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ABSTRACT

Graphs for applications like social data and financial transactions are particularly
complex, with large node counts and high-dimensional features. State-of-the-art
diffusion graph synthesizers model the node structure via discrete diffusion and
are, unfortunately, limited to small-scale graphs with few to no features. In con-
trast, continuous diffusion models capture rich node features well, but have issues
faithfully modelling connectivity. In this paper, we design DLGrapher, a dual la-
tent diffusion framework for jointly synthesizing large graph structures and high-
dimension node features. DLGrapher models node features and structure as a joint
latent representation. Structure-wise, we design a reversible coarsening scheme
to merge pairs of similar neighboring nodes and their respective edges after en-
coding node features through a structure-aware variational autoencoder. To cap-
ture the dependencies between node features and the graph structure, DLGrapher
trains a single diffusion over a dual denoising objective, one for the continuous
node representations and another for the discrete edge connectivity. We exten-
sively evaluate DLGrapher’s performance on three complex social graph datasets
against baselines combining tabular and graph synthesizers. Our solution fares
12.9x better at statistically capturing feature-structure interaction and 25.2% better
at downstream tasks thanks to the dual diffusion on average and the latent com-
pressed representation increases throughput by 2.5X. Furthermore, we maintain
competitive synthesis quality for simple-featured molecular graphs and structure-
only synthetic graphs while drastically reducing computation in the latter case.

1 INTRODUCTION

Graphs are widely used to model the interactions of social media users (Rozemberczki & Sarkar,
2021), financial transaction (Altman, 2021), and molecules in biology (Wu et al., 2017). Attributed
graphs are characterized by their graph structures representing interactions among nodes and node
features representing unique characteristics. Figure 1 shows an example of an attributed graph:
users with distinct features are nodes, and the connectivity of edges shows their interactions. Node
features influence the graph structure, which in turn affect the feature values. Consider an example
of a social network with users producing and consuming content; popular creators with many views
also tend to have the most people choosing to follow their profile. To date, graphs without attributes
are increasingly synthesized by generative models Chen et al. (2023); Bergmeister et al. (2024); Dai
et al. (2020) in search for unseen patterns or as an alternative for data sharing solution.
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Figure 1: Example subgraph with complex
node data from Twitch Gamers dataset Rozem-
berczki & Sarkar (2021).

The state-of-the-art graph generative models draw
methodologies from generative adversarial net-
works Martinkus et al. (2022), transformers Vi-
gnac et al. (2023), and diffusion Jo et al. (2024),
with the main focus on the graph structure. To
model the discrete nature of graph structure, the
prior work Simonovsky & Komodakis (2018) first
applies encoder networks to find graphs’ con-
tinuous latent representation, which then can be
straightforwardly learned and synthesized by a dif-
fusion model in continuous space. The quality of
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synthetic graphs is thus limited by the capacity of the encoder Recently, discrete graph diffusion
not only shows a remarkable quality in synthesizing molecular structures by modeling the discrete
process of edge connectivity, but also captures the node features through single conditioning, e.g.,
molecular structure with certain properties Vignac et al. (2023). However, such discrete models are
limited in synthesizing either large graph structures or graphs with complex features. While the dis-
crete diffusion model well captures the connectivity among nodes, it does not scale to large numbers
of nodes The maximum number of conditions that can be handled by the prior art is two because of
the exponentially growing complexity of cross-features correlation.

In this paper, we propose DLGrapher, a Dual Latent Graph diffusion model, which is capable of
learning from large and complex attributed graphs and efficiently synthesizing graphs with rich fea-
tures. DLGrapher aims to combine the advantage of the scalability of latent diffusion and the graph
quality of discrete diffusion models. The core design features of DLGrapherare the structure-aware
latent representations of attributed graphs and the dual diffusion model, which jointly de-noise the
discrete latent of the structure and continuous latent of the features. DLGrapherfirst models the fea-
ture and structure through a structure-aware feature encoder-decoder networks and a novel reversible
coarsening scheme, respectively. When searching for the features embeddings, we include the edge
connectivity into the variational encoder networks. The coarsening scheme merges pairs of similar
neighboring nodes and their edges, concatenating their node features. To capture the dependency
between structure and features, the dual diffusion model of DLGraphercombines the training losses
from discrete diffusion on the structure latent and from the continuous diffusion on the feature la-
tent and then uses the combined loss to train the respective denoising processes of the structure and
feature. We evaluate DLGrapheragainst the state-of-the-art graph and tabular diffusion models, in
terms of their graph structure metrics, feature quality metrics, inter-dependency between structure
and features, and downstream tasks performance. In small-scale attributed graphs, DLGrapher out-
performs the baseline in all four types of metrics, capturing feature-structure interaction 12.9x better
and improving 25.2% better at down-stream tasks.

