would vary
depending on the actual location of the input points in space. This is a highly undesirable property
when it comes to surface reconstruction. To make the arc-cosine kernel translation invariant, input
points must be centered before reconstruction (thus eliminating the effects of translation). A centered
arc-cosine kernel, denoted as k̄AC, reads:

k̄AC(x, y) =
∥x− c̄∥∥y − c̄∥

π

(
sin θ̄ + (π − θ̄) cos θ̄

)
, where θ̄ = cos−1

(
(x− c̄)⊤(y − c̄)

∥x− c̄∥∥y − c̄∥

)
.

Here, c ∈ Rd denotes the centroid of the input point cloud. k̄AC is obviously translation invariant
because ∥x+ t− (c̄+ t)∥∥y+ t− (c̄+ t)∥ = ∥x− c̄∥∥y− c̄∥ and (x+ t− (c̄+ t))⊤(y+ t− (c̄+
t)) = (x − c̄)⊤(y − c̄) for all t ∈ Rd. This follows because translating the input points also shifts
its centroid. In conclusion, while stationary Matérn kernels can be directly used for kernel-based
surface reconstruction, additional pre-processing steps are necessary for the arc-cosine kernel.

Second, stationary kernels lead to locally consistent surface reconstructions. Since a stationary
kernel’s value only depends on the relative positions, objects in a scene (or parts of objects) with
similar geometric properties will be reconstructed consistently as long as the relative distances be-
tween points on each instance (or part) remain the same. This is a crucial and very desirable property
for surface reconstruction which is not shared by the arc-cosine kernel (because it is non-stationary).

Input points Arc-cosine Matérn 3/2

Reconstructed scene Individual objects Reconstructed scene Individual objects

Figure 8: Matérn kernels are translation invariant and lead to locally consistent surface re-
constructions. Here, we show that two identical chairs in a scene are reconstructed differently
depending on the absolute position of the input points when using the non-stationary arc-cosine ker-
nel (especially noticeable at the chair’s legs). In contrast, stationary Matérn kernels lead to locally
consistent surface reconstructions, being independent of the actual embedding (i.e., both chairs have
the exact same reconstructed surface).
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B PROOF OF PROPOSITION 2

Proposition 2. The RKHS norm of Matérn kernels as defined in Eq. (11) can be bounded by

∥f∥2Hν
≤ h2ν

(
1

h2ν+d
C1

d,ν(F [f ]) + C2
d,ν(F [f ])

)
,

where h > 0, and C1
d,ν and C2

d,ν are functions of F [f ] that do not depend on h.

Proof. Based on a simple bound

I =

∫
Rd

(
2ν

h2
+ (2π∥ω∥)2

)ν+d/2

|F [f ](ω)|2dω

≤
∫
Rd

(
2ν

h2

)ν+d/2

|F [f ](ω)|2dω +

∫
Rd

(
(2π∥ω∥)2

)ν+d/2

|F [f ](ω)|2dω

=

(
2ν

h2

)ν+d/2 ∫
Rd

|F [f ](ω)|2dω︸ ︷︷ ︸
=:C′(F [f ])

+

∫
Rd

(
(2π∥ω∥)2

)ν+d/2

|F [f ](ω)|2dω︸ ︷︷ ︸
=:C′

d,ν(F [f ])

=

(
2ν

h2

)ν+d/2

C ′(F [f ]) + C ′
d,ν(F [f ])

we get

∥f∥2Hν
= h2ν

(
(2π)d/2Cd,ν

)−1

I

≤ h2ν
(
(2π)d/2Cd,ν

)−1
((

2ν

h2

)ν+d/2

C ′(F [f ]) + C ′
d,ν(F [f ])

)

= h2ν

 1

h2ν+d
(2ν)ν+d/2

(
(2π)d/2Cd,ν

)−1

C ′(F [f ])︸ ︷︷ ︸
=:C1

d,ν(F [f ])

+
(
(2π)d/2Cd,ν

)−1

C ′
d,ν(F [f ])︸ ︷︷ ︸

=:C2
d,ν(F [f ])


= h2ν

(
1

h2ν+d
C1

d,ν(F [f ]) + C2
d,ν(F [f ])

)
which concludes the proof.

