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We present additional ablation study and visual results in the Appendix manuscript. Please also
refer to our website demo in the supplementary material for a comprehensive overview.

A ABLATION STUDY

DiNO encoder. We conduct experiments using different encoders. In Fig. we present the
validation PSNR curves during training, when using either our convolutional image encoder or a
pre-trained DiNO ViT (Caron et al.,|2021). Specifically, our convolutional encoder is a single layer
that downsamples input images from 512 to 32. The triplane generator is a self-attention transformer,
identical in both settings. We train both models on 8 80G A100 GPUs. We observe that the DiINO
experiment did not show improved convergence during the initial iterations. Alternatively, more
careful designs could optimize the use of DiNO ViT, which we leave for future study.

Objaverse training dataset. In Fig.[T2] we also show the training process with a dataset consisting
solely of 100k Objaverse (Deitke et al.|[2023)) images. We did not observe a performance drop in the
early stage compared to the other experiments in the figure, which were trained on our mixed dataset.

Vae encoder. In Fig we show preliminary results using a pretrained VAE encode from an
SD model (Rombach et al.,[2022). To enable the VAE encoder to handle multi-channel input, we
separately provide images, masks, and the camera rays to the encoder, then assemble the output
features using a convolution layer. Experiments are run on 32 80G A100 GPUs. We observe that
using a pretrained VAE encoder leads to better convergence in the early training stage. We attribute
this to the good initialization provided by VAEs compared to training the convolutional encoder from
scratch.
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Figure 12: Ablation study on image encoders Figure 13: Ablation study on image encoders
( Conv. vs DiNO) and dataset. (Conv. vs VAE).

B ADDITIONAL RESULTS

We show additional results generated by our approach in Fig. [I4} 16

'In practice, we use the pretrained SD VAE from https://huggingface.co/madebyollin/taesd
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Figure 14: Additional visual 3D reconstruction results on GSO (Downs et al.,[2022) dataset. The
input of our model is 4 orthogonal views. We show the novel view generated RGB images (column 1,
4) and normal images (column 2, 5), and the ground-truth images (column 3, 6).
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Figure 15: Additional visual 3D reconstruction results on GSO (Downs et al.,[2022) dataset. The
input of our model is 4 orthogonal views. We show the novel view generated RGB images (column 1,
4) and normal images (column 2, 5), and the ground-truth images (column 3, 6).
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Figure 16: Additional visual 3D asset generation results. The input images (column I) are either
generated from text using pre-trained text-to-image diffusion models (Rombach et al.} 2022) or online
generated images.
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