The novel contributions of DLGrapherare the following: (i) the first-of-kind generative model for
attributed graphs, complex in structure and rich in feature, (ii) a compact and structure-ware joint
representation of structure and features, (iii) a dual latent diffusion framework that jointly optimizes
the synthesis of discrete latent structure and continuous latent of features, and (iv) evaluation on
attributed graphs of different sizes in social networks, and molecular biology.

2 RELATED WORK

In recent years, diffusion models have been at the forefront of research into synthetic data genera-
tion over a multitude of modalities, like images (Ho et al., 2020), audio (Liu et al., 2024), video (Ho
et al., 2022), tabular data (Kotelnikov et al., 2023; Zhang et al., 2024), and even discrete settings
like language modeling (Lou et al., 2024). Latent formulations of such models learn over a lower
dimension encoded version of the input data and have been shown to help reduce computation re-
quirements and even improve synthesis in image (Rombach et al., 2022) and tabular (Shankar et al.,
2024) contexts.

The two main graph generation architectures are based on autoregressive and diffusion ap-
proaches, with the latter offering higher sample quality with generally increased overhead. Within
diffusion, a further differentiator is the graph noising model, which can be continuous, as in most
other modalities, or discrete, better matching the nature of graph structures. Discrete noising ensures
that noisy representations remain valid graphs and can better maintain sparsity during synthesis. As
for latent graph diffusion variants, current efforts lie in 3D molecule generation, which strictly fo-
cuses on modeling the Euclidean coordinates and properties of atoms (Xu et al., 2023; You et al.,
2024). For the restricted case of unattributed graphs, recent autoregressive methods, like Dai et al.
(2020) and Karami (2024), harness the sparsity of graphs or hierarchical structures to model connec-
tivity, respectively. From diffusion approaches, the discrete Chen et al. (2023) improves efficiency
by denoising part of the structure at a time. In contrast, Bergmeister et al. (2024) expands nodes at
every denoising step to generate graphs with up to thousands of nodes. Although such models may
be augmented to incorporate a distinct process for node or edge attributes, Jo et al. (2022) shows that
simultaneously generating structure and features leads to considerably better results. For attributed
generators, existing models generate much smaller graphs due to the increased problem complexity,
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Figure 2: DLGrapher detailed overview: (i) encoding feature latent, (ii) encoding structure latent,
(iii) forward process of dual diffusion, (iv) denoising process of dual diffusion, (v) decoding struc-
ture latent, and (iv) decoding feature latent.

even if most only integrate single-class nodes or edges. These include Jang et al. (2024), a hierarchi-
cal autoregressive model, Kong et al. (2023), which performs autoregressive diffusion, and Vignac
et al. (2023), which proposes a discrete denoising model that predicts individual nodes and edges to
generate graphs of under 200 nodes. In Jo et al. (2024), authors propose a graph mixture diffusion
model that predicts graph mixture focusing on the global graph structure, additionally allowing the
synthesis of simple continuous data for a node alongside its class. DLGrapher is the first model
to handle complex node representations with many features of different types, like those of tabular
data, while increasing the size of generated attributed graphs at similar computation costs.

Coarsening is a technique for reducing dimensionality when working with large graphs while pre-
serving key properties. Many versions consist of fixed algorithms, but newer works explore variants
learnable through neural networks as well (Cai et al., 2021). All such methods operate on the graph
structure, for example, striving to preserve similar spectral properties (Jin et al., 2020), but some
methods also account for node features (Kumar et al., 2023). Unlike prior art, which is not designed
to recover the original graph from the reduced graph, our proposed coarsening scheme is reversible.

3 DLGRAPHER: DUAL LATENT GRAPH DIFFUSION MODEL

This section describes DLGrapher, which tackles the generation of graphs with high-dimension node
features. The DLGrapherframework combines two main components: a structure-aware latent en-
coding mechanism and a dual diffusion backbone. DLGrapher first represents the attributed graphs
into the discrete structure embedding through a reversible coarsening scheme and continuous feature
embedding through a structure-aware feature encoder. The structure embedding is still a valid graph
with aggregated virtual nodes and edges, hence applicable for high quality discrete graph diffusion.
The compact embedding reduces overhead and enhances the generation capability with respect to
the graph size and feature complexity. The dual denoising diffusion model enables not only to
synthesize complex node features and an accurate connectivity structure, but also, importantly, to
capture their interdependencies.