C DERIVATION OF h∗ IN EQ. (12)

Taking derivative of the bound presented in Proposition 2 w.r.t. h yields

d

dh

(
h2ν

(
1

h2ν+d
C1

d,ν(F [f ]) + C2
d,ν(F [f ])

))
=

1

hd+1

(
2νC2

d,ν(F [f ])h2ν+d − dC1
d,ν(F [f ])

)
.

Since d, h > 0, the leading factor 1/hd+1 never becomes zero, so we must have

2νC2
d,ν(F [f ])h2ν+d − dC1

d,ν(F [f ]) = 0 ⇐⇒ h∗ =

(
d

2ν

C1
d,ν(F [f ])

C2
d,ν(F [f ])

)1/(2ν+d)

which shows what we have stated in Eq. (12) of the main paper.

D PROOF OF THEOREM 3

The proof of Theorem 3 is based on Bochner’s theorem (in harmonic analysis) which reads:
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Theorem 6 (Bochner). A continuous function k : Rd −→ R with k(0) = 1 is positive definite if and
only if there exists a finite positive Borel measure µ on Rd such that

k(τ) =

∫
Rd

eiω
⊤τdµ(ω).

In essence, Bochner’s theorem states that k and µ are Fourier duals; given a stationary kernel k,
one can obtain µ (better known as spectral density if normalized) by applying the inverse Fourier
transform to k. On the other hand, given a spectral density µ, one can obtain the corresponding
kernel function k by applying the Fourier transform to µ. Based on Bochner’s theorem,

k(τ) = k(x− y) =

∫
Rd

eiω
⊤(x−y)dµ(ω) = Eω∼µ

[
cos(ω⊤(x− y))

]
because k is real and for even spectral densities. On the other hand, Rahimi & Recht (2007) showed

k(τ) = k(x− y) = Eω∼µ[cos(ω
⊤(x− y))]

= Eω∼µ[cos(ω
⊤(x− y))] + Eω∼µ,b∼U(0,2π)[cos(ω

⊤(x+ y) + 2b)]︸ ︷︷ ︸
=0 (∗)

= Eω∼µ,b∼U(0,2π)[cos(ω
⊤(x− y)) + cos(ω⊤(x+ y) + 2b)]

= Eω∼µ,b∼U(0,2π)[2 cos(ω
⊤x+ b) cos(ω⊤y + b)],

where (∗) follows because b is uniformly distributed in [0, 2π] (hence, the inner expectation w.r.t. b
becomes zero).

We will now prove Theorem 3, copied below for convenience:
Theorem 3. Consider a two-layer fully-connected network f : Rd −→ R with sine activation
function, m hidden neurons, and fixed bottom layer weights W = (w1, w2, . . . , wm) ∈ Rd×m and
biases b = (b1, b2, . . . , bm) ∈ Rm. Let h, ν > 0 and Cd,ν be defined as in Eq. (11). If wi is
randomly initialized from

pν(ω) = h−2νCd,ν

(
2ν

h2
+ (2π∥ω∥)2

)−(ν+d/2)

and bi ∼ U(0, 2π), the NTK of f is a Matérn kernel with bandwidth h and smoothness ν as m → ∞.

Proof. Let f : Rd −→ R be a two-layer fully-connected network with sine activation function, i.e.,

f(x) =

√
2

m

m∑
i=1

vi sin(w
⊤
i x+ bi)

with bottom-layer weights W = (w1, w2, . . . , wm) ∈ Rd×m, biases b = (b1, b2, . . . , bm) ∈ Rm,
and top-layer weights v = (v1, v2, . . . , vm) ∈ Rm. Assume that W and b are fixed (that is, we only
allow the second layer to be trained), and initialized according to some distribution. Choose

wi ∼ pν(ω) = h−2νCd,ν

(
2ν

h2
+ (2π∥ω∥)2

)−(ν+d/2)

(13)

for h, ν > 0 and bi ∼ U(0, 2π) for all i ∈ {1, 2, . . . , n}. Then, based on the fact that ∂vif(x) =√
2 sin(ω⊤

i x+ bi)/
√
m, it is easy to see that the NTK of f is given by

kNTK(x, y) =

m∑
i=1

∂vif(x)∂vif(y)

