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A ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS

A.1 A SIMPLE POLICY EVALUATION PROBLEM.

We present a simple policy evaluation experiment to show the influence of the model’s representa-
tional capacity on the converged performance. We consider the following permutation-invariant (PI)
models: ❶ Deep Set, ❷ DA-MLP (apply data augmentation to a permutation-sensitive MLP model),
❸ DPN (apply DPN to the same MLP model), ❹ HPN (apply HPN to the same MLP model) and ❺
Attention (use self-attention layers and a pooling function to achieve PI).

The experimental settings are as follows. There are 2 agents in total. Each agent i only has one
dimension of feature xi. For the convenience of analyzing, we set that each xi is an integer and
xi ∈ {1, 2, ..., 30}, i.e., each agent i only has 30 different features. Thus the size of the joint
state space ([x1, x2]) after concatenating is 30 ∗ 30 = 900. To make the policy evaluation task
permutation-invariant, we simply set the target value Y of each state [x1, x2] as x1 ∗ x2.

In section 4.3, when introducing HPN, we asked a question that whether we can provide an infinite
number of candidate weight matrices of DPN. In this simple task, we can directly construct a sepa-
rate weight matrix for each feature xi. Since xi is discrete (which is enumerable), we can explicitly
maintain a parameter table and exactly record a different embedding weight for each different fea-
ture xi. We denote this direct method as ❻ DPN(∞), which means ‘DPN with infinite weights’.
Our HPN uses a hypernetwok to approximately achieve ‘infinite weight’ by generating a different
weight matrix for each different input xi. We use the Mean Square Error (MSE) as the loss function
to train these different models. The code is also attached in the supplementary material, which is
named ‘Synthetic Policy Evaluation.py’.

The comparison of the learning curves and the converged MSE losses of these different PI models are
shown in Fig.11 and Table 1 respectively. We conclude that DPN(∞) > HPN > Attention > DPN
> DeepSet > DA-MLP, where ‘>’ means ‘performs better than’, which indicates that increasing the
representational capacity of the model can help to achieve much less MSE loss.

Table 1: The comparison of the converged MSE losses of these different PI models.
DA-MLP Deep Set DPN Attention HPN DPN(∞)

MSE 1495.55 1401.23 119.54 49.12 6.34 0.37
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Figure 11: The comparison of the learning curves of different PI models.

If we keep each xi ∈ {1, 2, ..., 30} and simply increase the agent number, the changes of the original
state space by simple concatenation and the reduced state space by using PI representations are
shown in Table 2 below. We see that by using PI representations, the state space can be significantly
reduced.

Table 2: Changes of the state space size with the increase of the agent number.
agent number 2 3 4 5

simple concatenation 900 27000 810000 24300000
PI representation (percent) 465 (0.52) 4960 (0.18) 40920 (0.05) 278256 (0.01)
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Figure 12: Comparisons of VDN-based methods considering the PI and PE properties.

A.2 COMPARISON WITH VDN-BASED PI AND PE BASELINES

The learning curves of the PI/PE baselines equipped with VDN are shown in Fig.12, which demon-
strate that: HPN ≥ DPN ≥ UPDeT > VDN > GNN ≈ SET ≈ DA7. Specifically, (1) HPN-VDN
and DPN-VDN achieve the best win rates; (2) Since UPDeT uses a shared token embedding layer
followed by multi-head self-attention layers to process all components of the input sets, the PI and
PE properties are implicitly taken into consideration. The results of UPDeT-VDN also validate that
incorporating PI and PE into the model design could reduce the observation space and improve
the converged performance in most scenarios. (3) GNN-VDN achieves slightly better performance
than SET-VDN. Although permutation-invariant is maintained, GNN-VDN and SET-VDN perform
worse than vanilla QMIX, (especially in 3s5z vs 3s6z and 6h vs 8z, the win rates are approximate
0%). This confirms that the use of a shared embedding layer ϕ(xi) for each component xi limits the
representational capacities and restricts the final performance. (4) DA-VDN significantly improves
the learning speed and performance of vanilla VDN in 3s5z vs 3s6z by data augmentation and much
more times of parameter updating. However, the learning process is unstable, which collapses in all
other scenarios due to the perturbation of the input features, which validates that it is hard to train a
permutation-sensitive function (e.g., MLP) to output the same value when taking different orders of
features as inputs.

