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Figure 1: Comparison with the baseline methods on the sparse-view reconstruction task. We
visualize the novel view results generated from the GSO dataset (Downs et al., 2022) (row 1-3), or a
generated image (row 4). Note that for the generated image, we use Zero123++ (Shi et al., 2023) to
generate 6 views, which are used as input for InstantMesh (Xu et al., 2024a) and GTR (Ours).

ABSTRACT

We propose a novel approach for 3D mesh reconstruction from multi-view images.
We improve upon the large reconstruction model LRM (Hong et al., 2024) that use
a transformer-based triplane generator and a Neural Radiance Field (NeRF) model
trained on multi-view images. We introduce three key components to significantly
enhance the 3D reconstruction quality. First of all, we examine the original LRM
architecture and find several shortcomings. Subsequently, we introduce respective
modifications to the LRM architecture, which lead to improved multi-view image
representation and more computationally efficient training. Second, in order to
improve geometry reconstruction and enable supervision at full image resolution,
we extract meshes from the NeRF in a differentiable manner and fine-tune the NeRF
model through mesh rendering. These modifications allow us to achieve state-of-
the-art performance on both 2D and 3D evaluation metrics on Google Scanned
Objects (GSO) dataset (Downs et al., 2022) and OmniObject3D dataset (Wu
et al., 2023). Finally, we introduce a lightweight per-instance texture refinement
procedure to better reconstruct complex textures, such as text and portraits on
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assets. To address this, we introduce a lightweight per-instance texture refinement
procedure. This procedure fine-tunes the triplane representation and the NeRF’s
color estimation model on the mesh surface using the input multi-view images in
just 4 seconds. This refinement achieves faithful reconstruction of complex textures.
Additionally, our approach enables various downstream applications, including
text/image-to-3D generation.

1 INTRODUCTION

The task of generating 3D assets from text or images has wide applications in digital content generation
and virtual reality (VR) (Lin et al., 2023a;b). Because of the scarcity of 3D data, efforts have been
made to leverage pre-trained large-scale text-to-image diffusion models. Some works learn 3D asset
generation from the pre-trained image diffusion models via score distillation techniques (Poole et al.,
2023; Wang et al., 2023b;a; Chen et al., 2023; Lin et al., 2023a; Zhu & Zhuang, 2023; Qian et al.,
2024), which, however, require from several minutes to several hours for a single asset, since the
optimization algorithm requires many iterations. Other works propose to fine-tune image diffusion
models into a multi-view image diffusion model (Liu et al., 2023; Shi et al., 2024; Liu et al., 2024;
Long et al., 2023) using 3D asset datasets (Deitke et al., 2023). These multi-view images serve
as an intermediate 3D representation, which is taken as input by large 3D reconstruction models
(LRMs) (Hong et al., 2024; Li et al., 2024; Xu et al., 2024c; Wang et al., 2024; Tang et al., 2024) for
asset generation. However, these previous approaches struggle to reconstruct faithful textures and
high-quality geometry when using the Marching Cube (MC) algorithm (Lorensen & Cline, 1998).
Moreover, after extracting meshes using MC, the texture quality degrades even further.

In contrast, we start developing the feed-forward mesh generation model by carefully examining the
standard LRM architecture. First, we observed that DINO features tend to discard high-frequency
image details, which are important for the precise reconstruction, from the input images. Thus we
replace the pre-trained DINO transformer (Caron et al., 2021) used in previous LRMs (Hong et al.,
2024; Li et al., 2024; Xu et al., 2024c; Wang et al., 2024; Tang et al., 2024) with a convolutional
encoder for the multi-view images. Moreover, because of the high computation requirements of
the transformers, previous methods usually run a transformer at 322 triplane resolution and use a
deconvolution to upsample this triplane. However, we noticed that reconstruction from standard
LRM often exhibits regular grid artifacts (see Fig. 1). We speculate that the nature of these artifacts is
similar to grid-shape artifacts observed in 2D deconvolutional generators (Odena et al., 2016). To
address this, we replace all deconvolution layers with Pixelshuffle layers (Shi et al., 2016). Finally,
we employ two shallow Multi-layer Perceptrons (MLPs) to separately predict density and colors,
which is beneficial for our following fine-tuning stages, which we will explain shortly.