=
1

m

m∑
i=1

2 sin(w⊤
i x+ bi) sin(w

⊤
i y + bi)

=
1

m

m∑
i=1

2 cos(w⊤
i x+ bi) cos(w

⊤
i y + bi)− 2 cos(w⊤

i (x+ y) + 2bi)

=
1

m

m∑
i=1

2 cos(w⊤
i x+ bi) cos(w

⊤
i y + bi)−

1

m

m∑
i=1

2 cos(w⊤
i (x+ y) + 2bi).
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As m → ∞, we finally obtain

kNTK(x, y) = E(w,b)

[
2 cos(w⊤x+ b) cos(w⊤y + b)

]
− 2E(w,b)

[
cos(w⊤(x+ y) + 2b)

]︸ ︷︷ ︸
=0 (∗)

(∗∗)
= kν(x, y).

Here, (∗) follows because b is uniformly distributed, and (∗∗) since w is distributed according to pν
which is, in fact, the spectral density of kν , see, e.g., Eq. (10) in Kanagawa et al. (2018).

In fact, Theorem 3 can be generalized in that the NTK of a SIREN is generally any stationary kernel:
Remark 7. The NTK of a SIREN can be associated with any stationary kernel if the bottom-layer
weights in Eq. (13) are initialized according to the corresponding kernel’s spectral density.

This is a direct consequence of Bochner’s theorem.

E PROOF OF COROLLARY 5

We first re-state the following result, needed to prove the second part of Corollary 5:
Theorem 8 (Saitoh & Sawano (2016), Theorem 2.17). Let k1 and k2 be two positive definite kernels.
Denote by H1, H2 the RKHSs induced by k1 and k2. Then,

H1 ⊂ H2 ⇐⇒ γ2k2 − k1 is positive definite for γ > 0.

We are now ready to prove Corollary 5 which is copied below for convenience:
Corollary 5. When restricted to the hypersphere Sd−1, (1) the RKHS of the Matérn kernel with
smoothness ν = 1/2 (the Laplace kernel) is equal to the RKHS induced by the first-order arc-cosine
kernel, implying that (2) the Laplace and arc-cosine kernel are equal up to an affine transformation.

Proof. (1) Follows from Theorem 4 by noting that the NTK of a fully-connected (L = 2)-layer
ReLU network is the first-order arc-cosine kernel, see, e.g., Cho & Saul (2009); Williams et al.
(2021). (2) follows from (1) by noting that H1/2 ⊂ HAC when restricted to Sd−1, so, based on
Theorem 8, k := γ2kAC − k1/2 is a valid kernel for γ > 0. Re-arranging the equation, we have

kAC = ak1/2 + b, where a = 1/γ2, b = k/γ2.

This shows that the Laplace and arc-cosine kernel are indeed related by an affine transformation
when restricted to Sd−1, concluding the proof.

F ADDITIONAL DETAILS FOR SHAPENET EXPERIMENT

In this section, we provide implementation details and additional qualitative results on the ShapeNet
experiment as presented in Section 4.1 of the main paper.

F.1 IMPLEMENTATION DETAILS

Following common practice (see, e.g., Williams et al. (2022)), we use finite differences to ap-
proximate the gradient part of the KRR problem in Eq. (1) of the main paper. Specifically,
denote X ′ := X+ ∪ X−, where X+ := {x1 + ϵn1, x2 + ϵn2, . . . , xm + ϵnm} and X− :=
{x1 − ϵn1, x2 − ϵn2, . . . , xm − ϵnm} for a fixed ϵ > 0. The Representer Theorem (Kimeldorf
& Wahba, 1970; Schölkopf et al., 2001) tells us that the solution to Eq. (1) is of the form

f(x) =

2m∑
i=1

αik(x, x
′
i)

which is linear in the coefficients α ∈ R2m, given by

α = (K + λI)−1y, where K = (K)ij = k(xi, xj) ∈ R2m×2m,

17



Published as a conference paper at ICLR 2025

Arc-cosine Matérn 1/2 Matérn 3/2 Ground truthInput points

Figure 9: Additional qualitative results on ShapeNet for non-learnable kernels. We compare the
arc-cosine kernel against Matérn 1/2 and 3/2 for different values of h.

and

yi =

{
+ϵ if x′

i ∈ X+,

−ϵ if x′
i ∈ X−,

for i = 1, 2, . . . , 2m.