To synthesize attributed graph shown in Figure 2, DLGrapher is composed of three components. (i)
Structure-aware feature encoding-decoding networks. These can encode node features into continu-
ous latent embeddings in a structure-aware manner and decode the latent back to the feature space.
(ii) Reversible structure coarsening scheme. It finds the structure embedding as a lower dimension
graph, i.e., virtual nodes and edges aggregated from the original nodes and edges, through coarsen-
ing the structure based on neighboring node pairs. (iii) Dual diffusion model. It learns to synthesize
the joint embedding of an attributed graph - a lower dimension graph with a feature embedding,
through continuous and discrete (de)noising processes on the feature and structure embeddings. The
feature encoder and dual diffusion model are transformer networks whose parameters are learned
through the training data of attributed graphs. In contrast, the reversible coarsening scheme is a
fixed bidirectional transformation function.
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(a) Node Aggregation

where 

(b) Edge Aggregation

Figure 3: Latent graph through structure coarsening and nodes/edge aggregation. Original graph
with latent feature (Z,M) transformed into latent graph (X,E). Nodes are reduced from 6 to 4
virtual nodes, and edge are reduced from 6 to 4 virtual edges associated with different types.

Subsequently, for generating synthetic attributed graphs, we denoise a random graph from the latent
space, i.e., a virtual graph with latent features, apply reverse coarsening to restore the original space
of nodes/edges, and decode node features back to the same dimension as the original data.

Notations and Definitions: The original graphs Go = (V,M) with nodes V ∈ Rn×f and edges
M ∈ {0, 1}n×n, where n is the number of real nodes, and f is the real feature dimension. The
original graphs are the training inputs to extract feature embedding, represented as Z ∈ n× f ′,
through the proposed structure-ware VAE, where f ′ is the dimension of node feature embedding.
Then, the coarsening scheme further generates the latent graph embedding, G = (X ∈ Rn′×2f ′

,E ∈
Nn′×n′

) from (Z,M), where n′ is the number of virtual aggregated nodes. The training inputs to
the diffusion backbone considered are thus the graphs G = (X,E).

3.1 EMBEDDING OF ATTRIBUTED GRAPH

We aim to find a compact embedding for attributed graphs, which is still a valid graph applicable
to discrete diffusion on the edge connectivity and with a compact node feature representation for
continuous latent diffusion. Our embedding procedure has a two-step process, first operating at the
node feature and then at the structural level. Node feature embedding ensures a decreased dimen-
sionality compared to the original data. This also eases the subsequent step of coarsening the graph
structure, which needs to aggregate nodes and concatenate their features.

Structure-aware VAE: Node features per node of attributed graph are essentially an individual row
in the feature table, shown in Figure 1. Representing graphs as adjacency matrix, the edge connec-
tivity in the graph represents the cross row dependency. In addition to capture the cross-attribute
dependency, the embeddings of the features need to address two challenges: capturing the row
dependency reflected in the edge connectivity and modeling the categorical and continuous node
attributes. We design a structure-aware variational autoencoder (sVAE), outputting a latent repre-
sentation of the node features described by a Gaussian. Specifically, the node feature is reduced by
sVAE from V ∈ Rn×f to the latent embedding Z ∈ Rn×f ′

, with f ′ < f . This latent representation
is then used in the diffusion process to synthesize the node features.

We design sVAE as a two-layer network of SageConv operators (Hamilton et al., 2017) for both the
encoder and decoder; see Appendix D for more details. We choose SageConv as it is a fast convo-
lutional layer that can aggregate information from each node’s neighbors, given that the structural
embeddings are also obtained through pairs of adjacent nodes. Thus, at each layer, the representation
of a node in the graph is updated according to its own current value and that of its graph neighbors.
We optimize the encoder-decoder network with a weighted combination of a mean squared error loss
targeting reconstruction quality and a KL divergence loss acting as a regularizer, ensuring that the
learned latent distribution is similar to some preselected prior, i.e., Gaussian distribution (Kingma
& Welling, 2014). Moreover, to cater to the categorical and continuous features, we customize the
activation function at the decoder, using softmax for categorical features and sigmoid for continuous
ones.
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3.1.1 REVERSIBLE STRUCTURE COMPRESSION

The objective here is twofold. First, we want to transform the graph into a compact latent that is still
a valid graph, such that the discrete diffusion model can be applied. Secondly, we need to ensure that
such a coarsening is reversible. To achieve such aims, we opt for a graph to graph transformation
algorithm, instead of using a learning approach, which typically represents structures in another
space Simonovsky & Komodakis (2018). We coarsen the nodes and the edges between them, by
aggregating pairs of similar nodes and their edges - termed here virtual nodes and virtual edges. The
challenge is how to keep the information of original nodes and edges, e.g., node’s latent feature and
edge classes, in the structure embedding. The core idea is related to that of graph coarsening (Cai
et al., 2021), but our scheme is made to be reversible, allowing to recover the original graph. We
outline the coarsening procedure in Algorithm 1.