A.3 ABLATION STUDIES.
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Figure 13: Ablation studies. All methods are equipped with VDN.

A.3.1 ENLARGING THE NETWORK SIZE.

We also enlarge the agent network of vanilla VDN (denoted as BIG-VDN) such that the number of
parameters is larger than our HPN-VDN. The detailed numbers of parameters are shown in Table 3.
The results are shown in Fig.13. We see that simply increasing the parameter number cannot always
guarantee better performance. For example, in 5m vs 6m, the win rate of BIG-VDN is worse than
the vanilla VDN. In 3s5z vs 3s6z and 6h vs 8z, BIG-VDN does achieve better performance, but the
performance of BIG-VDN is still worse than our HPN-VDN in all scenarios.

A.3.2 IMPORTANCE OF THE PE OUTPUT LAYER AND THE CAPACITY OF THE PI INPUT LAYER

To validate the importance of the permutation-equivariant output layer, we also add the
hypernetwork-based output layer of HPN to SET-VDN (denoted as HPN-SET-VDN). The results
are shown in Fig.13. We see that incorporating an APE output layer could significantly boost the

7We use the binary comparison operators here to indicate the performance order of these algorithms.
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Table 3: The parameter numbers of the individual Q-networks in BIG-VDN, BIG-QMIX and our
HPN-VDN, HPN-QMIX.

Parameter Size BIG-VDN, BIG-QMIX HPN-VDN, HPN-QMIX
5m vs 6m 109.964K 72.647K
3s vs 5z 108.555K 81.031K

8m vs 9m 114.959K 72.839K
corridor 127.646K 76.999K

3s5z vs 3s6z 121.487K 98.375K
6h vs 8z 113.55K 76.935K

performance of SET-VDN, and that the converged performance of HPN-SET-VDN is superior to the
vanilla VDN in 5m vs 6m and 3s5z vs 3s6z.

However, due to the limited representational capacity of the shared embedding layer of Deep Set,
the performance of HPN-SET-VDN is still worse than our HPN-VDN, especially in 6h vs 8z. Note
that the only difference between HPN-VDN and HPN-SET-VDN is the input layer, e.g., using
hypernetwork-based customized embeddings or a simply shared one. The results validate the im-
portance of improving the representational capacity of the permutation-invariant input layer.

A.4 APPLYING HPN TO QPLEX AND MAPPO
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Figure 14: The learning curves of HPN-QPLEX compared with vanilla QPLEX in the hard and
super hard scenarios of SMAC.
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Figure 15: The learning curves of HPN-MAPPO compared with the vanilla MAPPO in the hard and
super hard scenarios of SMAC.
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To demonstrate that our methods can be easily integrated into many types of MARL algorithms and
boost their performance, we also apply HPN to a typical credit-assignment method QPLEX (Wang
et al., 2020a) (denoted as HPN-QPLEX) and a policy-based MARL algorithm MAPPO (Yu et al.,
2021) (denoted as HPN-MAPPO). The results are shown in Fig.14 and Fig.15. We see that HPN
significantly improves the performance of QPLEX and MAPPO, which validates that our method
can be easily combined with existing MARL algorithms and improves their performance (especially
for super hard scenarios).

A.5 APPLYING HPN TO DEEP COORDINATION GRAPH.

Recently, Deep Coordination Graph (DCG) (Böhmer et al., 2020) scales traditional coordination
graph based MARL methods to large state-action spaces, shows its ability to solve the relative over-
generalization problem, and obtains competitive results on StarCraft II micromanagement tasks.
Further, based on DCG, (Wang et al., 2021) proposes an improved version, named Context-Aware
SparsE Coordination graphs (CASEC). CASEC learns a sparse and adaptive coordination graph
(Wang et al., 2021), which can largely reduce the communication overhead and improve the perfor-
mance. Besides, CASEC incorporates action representations into the utility and payoff functions to
reduce the estimation errors and alleviate the learning instability issue.