Here, I ∈ R2m×2m denotes the identity matrix. We employ PyTorch’s built-in Cholesky solver to
numerically stable solve for α and set ϵ = 0.005 for all experiments.

F.2 FURTHER QUALITATIVE RESULTS

We show additional qualitative results on ShapeNet in Figure 9.

G FURTHER DETAILS ON THE SURFACE RECONSTRUCTION BENCHMARK

This section details the experimental setting that has been used to run Neural Splines (NS; Williams
et al. (2021)) on SRB in Section 4.1 of the main paper. Moreover, we present per-object metrics and
additional qualitative results.

G.1 EXPERIMENTAL SETTING

For NS, we used the official implementation provided here: https://github.com/
fwilliams/neural-splines. Similar to the original paper, we used 15,000 Nyström
samples and did the same parameter sweep over the regularization parameter, λ ∈
{0, 10−13, 10−12, 10−11, 10−10}. For the rest of the parameters (not mentioned in the paper), de-
fault values provided in the repository have been used, except for the grid size which we set to
512. We used exactly the same setting for Matérn kernels, except that we did a modest param-
eter sweep over the bandwidth parameter, h ∈ {0.5, 1, 2}. We utilized the SRB data from here:
https://github.com/fwilliams/deep-geometric-prior.

Despite our best efforts, we were unable to reproduce the results for the NS kernel reported in the
original paper. We run on four different GPUs, including NVIDIA RTX A2000, A40, A100, and
V100 (which has been used by the authors of Neural Splines), and tested different configurations of
the following parameters (see code): grid size, eps, cg-max-iters, cg-stop-thresh,
outer-layer-variance. In Table 1 of the main paper, we report the best result we could
achieve on a V100, which is 0.19 for Chamfer and 3.19 for the Hausdorff distance; Williams et al.
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Anchor Daratech DC Gargoyle Lord Quas

CD ↓ HD ↓ CD ↓ HD ↓ CD ↓ HD ↓ CD ↓ HD ↓ CD ↓ HD ↓
Matérn 1/2 0.31 6.97 0.25 6.11 0.18 2.62 0.19 5.14 0.12 1.32
Matérn 3/2 0.25 5.08 0.23 4.90 0.15 1.24 0.16 2.54 0.12 0.90
Matérn 5/2 0.93 28.33 0.87 32.17 0.34 15.98 0.55 22.52 0.21 9.49
Matérn ∞ 2.88 29.48 5.80 45.94 0.35 35.70 3.84 30.70 3.13 24.55

NS∗ 0.27 5.38 0.23 4.67 0.15 1.41 0.17 3.49 0.12 0.99

NS 0.22 4.65 0.21 4.35 0.14 1.35 0.16 3.20 0.12 0.69
SPSR 0.33 7.62 0.26 6.62 0.17 2.79 0.18 4.60 0.12 1.83
FFN 0.31 4.49 0.34 5.97 0.20 2.87 0.22 5.04 0.35 3.90
SIREN 0.32 8.19 0.21 4.30 0.15 2.18 0.17 4.64 0.17 0.82
SAP 0.34 8.83 0.22 3.09 0.17 3.30 0.18 5.54 0.13 3.49
DiGS 0.28 5.71 0.21 5.02 0.15 2.13 0.16 3.81 0.12 1.10
VisCo 0.21 3.00 0.26 4.06 0.15 2.22 0.17 4.40 0.12 1.06
OG-INR 0.29 7.56 0.23 2.89 0.17 2.68 0.19 5.01 0.13 2.14

Table 6: Per-object quantitative results on SRB. ”NS*” denotes the best result we could achieve
by running the official implementation of NS, see Section G.1. Bold marks best result, underline
second best.

(2021) reported 0.17 and 2.85 for Chamfer and Hausdorff distance, respectively. In order to achieve
this, we had to lower outer-layer-variance form 10−3 per default to 10−5.