Algorithm 1 Structure Coarsening
Input: feature encoder eθ,
Go = (V ∈ Rn×f ,M ∈ {0, 1}n×n)

1: Z, edges← eθ(V,M), [(i, j) |Mi,j = 1]
2: for (i, j)← edges sorted bymin ||zi − zj ||2 do
3: if Pairi = ∅ ∧ Pairj = ∅ then
4: Pairi ← Pairj ← max(Pair) + 1
5: X← Append(X,Concat(Zi,Zj))
6: else if Pairi ̸= ∅ ∨ Pairj ̸= ∅ then
7: intraEdges← intraEdges ∪ {(i, j)}
8: for i← [k |Pairk = ∅, 0 ≤ k < n] do
9: Pairi ← max(Pair) + 1

10: X← Append(X,Concat(Zi,O
|Zi|))

11: for (i, j)← intraEdges do
12: l, h← min(Pairi,Pairj), max(Pairi,Pairj)
13: El,h ← El,h + EncEdge(Pair, i, j) ▷ fig. 3b
14: return X,E

Node coarsening: We first greedily pair up
adjacent node pairs with decreasingly simi-
lar feature representations into a new virtual
node, concatenating their feature represen-
tations into a larger latent. The lower bound
for n′ is n

2 , when there is an even number
of nodes n′, but a complete assignment is
often not possible, e.g., when n is odd) or
is overly computation expensive. We thus
allow nodes to remain unpaired, and merge
them with a dummy, zero-filled node. Then
we connect new nodes when any of their
components were initially connected using
the edge coarsening algorithm. In order to
support coarsening of the edges between vir-
tual nodes, we introduce the edge type in our
latent embedding, i.e., E ∈ Nn′×n′

.

Edge coarsening: As all nodes within a pair
are always inherently connected, we discard
edges within the same pair from the result-
ing coarse structure. We keep track of edges
in the original graph joining nodes from different pairs (represented in Algorithm 1 by the intraEdges
variable). We later aggregate intraEdges in the coarse graph such that any of the four possible edges
between two node pairs becomes a single multi-class edge, with each possible class representing a
combination of the initial edges. In Algorithm 1, EncEdge maps each original edge to a class in
the corresponding edge of the coarse graph. Figure 3b visually describes this mapping. Overall we
need 16 classes which represent the four possible edges between two nodes in different pairs. Addi-
tionally, we symmetrize the resulting adjacency matrix to ensure that the graph remains undirected.
Figure 3 presents an example of coarsening nodes and edges. Finally, structural coarsening reduces
Z ∈ Rn×f ′

to X ∈ Rn′×2f ′
, and M ∈ {0, 1}n×n to E ∈ Nn×n′

, with n′ < n.

Decoarsening: We first split back each node representation into two nodes and add back the edges
between them. We subsequently expand each edge in the compressed graph to the original graph
edges it aggregates, adding them to the new graph structure. Finally, we remove any dummy zero-
filled nodes, reindexing the graph to account for any reduction in nodes, and performing a forward
pass through the decoder to restore the original feature space of nodes. Algorithm 4 in Appendix
describes the decoarsening in more detail.

3.2 DUAL LATENT DIFFUSION MODEL

We design a dual diffusion process that predicts individual node features and edge connectivities of
latent graphs, Go = (X,E), using both continuous (de)noising and discrete (de)noising. We follow
the framework of DDPM Ho et al. (2020), and aim to find a model ϕ parameterized by θ to synthesize
new graphs starting from a noisy latent representation GT and denoising it over T ∈ N steps. A
forward noising process defines a set of predetermined probability distributions q(Gt|Gt−1), such
that after T applications starting from a clean graph G0, the resulting representation follows the
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Gaussian distribution, independent of the starting graph. For the reverse process, q(Gt−1|Gt) gets
approximated through the p̂(G0|Gt) predicted by ϕθ and the known q(Gt−1|Gt, G0). For synthesis,
a random graph is sampled from some prior, and the model iteratively refines its prediction of the
clean version over t ← T, ..., 1 steps. We note that the number of real nodes is assumed fixed and
so is the number of virtual nodes after coarsening.

Different from non-attributed graph synthesis, our latent graph needs to capture not only the edge
connectivity but also the latent features of each virtual node. We combine them into a single diffusion
framework, consisting of continuous diffusion for the feature latent and discrete diffusion for the
edge connectivity. The former predicts the value of the latent features, where the latter predicts the
virtual edge and their types, i.e., different kinds of connectivity, which are crucial for decoarsening
the graph.

Continuous Feature Latent X We model the feature latent by adding Gaussian noise with param-
eters of αt and variance σt. The forward process is assumed q(Xt|Xt−1) = N (αtXt−1, σt2I).
With further algebraic substitution, we can write the forward process as q(Xt|X0) =

N (Xt; ᾱtX0, σ̄tI) where ᾱt =
∏t

i=1 αi and σ̄t =
∏t

i=1 σi. For the reverse process, we need
to find a denoising model that is able to minimize the mean squared errors, ||ϵ̂ − ϵ||2, between the
added Gaussian noise, ϵ, and predicted noise, ϵ̂, outputted from the denoising model.