Learning meshes is significantly harder than learning a NeRF. Thus, we begin by training this
modified architecture using NeRF volume rendering. With the trained NeRF model in place, we
proceed to fine-tune the pipeline using mesh rendering (also known as rasterization). To achieve this,
we employ Differentiable Marching Cubes (DiffMC) (Wei et al., 2023) to extract meshes from the
NeRF density fields by transferring the densities to a signed distance function (SDF) representation.
This enables us to render full-resolution images for supervision. Additionally, we employ a depth
loss to guide the geometry extraction. Our feed-forward mesh generation pipeline significantly boosts
the quality of the reconstructions compared to the results extracted from NeRFs using MC.

While the feed-forward mesh generation pipeline achieves advanced 3D reconstruction quality, it still
faces challenges in accurately reconstructing intricate textures, such as text and complex patterns. To
address this limitation and further enhance texture quality, we introduce a straightforward yet highly
effective texture refinement procedure. Specifically, we fine-tune both the triplane feature and the
color estimation model for each instance using sparse multi-view input images. As mentioned before,
the shallow and separate density and color estimation models enable efficient updating of colors for
surface points on the extracted meshes. In other words, the heavy triplane generator remains fixed in
this texture refinement stage. This enables us to achieve rapid optimization, reaching 5 iterations per
second on an A100 GPU. Remarkably, our method achieves faithful texture reconstruction with just
20 steps of fine-tuning on 4-view images, requiring a mere 4 seconds on an A100 GPU.

Our proposed approach enables faithful 3D reconstruction from the multi-view input images, as
shown in Fig. 1. We conduct a comprehensive comparison of our method with multiple concurrent
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Figure 2: Overview of our proposed approach for 3D reconstruction. Our pipeline consists of
a convolutional decoder E , a transformer-based triplane generator, T , and a NeRF-based triplane
decoder that contains two MLPs, fc and fd, for color and density prediction, respectively. In practice,
the triplane resolution is set to 256, and the mesh representation has a grid size resolution of 256.

works (Hong et al., 2024; Xu et al., 2024a; Tang et al., 2024) using the Google Scanned Object
(GSO) (Downs et al., 2022) and the OmniObject3D (Wu et al., 2023) datasets, employing various
evaluation metrics. For instance, in the 4-view reconstruction task using GSO dataset (Downs et al.,
2022), our approach achieves a Peak Signal-to-Noise Ratio (PSNR) of 29.79, a Structural Similarity
Index (SSIM) of 0.94 and a Learned Perceptual Image Patch Similarity (LPIPS) score of 0.059.

Extensive experiments show that our feed-forward model achieves superior results compared to the
baseline approaches, while our per-instance refinement approach enables further texture improvement
on text and complex patterns. See Fig. 1 for visual examples.

We summarize our technical contributions to two key components of multiview-to-3D reconstruction:
(1) mesh generation and (2) accurate texture reconstruction. These contributions are outlined as
follows:

• We introduce a holistic design for multi-view image to 3D reconstruction to enhance the
quality of the generated meshes. This includes modifications to the existing LRM model
and fine-tuning the NeRF model with a differentiable mesh representation.

• We present an efficient per-instance texture refinement process, leveraging input images to
enhance texture details.

Furthermore, our model can be adapted to various downstream applications, such as text/image-to-3D
generation tasks.

2 RELATED WORK

Optimization-based 3D generation aims to use pre-trained large-scale text-to-image diffusion
models Rombach et al. (2022); Saharia et al. (2022) for 3D generation, given the insufficient scale
and diversity of existing 3D datasets. To distill 3D knowledge from the text-to-image models, a Score
Distillation Sampling (SDS) approach and its variants Poole et al. (2023); Wang et al. (2023a;b);
Chen et al. (2023); Zhu & Zhuang (2023) have been proposed. In these methods, noise is added to an
image rendered from 3D models like NeRFs and subsequently denoised by a pre-trained text-to-image
generative model Rombach et al. (2022). The SDS approach aims to minimize the Kullback-Leibler
(KL) divergence between a prior noise distribution and the estimated noise distribution from the
text-to-image model. However, these SDS-based methods are time-consuming, usually taking up
to hours to generate a single instance. Alternatively, feed-forward 3D generation models have been
proposed to achieve faster generation.
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Figure 3: Texture refinement for extracted meshes. We refine the texture by fine-tuning the triplane
feature of the asset and the color MLP, fc, using the input images. The learnable components are
marked as . We use an L2 loss on the images, defined as LTex.