To measure runtime, we again used the same setting as in the original NS paper: 15,000 Nyström
samples, and λ = 10−11. Due to the absence of further information about the experimental setting
in the original paper, we used default values provided in the repository for the rest of the parameters.
Runtime was measured on a single NVIDIA V100, similar to Williams et al. (2021).

G.2 ADDITIONAL RESULTS

Per-object metrics are shown in Table 6, and more qualitative results in Figure 10.

H ADDITIONAL DETAILS FOR TEXTURE RECONSTRUCTION EXPERIMENT

This section provides implementation details and further information about the evaluation protocol
used for the texture reconstruction experiment presented in Section 4.2 of the main paper.

H.1 IMPLEMENTATION DETAILS

Recall from Section 4.2 of the main paper that we are given a dataset D′ = D× {c1, c2, . . . , cm} ⊂
Ω × Rd × R3 with per-point RGB colors {c1, c2, . . . , cm}. In order to also reconstruct texture, we
are seeking a function f ′ : Rd → R4, predicting signed distances as well as RGB values. Using
notation introduced in Section F.1, we compute α′ ∈ R2m×4 as

α′ = (K + λI)−1y′, where y′ := [y, c̄] ∈ R2m×4

and c̄ := [c, c]⊤ with (c1, c2, . . . , cm) ∈ Rm×3. Then, we predict the function f ′ as

f ′(x) =

2m∑
i=1

α′
ik(x, x

′
i),

where α′
i ∈ R4 denotes the i-th row of α′. Clearly, f ′(x) = (f ′

1(x), f
′
2(x), f

′
3(x), f

′
4(x)) ∈ R4 with

f ′
1 denoting the singed distance at x, and f ′

2, f
′
3, f

′
4 are the component functions that represent RGB

colors at a position x.

To extract a textured surface mesh from the predicted four-dimensional volume, we use a two-stage
process. First, we apply Marching Cubes (Lorensen & Cline, 1987) to f ′

1, and then trilinearily
interpolate RGB colors at the previously predicted surface points.
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Matérn 1/2 Matérn 3/2NS

Figure 10: Additional qualitative results on SRB for non-learnable kernels. We compare Neural
Splines (NS; Williams et al. (2021)) to Matérn 1/2 and 3/2.
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H.2 EVALUATION PROTOCOL

Our quantitative evaluation on the Google Scanned Objects (GSO; Downs et al. (2022)) dataset
closely follows Mitchel et al. (2024), in which authors compute image-based evaluation metrics on
the texture atlas to quantify reconstruction ability. Specifically, we first sample m surface points
along with corresponding normals and per-point RGB colors from shapes in GSO. Next, we solve
the KRR problem in Eq. (1) as always. Then, instead of predicting RGB colors on the estimated
geometry (which generally differs between various kernel functions), we predict (i.e., trilinearily
interpolate) colors on the surface points of the original mesh. This allows us to leverage the existing
UV parametrization of the original mesh to generate a texture atlas with colors predicted from KRR.
Once the texture atlas at hand, we compare it to the original texture atlas using PSNR and LPIPS.

We used ten objects from GSO with different complexity. The following assets have been used:

• ACE Coffee Mug Kristen 16 oz cup

• Animal Planet Foam 2Headed Dragon

• Jansport School Backpack Blue Streak

• Now Designs Bowl Akita Black

• Predito LZ TRX FG W

• Reebok ZIGTECH SHARK MAYHEM360

• Razer Kraken Pro headset Full size Black

• RJ Rabbit Easter Basket Blue

• Schleich Lion Action Figure

• Weisshai Great White Shark

They can be downloaded from: https://app.gazebosim.org/dashboard.

I ADDITIONAL RESULTS FOR DATA-DEPENDENT KERNELS

We show additional qualitative results for learned kernels on ShapeNet in Figure 11.
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Ground truthNKF NKSR Matérn 3/2Matérn 1/2

Figure 11: Additional qualitative results on ShapeNet for learned kernels. We compare Neural
Kernel Fields (NKFs; Williams et al. (2022)) and Neural Kernel Surface Reconstruction (NKSR;
Huang et al. (2023)) against learnable Matérn 1/2 and 3/2.
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