Discrete Edge Latent We directly predict and sample from the distribution of edge types given
by the denoised graph, such that the discrete noising produces a valid graph structure after every
step Vignac et al. (2023); Chen et al. (2023). To build such a discrete diffusion, we rely on a
transition matrix Qt that dictates the probability of each edge type jumping to another, based on the
prior probability of each edge type. The forward noising process is thus defined:

q(Et|Et−1)Et−1Qt, q(Et|E0) = E0Q̄t where Q̄t =

t∏
i=1

Qi

To solve the denoising process, one needs to find a denoising model that can predict the edge type
probability, p̂E , after any number of transition steps. To solve the denoising model of these two
latents jointly, we use the graph transformer Vignac et al. (2023) as the model backbone and both
latents as inputs due to its attention mechanism to effectively correlate the inputs. The model outputs
are the predicted noise for the latent features and the predicted edge types for any given time step.
We thus set the training objective to minimize their weighted joint loss of mean square error from
the feature noise and cross entropy loss from the edge types weighted by λ:

L((ϵ̂; p̂E), (ϵ; E)) = ||ϵ̂− ϵ||2 + λCrossEntropy(p̂E ,E)

Algorithm 2 Dual Diffusion Training Step
Input: denoising model ϕθ,
G = (X ∈ Rn′×2f ′

,E ∈ Nn′×n′

15 )

1: t, ϵ ∼ U(1, ..., T ), N (On, In)
2: Xt ← ᾱt(X) + σ̄t(ϵ)

3: Et ∼ EQ
t

4: f ← ExtraFeats(Et, t)
5: ϵ̂, p̂E ← ϕθ(X

t,Et, f)
6: Opt ||ϵ̂− ϵ||2 + λCrossEntropy(p̂E ,E)

Algorithm 3 Dual Diffusion Sampling
Input: denoising model ϕθ

1: ϵ, Et ∼ N (On, In), qE(n)
2: for t = T, ..., 1 do
3: f ← ExtraFeats(Et, t)
4: ϵ̂, p̂E ← ϕθ(X

t,Et, f)
5: ϵ ∼ N (0, In)

6: Xt−1 ← 1
αtX

t − σt2

αtσ̄t ϵ̂+ σt→t−1ϵ
7: for (i, j)← (1, ..., n)× (1, ..., n) do
8: Et−1

ij ∼
∑

e q(e
t−1
ij | eij = e, etij) p̂Eij

(e)

9: return (X0,E0)

Training: Algorithm 2 gives the procedure for a full training step, including, the forward and reverse
diffusion. For some randomly sampled t in the noising chain and Gaussian noise ϵ (line 1), we add
ϵ to the clean data with a weight determined by the schedule at t (line 2). For each possible edge
location in the adjacency matrix, we choose the distribution from the transition matrix corresponding
to its edge type and sample from it to determine the updated edge type (line 3). We compute extra
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per-node and per-graph features encoding structural properties of the newly formed graph to help
with the model’s prediction (line 4) and run the forward pass (line 5). Finally, we optimize the loss
(line 6), which is a (weighted) sum of the mean square error between the clean and predicted node
data, and cross entropy between the corresponding edge classes.

Sampling: Algorithm 3 describes the sampling. We start from sampled Gaussian noise at the nodes
and adjacency entries sampled from the prior distribution of edge types within clean graphs (line 1).
Then, for each time step in the reverse chain (line 2), we compute the current structural features,
and have the model predict the clean graph (line 4), as during training. Subsequently, we sample the
necessary noise to partially renoise the model’s current guess for the node data (lines 5 and 6).

For the predicted probabilities of edges we also apply partial renoising, albeit by manipulating the
probability of each state at each location via the transition matrices, before sampling a new discrete
outcome in each location for the outcome distribution (lines 7 and 8).

4 EVALUATION

Baselines: Since DLGrapher is the first work investigating attributed graph generation with complex
node features, we propose a couple of different baselines that combine the best-in-class generators
for node features, i.e., TVAE (Xu et al., 2019) (VAE-based) or TabDDPM (Kotelnikov et al., 2023)
(diffusion-based), with a state-of-the-art graph synthesizer, i.e., DiGress Vignac et al. (2023). Based
on preliminary experiments, we set DLGrapher’s sVAE compression factor f ′ = ⌊ f4 ⌋ in all ex-
periments for best trade-off between compression and quality. We further test DLGrapher without
sVAE and structure coarsening, termed Dual Diffusion in the following. Here, we compare against
the state-of-the-art methods of DiGress (Vignac et al., 2023) and GruM (Jo et al., 2024).