Feed-forward 3D generation has gained increasing attention recently due to its speed advantage.
Most existing feed-forward 3D generation pipelines consist of two stages: (i) a text prompt (or a
single image) to multi-view generation and (ii) multi-view images to 3D shape reconstruction. In the
first stage, multi-view images are generated from text or image input using a multi-view generator Liu
et al. (2023); Shi et al. (2024); Liu et al. (2024); Long et al. (2023), which are usually fine-tuned
from image or video diffusion generation models Rombach et al. (2022); Blattmann et al. (2023). In
the second stage, a 3D instance is reconstructed from input multi-view images. In this case, various
3D representations are used such as neural implicit fields Li et al. (2024); Xu et al. (2024c); Hong
et al. (2024), Gaussian Splatting Xu et al. (2024b); Tang et al. (2024), or meshes Wang et al. (2024);
Xu et al. (2024a). However, existing methods encounter challenges to either faithfully reconstruct
textures when using implicit field representations Li et al. (2024); Xu et al. (2024c); Hong et al.
(2024), or difficult to extract explicit geometries when using Gaussian Spatting Xu et al. (2024b);
Tang et al. (2024). In this work, we focus on the second stage of the pipeline, i.e., reconstructing 3D
shapes from multi-view images. To address those challenges, we propose a novel 3D reconstruction
approach that improves the 3D quality through geometry and texture refinement.

Differentiable mesh is a hybrid 3D representation that combines implicit and explicit surface repre-
sentations, i.e., SDFs and meshes, and is suitable for 3D optimization. Recent popular representations
include DMTet, Flexicubes, Differentiable Marching Cubes (DiffMC) Shen et al. (2021; 2023);
Wei et al. (2023). In our work, we chose DiffMC Wei et al. (2023) as it doesn’t require additional
components beyond our existing model pipeline, in contrast to using DMTet and Flexicubes Shen
et al. (2021; 2023), where a deformation and a weight prediction net are required.

MVS-based 3D reconstruction aims to generate novel views from sparse-view input images using
Multi-view Stereo (MVS) techniques. Classic MVS methods leverage cost volumes Kutulakos &
Seitz (2000); Seitz & Dyer (1999), point clouds Stereopsis (2010); Lhuillier & Quan (2005), or depth
maps Campbell et al. (2008); Gallup et al. (2007) to learn blending weights for input sparse-view
pixels for generating novel views. Recently, learning-based methods Gu et al. (2020); Ma et al.
(2021); Wang et al. (2021); Wei et al. (2021); Yi et al. (2020) have been proposed that can generalize
to novel scenes. However, these methods require input views to have dense local overlap and struggle
to generate 360-degree views of 3D assets. It is even more challenging when input multi-view
images are generated without precise pixel-level alignment. Alternatively, in our work, we propose
a simple yet effective texture refinement procedure that enables high-quality texture reconstruction
from sparse-view input and is robust to synthetic images.

3 METHOD

We separate the technical details of our method into three parts. In Sec. 3.1, we explain the modifi-
cations made to the existing LRM architecture. In Sec. 3.2, we present a training procedure for our
feed-forward mesh generation model. The overview of our feed-forward mesh generation pipeline is
illustrated in Fig. 2. Finally, in Sec. 3.3, we introduce our per-instance texture refinement procedure.
This procedure is highlighted in Fig. 3.
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Figure 4: Comparison with the baseline methods on OmniObject3D dataset (Wu et al., 2023).
We compare the novel view reconstruction results with the baseline methods. LRM (Hong et al.,
2024) takes the front-view image as input while Instantmesh (Xu et al., 2024a) and our method take 4
views.

3.1 IMPROVING THE LARGE 3D RECONSTRUCTION ARCHITECTURE

A standard LRM (Hong et al., 2024) architecture consists of an image encoder, a transformer-based
triplane generator with a deconvolutional triplane upsampler, and a NeRF-based triplane decoder. In
our work, we propose several modifications to the LRM architecture outlined next.

Convolutional image encoder E . LRM (Hong et al., 2024; Li et al., 2024; Xu et al., 2024c) models
typically utilize pre-trained transformer network DiNO ViT (Caron et al., 2021). However, we
observe that since DiNO ViT was designed for semantic understanding, it tends to ignore some local
details irrelevant to image semantics but required for accurate reconstruction. Thus we propose to
replace the DiNO (Caron et al., 2021) architecture with a convolutional encoder. Since this encoder
is trained from scratch along with other components it does not exhibit the bias of pre-trained DiNO.
An additional advantage of this encoder is that it does not require any modifications to consume
additional inputs useful for 3D reconstruction. To this end, we complement the input images with
binary foreground mask and Plücker coordinates for camera rays. We show a comparison of the
training process using different encoders in Appendix A.

