
Under review as a conference paper at ICLR 2024

IMPROVING NEURAL PROGRAM INDUCTION BY RE-
FLECTING ON FAILURES

Anonymous authors
Paper under double-blind review

A FRGR FOR THE REINFORCEMENT LEARNING TASKS

In this section, we illustrate the FRGR framework for reinforcement learning tasks. Reinforcement
learning tasks focus on making sequential decisions to complete the tasks with the goal of maximizing
the returns (at time step t, the parameterized policy will take action at at state st, and continue until the
task is completed or reaches the maximum steps allowed). Consequently, determining the correctness
of a single action within an RL sequence is challenging. Therefore, after finishing a sequence, the
final return of each state-action pair taken in that sequence will be calculated using a discounting
factor. RL algorithms mainly optimize policies toward the direction of maximizing the returns.
Similarly, in FRGR, the discounted returns are also used to determine which behavioral snapshots are
used for error pattern mining. Algorithm 1 (line 1-8) shows the detailed steps.

Given a reinforcement learning task, the induction model (policy πθ) interacts with the environment
for a maximum of T steps, as shown in line 3. For each step t, the induction model takes the grounded
state st and outputs the action at. The behavioral snapshot is also extracted (ωt). Then, by interacting
with the environment via at, the environment gives the reward rt and next state st+1, as shown in line
4. After one episode, the discounted returns (G1, G2, . . . , GT) are calculated based on the rewards
collected, as shown in line 5. If the induction model fails to complete the task in this episode, we
update the erroneous behavior list E based on the discounted returns. Specifically, E is implemented
as a max heap with the size τ , storing the tuple (Gt, ωt). For every new tuple (Gi, ωi), when its
return is smaller than the return of the root node, it is added to the erroneous behavior list, as shown
from line 6 to line 8. In this way, the behavioral snapshots that cause the lowest returns are considered
the (most) erroneous behaviors. Finally, similar to the relational reasoning scenario, the erroneous
behavior list is used for error pattern mining, as shown in line 9. The summarized error pattern is
then used as the behavior regularization to penalize the final loss, as shown from line 10 to line 13.

B IMPLEMENTATION DETAILS

In this section, we provide detailed training methods for relational reasoning tasks and reinforcement
learning tasks. The hyper-parameters of the network structure and training settings are also provided.
We conduct our experiments on a Ubuntu 18.05 server with 48 cores of Intel Xeon Siver 4214 CPU,
4 NVIDIA Quadro RTX 8000 GPUs, 2 NVIDIA Quadro RTX 6000 GPUs, and 252GB RAM.

B.1 TRAINING SETTINGS

Training Method. Both NLM (Dong et al., 2018) and NLM w/ FRGR are trained using Adam
optimizer (Kingma & Ba, 2014) with a 0.005 learning rate. For all the relational reasoning tasks,
the Softmax Cross Entropy is used as the loss function. For reinforcement learning tasks, the
REINFORCE (Williams, 1992) algorithm is used for optimization. Similar to NLM, the policy
entropy term is also added to the loss function. By adding the behavioral regularization term,
parameters θ of the RL policy π is updated via:

θ′ = θ + η[γt
r∇θ log πθQπθ

(st, at) + β∇θH(πθ)− γ∇LBEH], (1)

where η is the learning rate, γt
r is the discounted reward at time step t, H is the entropy regularization,

β is the discount factor to control the entropy, st and at are the state and action at time step t. Across
all the environments, a positive of +1.00 will be given to the agent. To encourage the agent to use as
few moves as possible, a negative reward of −0.01 is given for each action taken.

1

Under review as a conference paper at ICLR 2024

Algorithm 1: FRGR regularization framework for reinforcement learning tasks.
Input: Training number of episodes Epi, Neural induction model π, Erroneous behavior

list E, Erroneous behavior list size τ , Error pattern ϵ, Behavior extractor ρ,
Regulatory coefficient γ, Learning rate η, Model weights θ, REINFORCE loss
LREI, Behavioral loss LBEH

1 Initialization: c← 0, i← 0, e← 0, E ←MaxHeap(τ)
/* Error Pattern Mining */

2 while e < Epi do
3 Running Policy πθ for T steps
4 Collecting trajectory Traj = {(st, at, rt, ωt)}0...T
5 Calculating the discounted return {G1, G2, . . . , GT }
6 if Traj Fails then
7 Update E according to {(Gt, ωt)}0...T
8 end
9 ϵ← Apriori(E)

/* Update with behavioral regularization */
10 m← ω ∩ ϵ // error pattern matching
11 LBEH ←