Both DCG and CASEC inject the permutation invariance inductive bias into the design of the pair-
wise payoff function qij(ai, aj |oi, oj). They achieve permutation invariance by permuting the input
order of [oi, oj ] and taking the average of both. To show the generality of our method, we also
apply HPN to the utility function and payoff function of CASEC and show the performance in
Fig.16. The codes of CASEC and HPN-CASEC are also added in the supplementary materials (See
code/src/config/algs/casec.yaml and code/src/config/algs/hpn casec.yaml).
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Figure 16: The learning curves of HPN-CASEC and CASEC in 5m vs 6m.

In Fig.16, we compare HPN-CASEC with the vanilla CASEC in 5m vs 6m. Results show that
HPN can significantly improve the performance of CASEC, which validate that HPN is very easy to
implement and can be easily integrated into many existing MARL approaches.

A.6 MULTIAGENT PARTICLE ENVIRONMENT

We evaluate the proposed DPN and HPN on the classical Multiagent Particle Environment (MPE)
(Lowe et al., 2017) tasks, where the actions only consist of movement actions. Therefore, only the
permutation invariance property is needed. We follow the experimental settings of PIC (permutation-
invariant Critic for MADDPG, which utilizes GNN to achieve PI, i.e., GNNMADDPG) (Liu et al.,
2020) and apply our DPN and HPN to the centralized critic Q-function of MADDPG (Lowe et al.,
2017). Each component xi represents the concatenation of agent i’s observation and action. The
input set Xj contains all agents’ observation-actions. We implement the code based on the official
PIC. The baselines we considered are PIC (Liu et al., 2020), DA-MADDPG (Ye et al., 2020) and
MADDPG (Lowe et al., 2017). The tasks we consider are as follows:

• Cooperative navigation: n agents move cooperatively to cover L landmarks in the envi-
ronment. The reward encourages the agents to get close to landmarks. An agent observes
its location and velocity, and the relative location of the landmarks and other agents.
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• Cooperative predator-prey: n slower predators work together to chase M fast-moving
prey. The predators get a positive reward when colliding with prey. Preys are environment
controlled. A predator observes its location and velocity, the relative location of the L
landmarks and other predators and the relative location and velocity of the prey.

The learning curves of different methods in the cooperative navigation task (the agent number n = 6)
and the cooperative predator-prey task (the agent number n = 3) are given in Fig.9. Besides, We fur-
ther test HPN on two more cooperative navigation tasks with 100 and 200 agents respectively. The
learning curves are shown in Figure 17. The results show that HPN-MADDPG can significantly im-
prove the performance of vanilla MADDPG and achieves superior sample efficiency and converged
performance than PIC. All experiments are repeated for five runs with different random seeds. We
see that our HPN-MADDPG outperforms the PIC, DA-MADDPG and MADDPG baselines in these
two tasks, which validates the superiority of our permutation-invariant designs.
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Figure 17: Comparisons of HPN-MADDPG against PIC, DA-MADDPG and MADDPG in cooper-
ative navigation with 100 and 200 agents.

A.7 GOOGLE RESEARCH FOOTBALL

We evaluate HPN in two Google Research Football (GRF) academic scenarios: 3 vs 1 with keeper
and counterattack hard. In these tasks, we control the left team players except for the goalkeeper.
The right team players are controlled by the built-in rule-based bots. The agents need to coordinate
their positions to organize attacks and only scoring leads to rewards. The observations are factor-
izable and are composed of five parts: ball information, left team, right team, controlled player
information and match state. Detailed feature lists are shown in Table 4. Each agent has 19 discrete
actions, including moving, sliding, shooting and passing. Following the settings of CDS (Chenghao
et al., 2021), we also make a reasonable change to the two half-court offensive scenarios: we will
lose if our players or the ball returns to our half-court. All methods are tested with this modification.
The final reward is +100 when our team wins, -1 when our player or the ball returns to our half-court,
and 0 otherwise.