Triplane upsampler T . One of the LRM architecture shortcomings is the tendency to generate
grid-shaped artifacts. We attribute this issue to the deconvolution operation utilized in a triplane
upsampler. Indeed, to reduce the computational requirements, the original LRM proposed to run a
transformer-based triplane generator on 322 resolution and later utilize deconvolution operation to
upsample the triplane. The deconvolution operation is widely studied in GAN literature, for example,
Odena et al. (Odena et al., 2016) show that for 2D generators deconvolutions are the main source
of grid-shaped artifacts. To this end, we replace the deconvolution upsampling with a linear layer
followed by a pixelshuffle (Shi et al., 2016). This simple modification helps to alleviate grid-shaped
texture artifacts.

NeRF decoders fc, fd. Unlike previous LRMs (Hong et al., 2024; Li et al., 2024), we utilize two
separate MLPs, defined as fc and fd, to estimate colors and density, respectively. This modification
does not impact performance; however, it serves a more practical purpose. For instance, we can train
the color model fc and freeze fd when fine-tuning asset texture, or vice versa if fine-tuning asset
geometry.

3.2 FEED FORWARD MESH GENERATION MODEL

The optimization through mesh representation may pose a significant challenge. Indeed, the gradients
for backpropagation through mesh exist only in a small local neighborhood and, thus, convergence
heavily depends on accurate initialization. To tackle this, we develop a two-stage training procedure,
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Figure 5: Comparison with LGM (Tang et al., 2024) on GSO (Downs et al., 2022) dataset. Both
LGM (Tang et al., 2024) and our method take 4-view images as input and reconstruct novel views.

where in the first stage we utilize the volumetric rendering and optimize NeRF, and, in the second
stage, we perform geometry refinement by optimizing through a mesh representation.

NeRF training stage. In this stage, we simply optimize our modified architecture (see Sec. 3.1)
using a mean squared error (MSE) loss and an LPIPS loss on images, defined as

LNeRF = Lrgb + λp LLPIPS, (1)

where λp denotes the loss weight.

Geometry refinement with NeRF initialization. In the geometry refinement stage, we fine-tune the
entire pipeline using mesh rendering. Specifically, we transfer the density field to an SDF field:

sdf = −(d− s), (2)

where d is the estimated density and s is a pre-defined level set for DiffMC, s = 10, in practice.

Next, we render images, depths, and masks for training via mesh rendering (a.k.a rasterization). We
fine-tune the pipeline using an MSE loss and an LPIPS loss on images, MSE losses on depths, masks,
and normal maps. Formally, we define the loss as:

LMesh = Lrgb + λp LLPIPS + λd Ldepth + λm Lmask ++λn Lnormal (3)

where λp, λd, λm and λn are the loss weights.

3.3 TEXTURE REFINEMENT FOR MESH REPRESENTATIONS

Inspired by previous works that utilize the Gaussian Splatting (Tang et al., 2024; Xu et al., 2024b)
representation, where colors of the input images can be easily retained in Gaussian features, we notice
a disparity in our pipeline, which lacks this color memorization scheme. Thus, we refine the triplane
feature of an asset and the color MLP, fc, using the input multi-view images, Icond, for surface points
on the extracted mesh. We illustrate the refinement procedure in Fig. 3. The separated density and
color MLPs benefit the texture refinement procedure, as we only fine-tune a single MLP. We use an
MSE loss on input images for texture refinement:

LTex = L2(Icond, Îcond), (4)

where Icond and Îcond denote the ground-truth and predicted input images, respectively. Note that at
this stage, the image encoder E and the triplane generator T are fixed and used to generate the initial
triplane features of assets. The density estimation MLP, fd, is also fixed and used to extract meshes.
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Table 1: Quantitative comparison on GSO dataset (Downs et al., 2022).

Method PSNR (↑) SSIM (↑) LPIPS (↓) CD (↓) IoU (↑)

LRM (Hong et al., 2024) 20.446 0.904 0.126 6.383 0.352
SV3D (Voleti et al., 2024) 22.098 0.898 0.119 1.770 0.682

CRM (Wang et al., 2024) 22.195 0.891 0.150 1.252 0.617
LGM (Tang et al., 2024) 25.227 0.925 0.066 1.373 0.601
InstantMesh (NeRF) (Xu et al., 2024a) 24.740 0.923 0.080 1.101 0.635
InstantMesh (Mesh) (Xu et al., 2024a) 24.444 0.920 0.08 1.115 0.645

Ours (Feed-forward) 28.673 0.946 0.055 0.740 0.708Ours (Tex. refine) 29.788 0.960 0.047

4 EXPERIMENTS

In Sec. 4.1, we explain training datasets, implementation details, and evaluation with the baseline
methods. We present both quantitative and qualitative results in Sec. 4.2 and the ablation study in
Sec. 4.3. Additional implementation details and comparisons are presented in Appendix.