∑
ν∈m |θν |

12 L ← LREI − γ · LBEH

13 θ ← θ + η∇ΘL
14 e← e+ 1
15 end

Curriculum Learning. For reinforcement learning tasks, curriculum learning (Bengio et al., 2009;
Dong et al., 2018) is also applied. The training instances are grouped into lessons according to their
complexity. The number of objects in the environment is considered an indicator of complexity. The
model will start with a simple lesson and gradually increase the difficulty when the model passes the
exam. The exam will be taken when the model is well-trained on the current lesson, i.e., the accuracy
reaches a certain threshold. Specifically, during the lesson, all failed and successful environments
will be recorded. The training examples will be sampled from the successful environments with the
probability of Ω and failed environments with the probability of 1− Ω.

B.2 HYPERPARAMETERS

Hyperparameters for relational reasoning tasks. The details of the network structure of both
NLM and NLM w/ FRGR are shown in Table 1. For each computation unit, no hidden layer is used
and the number of intermediate predicates (hidden dimension) is set to be 8 for all the benchmarks.
Specifically, the residual means the input predicates are concatenated to the output predicates of
each computation unit. For the data-rich scenario, the examples are divided into 500 epochs, each
containing different samples. For the data-scarce scenario, the examples are the same for each epoch.
The batch size is set to be 4 across all the experiments. The regulatory coefficient γ is set to be 0.99
and erroneous behavior list size τ is set to be 100 for all tasks.

Hyperparameters for reinforcement learning tasks. Table 2 shows the details of the network
structure and hyperparameters for reinforcement learning tasks. Each training batch contains one
episode. Similarly, no hidden layer is used and the number of intermediate predicates is also set to be
8. Residual linkage is applied for all the RL tasks. Specifically, for curriculum learning, the induction
model starts from a small number of objects and gradually advances to a larger number. For example,
the first lesson for the Sorting task contains environments with 2 objects. The second lesson contains
environments with 3 objects, and the final lesson contains environments with 10 objects. For the
data-rich scenario, the environments are different for each lesson taken. For the data-scarce setting,
the environments are the same for the same level of lessons. The regulatory coefficient γ is set to be
0.99 and erroneous behavior list size τ is set to be 100 for all tasks.

2

Under review as a conference paper at ICLR 2024

Table 1: The details of the network structure for the NLM and the NLM w/ FRGR models for the
relational reasoning tasks. Residual indicates the use of Input/Output residual links.

Tasks Depth Breadth Residual Examples
(Data-rich)

Examples
(Data-scarce)

Family Tree

HasFather 4 3 No 50,000 100

HasSister 4 3 No 50,000 100

IsGrandparent 4 3 No 100,000 200

IsUncle 4 3 No 100,000 200

IsMGUncle 4 3 No 200,000 400

General Graph

1-Outdegree 4 3 No 50,000 100

2-Outdegree 5 4 Yes 100,000 200

4-Connectivity 4 3 No 50,000 100

6-Connectivity 8 3 Yes 50,000 100

Table 2: The details of the network structure and hyperparameters for the NLM and the NLM w/
FRGR models for the reinforcement learning tasks. The Lessons indicate the different levels of
lessons used for training.

Tasks Depth Breadth Residual Lessons Ω Epochs Total Episodes
(Data-rich)

Total Episodes
(Data-scarce)

Sorting 3 2 Yes [4,10] 0.5 50 1,000 140

Path 5 3 Yes [3,12] 0.5 400 24,000 600

BlocksWorld 7 2 Yes [2,12] 0.6 500 50,000 1,100

C DETAILED DESCRIPTIONS OF BENCHMARKS

Relational reasoning tasks. For the Family Tree Reasoning tasks, a family tree consisting of n
family members is given to the neural program induction model. The relationships between each pair
of family members are represented by the following predicates: IsFather, IsMother, IsSon,
and IsDaughter. The goal of this task is to learn the properties of family members or the relations
between them: HasFather, HasSister, IsGranparent, IsUncle, IsMGUncle (defined
as maternal great uncle).

For the General Graph Reasoning tasks, an undirected graph comprising n nodes is given to the
induction model. The relationships between nodes are represented by the predicate HasEdge.
The goal of this task is to acquire the properties of the nodes or the relations between them: k-
Connectivity and k-OutDegree. Specifically for k-Connectivity, the induction model
is expected to determine whether two nodes can be connected by a path with at most k edges; for
k-OutDegree, it is expected to classify whether the out-degree of the node equals to k.