We apply HPN to QMIX and compare it with the SOTA CDS-QMIX (Chenghao et al., 2021). In
detail, when applying HPN to QMIX, both the PI actions, e.g., moving, sliding and shooting, and
the PE actions, e.g., long pass, high pass and short pass are considered. For each player, since the
targets of these passing actions directly correspond to its teammates, we apply the PE output layer
to generate the Q-values of these passing actions, where the hypernetwork takes each ally player’s
features as input and generates the weight matrices for the passing actions. Besides, in the official
GRF environment, as we cannot directly control which teammates the current player passes the ball
to, we take a max pooling over all ally-related Q-values to get the final Q-values for the three passing
actions. We show the average win rate across 5 seeds in Fig.10. HPN can significantly boost the
performance of QMIX and our HPN-QMIX outperforms the SOTA method CDS by a large margin
in these two scenarios.

A.8 GENERALIZATION: CAN HPN GENERALIZE TO A NEW TASK WITH A DIFFERENT
NUMBER OF AGENTS?

Apart from achieving PI and PE, another benefit of HPN is that it can naturally handle variable
numbers of inputs and outputs. Therefore, as also stated in the conclusion section, HPN can be
potentially used to design more efficient multitask learning and transfer learning algorithms. For
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Observation

Player Absolute position
Absolute speed

Left team Relative position
Relative speed

Right team Relative position
Relative speed

Ball Absolute position
Belong to (team ID)

State

Left team

Absolute position
Absolute speed

Tired factor
Player type

Right team

Absolute position
Absolute speed

Tired factor
Player type

Ball

Absolute position
Absolute speed

Absolute rotate speed
Belong to (team ID)

Belong to (player ID)

Table 4: The feature composition of the observation and the state in Google Research Football

(a) Transfer learning results on 12m. Red: reload the learned policy
in 5m to 12m and then continuously train the policy. Blue: learn
from scratch.

(b) Transfer learning results on 8m vs 10m. Red: reload the learned policy in
5m vs 6m to 8m vs 10m and then continuously train the policy. Blue: learn
from scratch.

(c) Transfer learning results on 3s vs 5z. Red: reload the learned policy in
3s vs 3z to 3s vs 5z and then continuously train the policy. Blue: learn from
scratch.

Figure 18: Transferring the learned HPN-VDN policy in one task to a new task with a different
number of agents.
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example, we can directly transfer the learned HPN policy in one task to new tasks with different
numbers of agents and improve the learning efficiency in the new tasks. Transfer learning results of
5m → 12m, 5m vs 6m → 8m vs 10m, 3s vs 3z → 3s vs 5z are shown in Fig.18. We see that the
previously trained HPN policies can serve as better initialization policies for new tasks.

A.9 TO ACHIEVE PI AND PE, WHAT IF WE JUST SORT THE ENTITIES ACCORDING TO
DISTANCE FROM THE FOCAL AGENT?

(1) When we first started working on this project, we have also considered a similar baseline: we
sort the entities according to (type, distance), i.e., according to their types first and then the relative
distances if two entities’ types are same. But we found that this solution do not always work well.
Here, we provide the learning curves of HPN, QMIX, VDN, SORT-QMIX, and SORT-VDN in 4
hard and super hard scenarios on SMAC in Figure 19. The results show that the sorting baseline can
slightly improve the performance of vanilla QMIX/VDN in 5m vs 6m and 3s5z vs 3s6z. However,
in 8m vs 9m and 6h vs 8z, it harms the performance.

(2) The reason is that each entity has many types of features, e.g., relative x, relative y, relative
distance, entity type, health point, shield, etc. Relative distance is just one of them. Simply sorting
the entities by their relative distances while ignoring the influences of the other features may not
be appropriate. Besides, as different x and y can have the same distance and different distances
can have the same order, the same oi[j] may be arranged at different positions and be multiplied by
different ‘weight matrices‘ (according to zi =

∑m
j=1 oi[j]Win [j]). Therefore, learning may become

unstable if we frequently reorder the inputs by distance only.