4.1 EXPERIMENT SETTINGS

Dataset: Our model is trained on a 140k asset dataset, which merges the filtered Objaverse
dataset (Deitke et al., 2023) with an internal 3D asset dataset. We filter the high-quality Obja-
verse dataset to retain 26k superior assets of high quality. We render 32 random views for each
training asset. In Appendix A, we also provide additional ablation studies with our model trained
solely on the Objaverse dataset containing 100k assets.

Implementation Details. In practice, the loss weights are set to λp = 0.5, λd = 0.5, λm =
1 and λn = 1. In practice, we found that adding the normal loss can lead to unstable training.
Therefore, during the geometry refinement stage, we add the normal loss once the model has
stabilized, and we freeze the generator when incorporating the normal loss. Input multi-view images
are of 512 resolution. The triplane transformer contains 24 attention blocks with a hidden dimension
of 1024. Each attention layer has 16 attention heads and each head has a dimension of 64. During the
NeRF training stage, images are rendered at 512 resolution, and the NeRF model is trained using a
patch size of 1282. We uniformly sample 256 points along each camera ray. The density and color
MLPs consist of 3 and 4 layers, respectively, with a hidden size of 512.

In the NeRF training stage, we use an AdamW optimizer with a learning rate 1e− 4 and a weight
decay of 0.05. Cosine scheduling is employed to gradually reduce the learning rate to 0 after 150k
training iterations. We use a batch size of 512 on 32 A100 GPUs. For each asset, we randomly choose
4 views as input and another 4 views for supervision. In the geometry refinement stage, we choose
a grid size of 256 during mesh extraction using DiffMC. We use another AdamW optimizer with a
learning rate 5e− 5. The batch size is 192 on 32 A100 GPUs. For each asset, we randomly choose 4
views as input and another 8 views for supervision. In the per-instance texture refinement stage, the
learning rates for the triplane feature and the color MLP, fc, are 0.15 and 1e− 4, respectively.

Evaluation. We evaluate our method alongside baseline methods, including LRM (Hong et al., 2024),
SVD (Voleti et al., 2024), CRM (Wang et al., 2024), InstantMesh (Xu et al., 2024a), and LGM (Tang
et al., 2024) using the Google Scanned Objects (GSO) (Downs et al., 2022) and OmniObject3D (Wu
et al., 2023) dataset. We use the identical data lists of the GSO and OmniObject3D dataset and
render camera orbits as outlined in Instantmesh (Xu et al., 2024a). Specifically, 300 GSO assets
and 130 OmniObject3D assets (from 30 classes) are used for evaluation. We render 20 images for
each asset in a trigonometric orbiting trajectory, i.e., maintaining uniform azimuths and elevations
in {−30◦, 0◦, 30◦}. We use PSNR, SSIM, and LPIPS as image evaluation metrics, while Chamfer
Distance (CD) and mIoU are utilized for 3D geometry evaluation. To evaluate 3D geometry, we
follow the mesh processing steps in InstantMesh (Xu et al., 2024a). Specifically, we reposition the
generated meshes to the origin and align the coordinate system with the ground-truth meshes. We
then rescale all meshes into a [−1, 1]3 cube. We also use Iterative Closest Point (ICP) registration to
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Table 2: Quantitative comparison on OmniObject3D dataset (Wu et al., 2023).

Method PSNR (↑) SSIM (↑) LPIPS (↓) CD (↓) IoU (↑)

LRM (Hong et al., 2024) 18.082 0.888 0.125 4.347 0.448

LGM (GS) (Tang et al., 2024) 22.826 0.913 0.068 0.893 0.626
InstantMesh (NeRF) (Xu et al., 2024a) 22.609 0.914 0.076 0.660 0.671
InstantMesh (Mesh) (Xu et al., 2024a) 22.141 0.910 0.079 0.603 0.675

Ours (Feed-forward) 25.372 0.931 0.06 0.504 0.728Ours (Tex. refine) 25.400 0.937 0.059

align the generated meshes to the ground truth meshes. We sample 16000 points on the asset surface
to compute the CD and IoU scores.