Reinforcement learning tasks. For the Sorting task, an array of length m is given to the induction
model, and it needs to learn the swap predicate (i.e., swapping two integers in the array) to sort the list
in ascending order. The index relation predicates (SmallerIndex, SameIndex, LargerIndex)
and numerical relations predicates (SmallerNumber, SameNumber, LargerNumber) are
grounded with each pair of integers and are used as premises for the induction model. For the
Path environment, given an undirected graph, the induction model needs to find a path between
the start node s and the end node e, which are represented by two unary predicates (IsStart,
IsEnd). The path is learned by choosing the next node to go to (i.e., learn the Next predicate)
until reaching the end node e. The Blocks World task includes two worlds: an initial world and a
target world, both of which contain m objects (m− 1 cubes and 1 ground). The induction model has
to learn how to move (the binary predicate Move) the objects to change the world from the initial
setting to the target setting. Each object is represented by four characteristics: world id, cube id,

3

Under review as a conference paper at ICLR 2024

coordinate x, and coordinate y. The binary relations (represented by binary predicates) of
all the above four characteristics, listed in the following, are given to the induction model as input:
SmallerWorldID, SameWorldID, LargerWorldID, SmallerCubeID, SameCubeID,
LargerCubeID, SmallerX, SameX, LargerX, SmallerY, SameY, LargerY.

D DETAILED DESCRIPTIONS OF NEURAL LOGIC MACHINE

Expansion The Expansion operation constructs a new predicate q from p by introducing a new
variable xb+1, which provides more flexibility for NLM to build expressive formulas:

∀xb+1 q (x1, x2, · · · , xb, xb+1)← p (x1, x2, · · · , xb) .

As an example, a new predicate p3 can be constructed via the Expansion operation and Boolean
logic operation, as shown below.

∀zq1 (x, z)← p1 (x) (Expansion)

∀zq2 (y, z)← p2 (y) (Expansion)

p3 (x, y)← q1 (x, z) ∧ q2 (z, y) (Boolean Logic)

More specifically, considering the set of N b b-ary predicates are represented by the tensor of shape
[mb, N b], the Expansion is done by stacking the tensor (m− b) times. This results in a new tensor
of the shape [mb+1, N b].

Reduction The Reduction operation constructs a new predicate q from p by reducing a variable in
p via the logic quantifier. The logic quantifier consists of two meta-rules:

q (x1, x2, · · · , xb)← ∀xb+1 p (x1, x2, · · · , xb, xb+1)

q (x1, x2, · · · , xb)← ∃xb+1 p (x1, x2, · · · , xb, xb+1)

As an example, a new predicate p2 can be constructed via the Reduction operation and Boolean
logic operation, as shown below:

q1 (x)← ∀zp1 (x, z) (Reduction)

p2 (x)← q1 (x) ∧ p3 (x) (Boolean Logic)

More specifically, considering the set of N b+1 b+ 1-ary predicates are represented by the tensor of
shape [mb+1, N b+1], the Reduction operation takes the maximum (for ∃) or minimum (for ∀) value
along the xb+1 dimension and then stack these two tensors. This results in a new tensor of the shape
[mb, 2N b+1].

Permutation Given an b−ary predicate p(x0, x1, · · · , xb), the Permutation operation generates
b! grounding values on the same set of objects. For example, consider a ternary predicate p(x, y, z)
grounded on three objects a, b, c. The Permutation operation generates the grounding values of
all the permutations of the variables: p(a, b, c), p(a, c, b), p(b, a, c), p(b, c, a), p(c, a, b), p(c, b, a).
Therefore, considering the set of N b b−ary predicates represented by the tensor of shape [mb, N b],
the Permutation operation generates b! such tensors, resulting in a tensor of shape [mb, b!×N b].

Logic Computation For each computation at depth (layer) d, breadth (arity) b, the input tensor Inb
d

comes from the output from last depth d− 1 and breadth b− 1, b, b+ 1(Outb−1
d−1, Outbd−1, Outb+1

d−1):

Inb
d = Concat(Expansion(Outb−1

d−1), Outbd−1,Reducion(Outb+1
d−1)).

The neural boolean logic is computed via a multi-layer perceptron to derive newly invented predicates
Outbd:

Outbd = σ(MLP(Permutation(Inb
d))),

where σ(·) is the nonlinearity function.

4

Under review as a conference paper at ICLR 2024

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In International Conference on Learning Representations, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Reinforcement learning, pp. 5–32, 1992.

5

	FRGR for the Reinforcement Learning Tasks
	Implementation Details
	Training Settings
	Hyperparameters

	Detailed Descriptions of Benchmarks
	Detailed Descriptions of Neural Logic Machine