(3) Thus, our target is not only matching the observation and action belonging to the same entity
but stabilizing the learning process by always assigning the same weight matrix Win [j], i.e., a
stable weight, to the same entity features oi[j] no matter where oi[j] is arranged. In this paper, we
propose DPN and HPN to achieve this.
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(a) Comparisons of HPN-VDN, VDN, and a baseline that sorts the entities in observation according to their
distances from the focal agent (denoted as SORT-VDN).
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(b) Comparisons of HPN-QMIX, QMIX, and a baseline that sorts the entities in observation according to their
distances from the focal agent (denoted as SORT-QMIX).

Figure 19: Comparisons of HPN with the sorting based baseline.

A.10 EVALUATE HPN ON SMAC-V2

SMAC-v2 makes three major changes to SMAC: randomising start positions, randomising unit
types, and restricting the agent field-of-view and shooting range to a cone. These first two changes
increase more randomness to challenge contemporary MARL algorithms. The third change makes
features harder to infer and adds the challenge that agents must actively gather information (require
more efficient exploration). Since our target is not to design more efficient exploration algorithms,
we keep the field-of-view and attack of the agents a full circle as in SMAC.

18



Under review as a conference paper at ICLR 2023

• Random Start Positions: Random start positions come in two different types. First, there
is the surrounded type, where the allied units are spawned in the middle of the map, and
surrounded by enemy units. This challenges the allied units to overcome the enemies ap-
proach from multiple angles at once. Secondly, there are the reflect position scenarios.
These randomly select positions for the allied units, and then reflect their positions in the
midpoint of the map to get the enemy spawn positions. Example figures are shown in
Figure 20 below.

• Random Unit Types: Battles in SMACv2 do not always feature units of the same type
each time, as they did in SMAC. Instead, units are spawned randomly according to certain
pre-fixed probabilities. Units in StarCraft II are split up into different races. Units from
different races cannot be on the same team. For each of the three races (Protoss, Terran,
and Zerg), SMACv2 uses three unit types. Detailed generation probabilities are shown in
Figure 21.

Figure 20: Examples of the two different types of start positions, opposite and surrounded. Allied
units are shown in blue and enemy units in dark red.

Figure 21: Detailed generation probabilities of the three types of units for the three races (Protoss,
Terran, and Zerg).

Our HPN can naturally handle the two types of new challenges. Thanks to the PI and PE prop-
erties, our HPN is more robust to the randomly changed start positions of the entities. Thanks to
the entity-wise modeling and using hypernetwork to generate a customized weight matrix for each
type of unit, HPN can handle the randomly generated unit types as well. The comparisons of HPN-
VDN with VDN on three difficult scenarios across the three races (Protoss, Terran, and Zerg) are
shown in Figure 22. Results show that our HPN significantly improves the sample efficiency and
the converged test win rates of the baseline VDN.
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Figure 22: The learning curves of HPN-VDN and VDN in 3 difficult scenarios of SMAC-v2.

B TECHNICAL DETAILS

B.1 DECENTRALIZED PARTIALLY OBSERVABLE MDP

We model a fully cooperative multiagent task as a Dec-POMDP (Oliehoek & Amato, 2016), which
is defined as a tuple ⟨N ,S,O,A, P,R, Z, γ⟩. N is a set of n agents. S is the set of global states.
O = {O1, . . .On} denotes the observation space for n agents. A = A1 × . . . × An is the joint
action space, where Ai is the set of actions that agent i can take. At each step, each agent i receives
a private observation oi ∈ Oi according to the observation function Z(s,a) : S × A → O, and
produces an action ai ∈ Ai by a policy πi(ai|oi). All agents’ individual actions constitute a joint
action a = ⟨a1, ..., an⟩ ∈ A. Then the joint action a is executed and the environment transits to
the next state s′ according to the transition probability P (s′|s,a). All agents receive a shared global
reward according to the reward function R(s,a). All individual policies constitute the joint policy
π = π1 × . . . × πn. The target is to find an optimal joint policy π which could maximize the
expected return Rt =

∑T
t=0 γ

tr (st,at), where γ is a discount factor and T is the time horizon.
The joint action-value function is defined as Qπ(st,at) = Eπ,P [Rt|st,at]. Each agent’s individual
action-value function is denoted as Qi(oi, ai).