4.2 RESULTS

Qualitative evaluation. We compare our method with baseline approaches using the GSO (Downs
et al., 2022) and OmniObject3D (Wu et al., 2023) datasets in Fig.1, Fig.4-5. We observe that our
method achieves more faithful texture reconstruction with finer details and more accurate geometry.
For instance, in Fig. 1, our model can generate clear text on the first example and complex texture
patterns on the second example. In the third example, our model enables the reconstruction of
portraits printed on the asset. In Fig.5, we compare our method with LGM (Tang et al., 2024), which
uses Gaussian Splatting as a 3D representation. We observe that while LGM (Tang et al., 2024)
can generate high-quality textures, it often tends to generate floating Gaussian points in inaccurate
regions, even when the input images are ground-truth multi-view images. In Fig. 11, we present a
comparison between our results and those of the concurrent MeshLRM approach(Wei et al., 2024).
The visual results indicate that our methods produces outcomes comparable to those achieved by
MeshLRM. We present additional visual results in Appendix C.

Quantitative evaluation. We present the evaluation scores for the GSO (Downs et al., 2022) and
OmniObject3D (Wu et al., 2023) dataset in Tab. 1 and Tab. 2, respectively. The CD scores are
presented by multiplying a rescale factor of 100. Note that both LGM (Tang et al., 2024) and
InstantMesh (Xu et al., 2024a) baselines are concurrent works. For InstantMesh (Xu et al., 2024a),
we compare both their results using either neural rendering or mesh rendering. Since LRM (Hong
et al., 2024) takes a single image as input, we provide a front-view image to it. Our full approach
achieves the best evaluation results in 2D and 3D evaluations. We also present the evaluation scores
using our feed-forward model, i.e., without the texture refinement procedure. These results still show
significant improvements in texture and geometry quality.

Additionally, the LGM (Tang et al., 2024) method serves as a strong baseline as we directly compare
against their generated images rather than rendered images from extracted meshes. We note that
the baselines that do not incorporate some explicit geometry representation during training typically
yield inferior rendering results when extracted to meshes. However, our method achieves better
results than their directly generated images. Furthermore, it takes 1 minute to extract meshes using
LGM (Tang et al., 2024) from Gaussian Splatting. In contrast, our method enables to generate meshes
within 1 second, plus an additional 4 seconds for texture refinement, which in total is still faster than
LGM (Tang et al., 2024) inference.

Applications. Our method enables downstream tasks such as text/image-to-3D generation. In this
case, we generate multi-view images using pre-trained text-to-image and/or image-to-multiview
diffusion models (Rombach et al., 2022; Shi et al., 2023). In practice, we use Zero123++ (Shi et al.,
2023) to generate 6-view images as the input for our model. We show the generated results in Fig. 6
and additional results in the Appendix C.
4.3 ABLATION STUDY

Geometry refinement. In Fig. 7-8, we compare results generated using NeRF+MC and NeRF with
geometry refinement. We observe that directly extracting meshes from the NeRF field using MC leads
to blurry texture results and a significant drop on 2D evaluation scores. In contrast, after fine-tuning
at the geometry refinement stage, the rendered images show improved high-frequency details. The
results in Fig. 9 present that the normal loss significantly improves the surface quality.
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Input Synthetic novel views

Figure 6: Image-to-3D generation. Our method can adapt to the text/image-to-3D generation tasks.
We visualize the input image (column 1) and generated RGB and normal images from novel views
(column 2-7).

NeRF + MC NeRF+ Geo. GT

PSNR (↑) SSIM (↑) LPIPS (↓) CD (↓) IoU (↑)

19.810 0.903 0.116 0.775 0.652

Figure 7: Ablation study of geometry refinement. On the left, we visualize the comparison between
NeRF+MC, NeRF+Geometry refinement, and the ground-truth images. On the right, we present the
evaluation scores using NeRF+MC.

Texture refinement. We visualize the novel view mesh-rendering results generated without and
with per-instance texture refinement in Fig. 10. The results of the texture refinement appear to have
superior detailed textures on mesh surfaces.

5 CONCLUSION

In this work, we introduce GTR, a large 3D reconstruction model that takes multi-view images as
input. Our approach enables the generation of high-quality meshes with faithful texture reconstruction
within seconds. We achieve this through three key contributions: modifications to the current LRM
model architecture, the integration of end-to-end geometry refinement with NeRF initialization, and
the implementation of a per-instance texture refinement procedure.
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NeRF+MC Ours GT

Figure 8: Additional visual comparison with Marching Cube (MC). When the rendering results
using MC lack details (marked in red rectangles) and grid artifacts exist on surfaces. In contrast, our
geometry refinement achieves better mesh rendering quality and geometry quality than the meshes
extracted from NeRFs.