Metrics: Alongside compute time, our main results consider the quality of graph topology, node
features, and the interaction between the two. To measure structure quality we monitor four graph
metrics and compute the Maximum Mean Distance (MMD) between the distribution of their values
over the synthetic and the real graphs. Specifically, following prior studies (Martinkus et al., 2022;
Vignac et al., 2023; Jo et al., 2024), we choose as metrics: the distribution of node degrees (Deg),
the eigenvalues of the normalized graph Laplacian (Spec), clustering coefficients (Clus), and orbit
counts (Orb). To evaluate node features in isolation, we treat nodes as tabular data rows and apply
standard metrics checking the distance between column shapes (Shape) and pairwise correlations
(Pair Trend) in synthetic and real samples Patki et al. (2016). To examine relationships between
graph structure and node features we choose a binary-valued node feature and compute the MMD
selectively on the node neighbors with the label set. Additionally, we test downstream utility of
ML tasks via accuracy metric of node classification when using the same binary node feature as
target. For molecular data, we match other works Vignac et al. (2023); Jo et al. (2024) and focus on
assessing utility by measuring the ratio of valid/unique/novel synthesized molecules.

Datasets: We employ three public datasets describing multi-feature entities and their relationships
for experiments on larger graphs with complex node features, plus a benchmark dataset for ex-
periments on smaller graphs with simple node features. Specifically, the former comprises two
social network datasets, Twitch (Rozemberczki & Sarkar, 2021) and Event (Allan Carroll, 2013),
with complex node features. Here, we harness as target binary label for downstream ML tasks and
MMD, respectively, whether a user may earn money from the platform and whether the gender of
a user is marked as female. The third dataset is OGBN-arxiv (Hu et al., 2020), a citation network
where articles, i.e. the nodes, are assigned a 128 dimensional embedding of the title and abstract, i.e.
the node features. We interpret the node embeddings as numerical columns and use a binary target
label of whether a paper is registered to one of the top four most popular categories. Since all three
datasets entail a single huge graph, we use random walks to create a set of smaller graphs with a
configurable number of nodes for learning and evaluation. We use either small graphs of 160 nodes
or large graphs of 260 nodes. Finally, the benchmark datasets is QM9 (Wu et al., 2017) comprising
graphs representing small molecules of up to 9 nodes with categorical node and edge features.

4.1 COMPLEX NODE DATA

Table 1 showcases the performance comparison for complex-node graphs. We observe that both
versions of DLGrapher, Dual Diffusion significantly outperform the baselines on mixed structure-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset/Method MMD (↓) Column (↑) Tgt. Col.
MMD (↓)

Downstr.
Util. (↑)

Epoch time s (↓) # Train
NodesDeg Spec Clus Orb Shape Pair Trend Train Sample

Twitch
DiGress+TVAE .344 .039 .257 .124 .867 .913 .281 .0 5.54 742 160
DiGress+TabDDPM .317 .036 .240 .215 .907 .971 .323 .0 5.54 741 160
Dual Diffusion .010 .009 .060 .055 .945 .957 .002 .796 5.57 748 160

DLGrapher .049 .038 .176 .056 .866 .930 .024 .685 2.11 294 94.93
(-40.66%)

Event
DiGress+TVAE .307 .073 .280 .491 .952 .793 .202 .0 5.54 741 160
DiGress+TabDDPM .194 .194 .263 .395 .835 .710 .101 .580 5.55 742 160
Dual Diffusion .005 .007 .196 .077 .821 .823 .002 .642 5.56 748 160

DLGrapher .014 .030 .157 .036 .760 .567 .004 .616 2.16 305 94.42
(-40.98%)

OGBN-arxiv
DiGress+TVAE .042 .032 >1 .413 .946 .975 .016 .777 9.16 1272 160
DiGress+TabDDPM .039 .032 .967 .385 .500 .529 .046 .469 9.17 1272 160
Dual Diffusion .002 .006 .116 .082 .874 .966 .002 .703 9.19 1280 160

DLGrapher .015 .035 .183 .155 .607 .752 .009 .741 3.59 479 94.21
(-41.11%)

Table 1: Main result on complex attributed graphs: showing the advantage in higher quality of graph
structure, feature, their interaction, downstream tasks, and training time per epoch.