B.2 IMPLEMENTATION DETAILS OF OUR APPROACH AND BASELINES

The key points of implementing the baselines and our methods are summarized here:

(1) DPN and HPN: The proposed two methods inherently support heterogeneous scenarios since
the entity’s ‘type’ information has been taken into each entity’s features. And the sample efficiency
can be further improved within homogeneous agents compared to fixedly-ordered representation.
For MMM and MMM2, we implemented a permutation-equivariant ‘rescue-action’ module for the
only Medivac agent, which uses similar prior knowledge to ASN and UPDeT, i.e., action semantics.
To focus on the core idea of our methods, we omitted these details in the method section.

The objective to train the weight selection network of PDN. As stated in the last paragraph of
Section 4, all parameters of DPN are trained end-to-end with backpropagation according to the RL
loss function. The weight selection network and the other networks work cooperatively to minimize
the overall RL loss function.

How PI is achieved of DPN. As described in Section 4.2, for each oi[j], the weight selection net-
work outputs the probability of selecting each weight matrix. During the forward pass at training
step t, given the parameter snapshot of the weight selection network, the output probability of se-
lecting each weight matrix is fixed. For each oi[j], we select the weight matrix with the maximum
probability. However, directly selecting the argmax index is not differentiable. To make the selec-
tion process trainable, we apply a Straight Through Estimator [7] to get the one-hot encoding of the
argmax index. We denote it as p̂in (oi[j]). The weight matrix with the maximum probability can
be acquired by p̂in (oi[j]) · Win. As selecting the weight matrix with the maximum probability is a
deterministic process, according to Equation (5), PI is guaranteed.

Besides, to encourage more exploration at the beginning of training, we also add small gumbel noises
(Jang et al., 2016) to the ‘logits‘ within the epsilon anneal time. Within this interval, PI cannot be
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Figure 23: Applying Data Augmentation (DA) to the SMAC benchmark.

strictly guaranteed. When the epsilon anneal schedule is over, PI will be strictly guaranteed. The
Straight Through Estimator written in PyTorch is shown below:

1 def straight_through(y_soft, dim):
2 # Straight Through Estimator.
3 index = y_soft.max(dim, keepdim=True)[1]
4 y_hard = th.zeros_like(y_soft).scatter_(dim, index, 1.0)
5 ret = y_hard - y_soft.detach() + y_soft
6 return ret

(2) Data Augmentation (DA) (Ye et al., 2020): we apply the core idea of Data Augmentation
(Ye et al., 2020) to SMAC by randomly generating a number of permutation matrices to shuffle
the ‘observation’, ‘state’, ‘action’ and ‘available action mask’ for each sample simultaneously to
generate more training data. An illustration of the Data Augmentation process is shown in Fig.23.
A noteworthy detail is that since the attack actions are permutation-equivariant to the enemies in
the observation, the same permutation matrix M2 that is utilized to permute oenemy

i should also be
applied to permute the ‘attack action’ and ‘available action mask of attack action’ as well. The code
is implemented based on PyMARL2 8 for fair comparison.

(3) Deep Set (Zaheer et al., 2017; Li et al., 2021): the only difference between SET-QMIX and
the vanilla QMIX is that the vanilla QMIX uses a fully connected layer to process the fixedly-
ordered concatenation of the m components in oi while SET-QMIX uses a shared embedding layer
hi = ϕ(xi) to separately process each component xi in oi first, and then aggregates all his by sum
pooling. The code is also implemented based on PyMARL2 for fair comparison.

(4) GNN: Following PIC (Liu et al., 2020) and DyAN (Wang et al., 2020b), we apply GNN to the
individual Q-network of QMIX (denoted as GNN-QMIX) to achieve permutation-invariant. The
code is also implemented based on PyMARL2.

(5) ASN (Wang et al., 2019): we use the official code and adapt the code to PyMARL2 for fair
comparison.