Input w/o Lnormal w/ Lnormal Input w/o Lnormal w/ Lnormal

Figure 9: Ablation on the normal loss. The visual results show that using the normal loss could
produce higher-quality surfaces.

w/o Tex. refine w/ Tex. refine GT w/o Tex. refine w/ Tex. refine GT
Figure 10: Ablation study of the texture refinement procedure. We visualize the mesh rendering
results without (column 1, 4) or with (column 2, 5) the texture refinement procedure, and correspond-
ing ground-truth images (column 3, 6).

GT MeshLRM GT Ours GT Ours

Figure 11: Visual comparison with MeshLRM (Wei et al., 2024) on GSO dataset (Downs et al.,
2022). Our method generates better (at least comparable) textures with more details than the
concurrent work (Wei et al., 2024).

10



Published as a conference paper at ICLR 2025

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Neill DF Campbell, George Vogiatzis, Carlos Hernández, and Roberto Cipolla. Using multiple
hypotheses to improve depth-maps for multi-view stereo. In ECCV, 2008.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation. In ICCV, 2023.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated
3d objects. In CVPR, 2023.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of
3d scanned household items. In ICRA, 2022.

David Gallup, Jan-Michael Frahm, Philippos Mordohai, Qingxiong Yang, and Marc Pollefeys.
Real-time plane-sweeping stereo with multiple sweeping directions. In CVPR, 2007.

Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade cost volume
for high-resolution multi-view stereo and stereo matching. In CVPR, 2020.

Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d. In ICLR, 2024.

Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space carving. IJCV, 2000.

Maxime Lhuillier and Long Quan. A quasi-dense approach to surface reconstruction from uncalibrated
images. TPAMI, 2005.

Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view generation
and large reconstruction model. In ICLR, 2024.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content
creation. In CVPR, 2023a.

Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei Chai, Aliaksandr Siarohin, Ming-Hsuan
Yang, and Sergey Tulyakov. Infinicity: Infinite-scale city synthesis. In ICCV, 2023b.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object. In ICCV, 2023.

Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
Syncdreamer: Generating multiview-consistent images from a single-view image. In ICLR, 2024.

Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d using
cross-domain diffusion. In CVPR, 2023.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Seminal graphics: pioneering efforts that shaped the field, pp. 347–353. 1998.

Xinjun Ma, Yue Gong, Qirui Wang, Jingwei Huang, Lei Chen, and Fan Yu. Epp-mvsnet: Epipolar-
assembling based depth prediction for multi-view stereo. In ICCV, 2021.

11



Published as a conference paper at ICLR 2025

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard arti-
facts. Distill, 2016. doi: 10.23915/distill.00003. URL http://distill.pub/2016/
deconv-checkerboard.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. In ICLR, 2023.

Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee,
Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, et al. Magic123: One image to high-quality 3d
object generation using both 2d and 3d diffusion priors. In ICLR, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In NeurIPS, 2022.

Steven M Seitz and Charles R Dyer. Photorealistic scene reconstruction by voxel coloring. IJCV,
1999.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. In NeurIPS, 2021.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-based
mesh optimization. TOG, 2023.

Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
model. In arXiv preprint arXiv:2310.15110, 2023.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In CVPR, 2016.

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
diffusion for 3d generation. In ICLR, 2024.

Robust Multiview Stereopsis. Accurate, dense, and robust multiview stereopsis. TPAMI, 2010.

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
Large multi-view gaussian model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054, 2024.

Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Christian
Laforte, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and 3d generation
from a single image using latent video diffusion. arXiv preprint arXiv:2403.12008, 2024.

Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, and Marc Pollefeys. Patch-
matchnet: Learned multi-view patchmatch stereo. In CVPR, 2021.

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation. In CVPR, 2023a.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolific-
dreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. In
NeurIPS, 2023b.

Zhengyi Wang, Yikai Wang, Yifei Chen, Chendong Xiang, Shuo Chen, Dajiang Yu, Chongxuan Li,
Hang Su, and Jun Zhu. Crm: Single image to 3d textured mesh with convolutional reconstruction
model. arXiv preprint arXiv:2403.05034, 2024.

12

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard


Published as a conference paper at ICLR 2025

Xinyue Wei, Fanbo Xiang, Sai Bi, Anpei Chen, Kalyan Sunkavalli, Zexiang Xu, and Hao Su.
Neumanifold: Neural watertight manifold reconstruction with efficient and high-quality rendering
support. arXiv preprint arXiv:2305.17134, 2023.

Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli, Hao
Su, and Zexiang Xu. Meshlrm: Large reconstruction model for high-quality mesh. arXiv preprint
arXiv:2404.12385, 2024.