Dataset MMD (↓) Column (↑) Tgt. Col.
MMD (↓)

Downstr.
Util. (↑)

Epoch time s (↓) # Train
NodesDeg Spec Clus Orb Shape Pair Trend Train Sample

Twitch large .020 .017 .177 .050 .858 .940 .009 .727 5.56 784 155.09
(-40.35%)

Event large .006 .020 .162 .075 .768 .520 .001 .599 5.59 826 153.53
(-40.95%)

OGBN-arxiv large .010 .025 .441 .071 .561 .623 .002 .706 9.30 1277 153.76
(-40.86%)

Table 2: Results for larger variants of complex graphs.

feature metrics by 12.9 on the target column MMD and 25.2% on downstream utility. For each
of the three datasets, we create a train/test/evaluation split from 200 graphs with 160 nodes each.
We underline that this size is close to what existing works on attributed graphs are able to synthe-
size. For structure metrics, we find that our versions of DLGraphertend to significantly outperform
baselines using structure-only diffusion. This suggests that incorporating node features into the dif-
fusion model also helps better model the edge connectivity. Meanwhile, baselines aided by tabular
synthesizers do better on node feature metrics, sometimes outperforming our proposed method. An-
other noteoworthy observation is that DLGrapher can better preserve column correlation (see Pair
Trend) under the applied graph coarsening ratio in Event; and, the overall poor performance of the
TabDDPM-aided DiGress generating high-quality word embeddings for OGBN-arxiv. Dual Diffu-
sion without any coarsening is clearly best in accounting for structure and node features together,
with DLGrapher always being a close second. Indeed, DLGrapher’s latent embedding reduces node
counts by > 40% in all cases, leading to approximately 2.5 times faster training and sampling epoch
times trading a small quality loss for speed. Our latent dual diffusion has consistently the same
performance gains across all datasets.

4.2 SCALABILITY

In Table 2, we further test the scalability of DLGrapher specifically using large 260-node graphs with
complex node features. Comparing the results against Table 1 shows that DLGrapher scales well,
obtaining the same performance on larger graphs as on smaller graphs. All while requiring approx-
imately the same run time as other baselines require for the smaller graphs. We exclude baselines
due to prohibitive runtimes on larger graphs. For DLGrapher, train epoch times are only marginally
higher, while sampling increases with the number of synthesized nodes. The node coarsening rate
also remains very similar to previous tests, showing that the structure coarsening can reliably reduce
the size by at least 40% across various graphs of various sizes.
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4.3 SIMPLE NODE DATA

Finally, we evaluate DLGrapher on the QM9 molecules benchmark dataset to showcase that DL-
Grapheris competitive even small graphs with simple categorical node features. For DiGress and
GruM, we report their scores from Jo et al. (2024). Note that the DiGress’s original paper reports
a marginally higher mean percentage of valid molecules of 99% but a lower percentage of unique
molecules out of the valid ones of 96.2%. For both reported results, the relative ranking of DiGress
remains unchanged.

Dataset/Method Utility % (↑)
Valid Unique/Valid Novel/Valid-Unique

QM9
DiGress 98.19 96.67 25.58
GruM 99.69 96.90 24.15
Dual Diffusion 99.46 96.82 36.10

Table 3: Results on smaller molecular data graphs with cat-
egorical node and edge features.

DLGrapher achieves similar perfor-
mance on the ratio of valid molecules
and unique molecules out of the valid
ones, coming in second for both met-
rics. Furthermore, regarding the ratio
of novel molecules not present in the
training set over out of the valid and
unique ones, DLGrapheris the best.
We attribute this to the continuous
diffusion component on the node fea-
tures, increasing the diversity within
the overall diffusion process. The rel-
atively low number of novel graphs across the board is due to graphs in QM9 having at most 9 nodes
and a relatively large train set.

5 CONCLUSION

Attributed graphs with rich node features are a critical data type in applications across multiple
domains such as social networks, financial transactions or molecular biology. The prior art, unfor-
tunately, is limited to synthesizing only single attributed or small graphs. In this paper, we present
DLGrapher, a dual latent diffusion model for attributed graphs - modeling the graph structure and
node feature as a joint discrete and continuous diffusion process. We first represent the complex
node feature as an embedding through a structure-aware VAE. We then apply a reversible coarsen-
ing scheme to find a structure embedding in the original graph space, i.e., virtual nodes and virtual
edges through aggregating nodes and edges. The dual diffusion model then trains noise-predicting
networks that can denoise the continuous feature embedding of virtual nodes and the discrete virtual
edges. Our evaluations on small and large attributed graphs show that DLGrapher captures node
feature and edge interdependencies 12.9x better and improves performance on downstream tasks by
25.2%.

6 ETHICS AND REPRODUCIBILITY STATEMENT

Ethics: Our proposed graph generative models have broad applications in modeling molecular struc-
tures used in drug discovery or material science applications and human interactions on social media,
professional networks, or social contagion situations. As a generative model, our solution can help
improve productivity (e.g., propose plausible new drug candidates for further validation) and allevi-
ate the need for third parties to directly tap into confidential or privacy-sensitive data when answering
questions about it (e.g., finding out how some disease spreads amongst different user groups).