(6) UPDeT (Hu et al., 2021b): we use the official code 9 and adapt the code to PyMARL2 for fair
comparison.

(7) VDN and QMIX: As mentioned in Section 3, vanilla VDN/QMIX uses fixedly-ordered entity-
input and fixedly-ordered action-output (both are sorted by agent/enemy indices). Although VDN
and QMIX do not explicitly consider the permutation invariance and permutation equivariance prop-

8https://github.com/hijkzzz/pymarl2
9https://github.com/hhhusiyi-monash/UPDeT
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erties, they train a permutation-sensitive function to figure out the input-output relationships accord-
ing to their fixed positions, which is implicit and inefficient.

All code of the baselines as well as our Networks is attached in the supplementary material.

C HYPERPARAMETER SETTINGS

For all MARL algorithms we use in SMAC (Samvelyan et al., 2019) (under the MIT License), we
keep the hyperparameters the same as in PyMARL2 (Hu et al., 2021a) (under the Apache License
v2.0). We list the detailed hyperparameter settings used in the paper below in Table 5 to help peers
replicate our experiments more easily. Besides, the code of our methods as well as the baselines is
attached in the supplementary material.

Table 5: Hyperparameter Settings of VDN-based or QMIX-based Methods.
Parameter Name Value

Exploration-related
action selector epsilon greedy
epsilon start 1.0

epsilon finish 0.05
epsilon anneal time 100000 (500000 for 6h vs 8z)

Sampler-related
runner parallel

batch size run 8 (4 for 3s5z vs 3s6z)
buffer size 5000

t max 10050000
Agent-related

mac hpn mac for HPN, dpn mac for DPN,
set mac for Deep Set, updet mac for UPDeT and n mac for others

agent hpn rnn for HPN, dpn rnn for DPN,
set rnn for Deep Set, updet rnn for UPDeT and rnn for others

HPN hidden dim 64 (only for HPN)
HPN layer num 2 (only for HPN)

permutation net dim 64 (only for DPN)
Training-related

softmax tau 0.5 (only for DPN)
learner nq learner
mixer qmix or vdn

mixing embed dim 32 (only for qmix-based)
hypernet embed 64 (only for qmix-based)

lr 0.001
td lambda 0.6 (0.3 for 6h vs 8z)
optimizer adam

target update interval 200

D COMPUTING ENVIRONMENT

We conducted our experiments on an Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz processor
based system. The system consists of 2 processors, each with 26 cores running at 2.60GHz (52 cores
in total) with 32KB of L1, 1024 KB of L2, 40MB of unified L3 cache, and 250 GB of memory.
Besides, we use 2 GeForce GTX 1080 Ti GPUs to facilitate the training procedure. The operating
system is Ubuntu 16.04.
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E LIMITATIONS

We currently follow the settings of (Qin et al., 2022; Wang et al., 2020b; Hu et al., 2021b; Long
et al., 2019; Wang et al., 2019), where the configuration of the input-output relationships and the
observation/state structures are set manually.

What if the observations are images or the structural information is not available?

The high-level idea of this paper is to leverage some formats of symmetries to reduce the size of
the search space. Since typical MARL benchmarks represent observations as factorizable vectors
(which can provide more direct and compact information than images), we currently focus on the
permutation symmetries, i.e., PI and PE.

For image inputs, the rotational or reflectional symmetries are more prominent characteristics. Thus,
we could leverage rotation invariance or rotation equivariance to design better MARL algorithms,
which is also a novel research direction.

For vector inputs, when the structural information is unknown, a potential solution is:

• (1) Learning action representations using a forward model. We want to learn action repre-
sentations that can reflect the effects of actions on the environment and other agents. The
effect of an action can be measured by the induced reward and the change in the states.

• (2) Using all actions’ representations as queries and using all entities’ embedded features
(potentially generated by HPN) as keys and values, we leverage the self-attention mecha-
nism to generate the Q-values of each action. Since the self-attention computation is invari-
ant to the input entities’ order, PI and PE are achieved. And the input-output relationships
may be learned implicitly by the self-attention mechanism.

Automatically detecting such structural information is interesting and we leave this as future works.
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