Zizhuang Wei, Qingtian Zhu, Chen Min, Yisong Chen, and Guoping Wang. Aa-rmvsnet: Adaptive
aggregation recurrent multi-view stereo network. In ICCV, 2021.

Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu, Lei Yang, Jiaqi
Wang, Chen Qian, et al. Omniobject3d: Large-vocabulary 3d object dataset for realistic perception,
reconstruction and generation. In CVPR, 2023.

Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. Instantmesh:
Efficient 3d mesh generation from a single image with sparse-view large reconstruction models.
arXiv preprint arXiv:2404.07191, 2024a.

Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng, Yujun Shen, and
Gordon Wetzstein. Grm: Large gaussian reconstruction model for efficient 3d reconstruction and
generation. arXiv preprint arXiv:2403.14621, 2024b.

Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli,
Gordon Wetzstein, Zexiang Xu, et al. Dmv3d: Denoising multi-view diffusion using 3d large
reconstruction model. In ICLR, 2024c.

Hongwei Yi, Zizhuang Wei, Mingyu Ding, Runze Zhang, Yisong Chen, Guoping Wang, and Yu-Wing
Tai. Pyramid multi-view stereo net with self-adaptive view aggregation. In ECCV, 2020.

Joseph Zhu and Peiye Zhuang. Hifa: High-fidelity text-to-3d with advanced diffusion guidance. In
ICLR, 2023.

13



Published as a conference paper at ICLR 2025

We present additional ablation study, limitation, and visual results in the Appendix manuscript.
Please also refer to our website demo in the supplementary material for a comprehensive overview.

A ABLATION STUDY

DiNO encoder. We conduct experiments using different encoders. In Fig. 12 we present the
validation PSNR curves during training, when using either our convolutional image encoder or a
pre-trained DiNO ViT (Caron et al., 2021). Specifically, our convolutional encoder is a single layer
that downsamples input images from 512 to 32. The triplane generator is a self-attention transformer,
identical in both settings. We train both models on 8 80G A100 GPUs. We observe that the DiNO
experiment did not show improved convergence during the initial iterations. Alternatively, more
careful designs could optimize the use of DiNO ViT, which we leave for future study.

Objaverse training dataset. In Fig. 12, we also show the training process with a dataset consisting
solely of 100k Objaverse (Deitke et al., 2023) images. We did not observe a performance drop in the
early stage compared to the other experiments in the figure, which were trained on our mixed dataset.

Vae encoder. In Fig.13, we show preliminary results using a pretrained VAE encoder1 from an
SD model (Rombach et al., 2022). To enable the VAE encoder to handle multi-channel input, we
separately provide images, masks, and the camera rays to the encoder, then assemble the output
features using a convolution layer. Experiments are run on 32 80G A100 GPUs. We observe that
using a pretrained VAE encoder leads to better convergence in the early training stage. We attribute
this to the good initialization provided by VAEs compared to training the convolutional encoder from
scratch.

Figure 12: Ablation study on image encoders
( Conv. vs DiNO) and dataset.

Figure 13: Ablation study on image encoders
(Conv. vs VAE).

B LIMITATION

Current triplane features at a resolution of 256 are sometimes insufficient to capture fine geometric
details. Meanwhile, alternative representations — explicit (e.g., sparse voxels) or implicit (e.g.,
vector sets) — offer promising avenues for exploration. Additionally, our approach currently requires
camera-conditioned input. It would be more advantageous to develop methods capable of handling
unposed input. Moreover, our work focuses on object-centric assets, leaving the exploration of
complex scenes with composite objects as a valuable direction for future research.

C ADDITIONAL RESULTS

We show additional results generated by our approach in Fig. 14- 16.

1In practice, we use the pretrained SD VAE from https://huggingface.co/madebyollin/taesd
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Figure 14: Additional visual 3D reconstruction results on GSO (Downs et al., 2022) dataset. The
input of our model is 4 orthogonal views. We show the novel view generated RGB images (column 1,
4) and normal images (column 2, 5), and the ground-truth images (column 3, 6).
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Figure 15: Additional visual 3D reconstruction results on GSO (Downs et al., 2022) dataset. The
input of our model is 4 orthogonal views. We show the novel view generated RGB images (column 1,
4) and normal images (column 2, 5), and the ground-truth images (column 3, 6).
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Figure 16: Additional visual 3D asset generation results. The input images (column 1) are either
generated from text using pre-trained text-to-image diffusion models (Rombach et al., 2022) or online
generated images.
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