Reproducibility: To ensure the reproducibility of our research, we include the code for the proposed
model and datasets as supplementary material.
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A LEARNING SETUP

The following describes our procedure of training a synthesizer that harnesses diffusion backbone
alongside latent embedding mechanism. Before training the diffusion model, we first pretrain the
sVAE used to reduce feature dimensionality, then apply the full latent transformation to the train data
in preparation. Thus, the diffusion loss is optimized directly in the reduced compression space, and
the mapping to the original space is only performed when a complete output is required, like during
evaluation. Doing so, we avoid involving the decompression during training, as to not increase
training cost. Consequently, we also keep the calculation of extra node and graph spectral features
in the compressed space, as their aim is to help the model understand the structural properties of
the partially noisy graph at any given time step. On another note, the structure and node feature
components of the embedding mechanisms can also be applied independently and are effectively a
pre/post-processing step on top of the main diffusion network. As such, they are also compatible
with any graph generation model that allows for attributed nodes in the case of feature compression
or edges in the case of structure compression.

B NOTATION

Table 4 recaps the notation used throughout the manuscript to describe the graph representations at
different stages in the framework, and the components making up the latent embedding and dual
diffusion.

Notation Description
ϕθ denoising model ϕ parameterized by θ

G = (V ∈ Rn∗×f∗
,M ∈ {0, 1}n∗×n∗

) original attributed graph
Z ∈ Rn∗×f latent node feature embedding

G0 = (X ∈ Rn×2f ,E ∈ Nn×
15 ) embedded attributed graph

Gt/Xt/Et graph/nodes/edges after t noise steps
xi & eij node embedding i and edge value i, j
dθ & eθ node feature VAE decoder & encoder
q(Gt|Gt) probability distribution of Gt given Gt

Qt edge-type transition matrix at noise step t

Q
t

edge-type transition matrix for noise steps up to t
pE likelihood of each state for all possible edges in E
qE prior probability for each edge type in E

αt & σt parameters for noise strength schedule up at step t
ᾱt & σ̄t parameters for noise strength schedule up to step t

αt→t−1 & σt→t−1 parameters for noise strength at step t given X0 & Xt

ϵX sampled noise for corrupting nodes

Table 4: Overview of the main notation used in the main text and its description.

C STRUCTURE DECOARSENING DETAILS

Algorithm 4 provides more details on the structure decoarsening, which reverses the steps of the
coarsening. We first split back each node representation in two (line 1) and add the edges between
nodes previously in the same pair (lines 2 to 3). We subsequently expand each edge in the com-
pressed graph to the original graph edges it aggregates, adding them to the new graph structure
(lines 4 and 5). Finally, we remove any dummy zero-filled nodes, reindexing the graph to account
for any reduction in nodes (line 6), and performing a forward pass through the decoder to restore the
original state space of nodes (line 7).

D SVAE ARCHITECTURE

Figure 4 visualizes the architecture of sVAE for the case of two encoding and decoding layers,
respectively. Each layer takes as input a representation of the node features after the previous step,
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Algorithm 4 structure Decoarsening
Input: feature decoder dθ,
G = (X ∈ Rn′×2f ′

,E ∈ Nn′×n′

15 )

1: Z← UnpairNodes(X)
2: for i← 1, 3, ..., 2n′ − 1 do
3: Mi,i+1 ←Mi+1,i ← 1

4: for (i, j)← DecEdges(E) do
5: Mi,j ←Mj,i ← 1

6: Z,M← RemoveZeroNodes(Z,M)

7: V̂← dθ(Z,M)

8: return V̂,M

along with the connectivity information of the graph. As is typical in VAEs, the encoder estimates
the parameters of a prior distribution, which, in our case, are the mean and variance of a Gaussian.
Consequently, the decoder expects a sample drawn from the latent distribution as input. Finally,
we use a different activation function for each feature based on whether it represents a value for
tabular numerical feature or is part of a one-hot embedding for a tabular categorical feature. For
node features that do not originally encode a tabular data row, we consider each feature to be a
unique numerical column.

SAGEConv
Layer

SAGEConv
Layer

SAGEConv
Layer

SAGEConv
Layer

SAGEConv
Layer

Decoder

Encoder

Figure 4: sVAE architecture with 2 encoder and decoder layers each.

E SYNTHETIC COMPLEX NODE DATA SAMPLES

Table 5 showcases an example graph for each tested method and the Twitch and Event datasets.
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Twitch Event
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Table 5: Samples from the Twitch and Event datasets generated by the two baselines (DiGress +
TVAE, DiGress + TabDDPM) and our two proposed methods (Dual Diffusion without feature nor
structure compression, Twitch). For readability we only show the node feature values of the first 10
nodes.
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