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ABSTRACT

Although machine learning is a powerful tool for science, its black-box nature hin-
ders the extraction of interpretable knowledge. In particular, although Multi-Layer
Perceptrons (MLPs) are universal approximators, it is challenging to interpret
what MLPs are doing under the hood. This paper, inspired by the Kolmogorov-
Arnold representation theorem, proposes Kolmogorov-Arnold Networks (KANs)
as promising alternatives to MLPs, especially when interpretability is desired.
While MLPs have fixed activation functions on nodes (“neurons”), KANs have
learnable activation functions on edges (“weights”). KANs learn interpretable 1D
functions on their edges whose connection graph is also simple enough to be ex-
plained. Through two examples in mathematics and physics, KANs are shown to
be useful “collaborators” helping scientists (re)discover mathematical and physi-
cal laws. Moreover, KANs are shown to be more accurate and have faster scaling
laws than MLPs in function fitting and PDE solving, both theoretically and empir-
ically. However, we admit that training KANs could be slower than MLPs, which
should be addressed in the future to scale them up.
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Figure 1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)

1 INTRODUCTION

Multi-layer perceptrons (MLPs) Haykin (1994); Cybenko (1989); Hornik et al. (1989), also known
as fully-connected feedforward neural networks, are foundational building blocks of today’s deep
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learning models. The importance of MLPs can never be overstated, since they are the default mod-
els in machine learning for approximating nonlinear functions, due to their expressive power guar-
anteed by the universal approximation theorem Hornik et al. (1989). However, MLPs often lack
interpretability, which makes them less useful for tasks when interpretability is key, e.g., when we
want to extract symbolic formulas from datasets. In science, symbolic functions are prevalent, e.g.,
E = mc2 (energy-mass relation), r = a

1+ecosθ (ellipse), p = e−
E
kT /Z (Boltzman distribution).

Although MLPs can numerically approximate these functions to a reasonable accuracy, they cannot
reveal symbolic structures of these equations.

Therefore, we need a representation theorem that is more aligned with symbolic representations
than the universal approximation theorem. In our search, the good old Kolmogorov-Arnold repre-
sentation theorem (KA theorem) came to our attention. Although the KA theorem has long been
considered irrelevant for learning Girosi & Poggio (1989) because the theorem does not guarantee
smoothness, we are more optimistic about the smoothness of deeper representations. For example,
as we will show, f(x1, x2, x3, x4) = exp(sin(x21 + x22) + sin(x23 + x24)) can be smoothly repre-
sented by a three-layer network, but a two-layer network that attempts to fit this function leads to
pathological representations.

Unsurprisingly, the possibility of using Kolmogorov-Arnold representation theorem to build neural
networks has been studied Sprecher & Draghici (2002); Köppen (2002); Lin & Unbehauen (1993);
Lai & Shen (2021); Leni et al. (2013); Fakhoury et al. (2022); Montanelli & Yang (2020). However,
most work has stuck with the original depth-2 width-(2n+1) representation, and many did not have
the chance to leverage more modern techniques (e.g., back propagation) to train the networks. Our
contribution lies in generalizing the original Kolmogorov-Arnold representation to arbitrary widths
and depths, revitalizing and contextualizing it in today’s deep learning world, as well as using empir-
ical experiments to highlight its potential for AI + Science due to its accuracy and interoperability.

Named after the two great Mathematicians, Andrey Kolmogorov and Vladimir Arnold, this new
type of network is called the Kolmogorov-Arnold Network (KAN). Like MLPs, KANs have fully-
connected structures. However, while MLPs place fixed activation functions on nodes (“neurons”),
KANs place learnable activation functions on edges (“weights”), as illustrated in Figure 1. Each
learnable weight parameter in an MLP is replaced by a learnable 1D function (parametrized as a
spline) in a KAN. KANs’ nodes simply sum incoming signals without applying any non-linearities.

Although interpretability is our initial motivation to develop KANs, KANs demonstrate impressive
accuracy and fast scaling laws as well, both theoretically and empirically. Despite their elegant
mathematical interpretation, KANs are nothing more than combinations of splines and MLPs, lever-
aging their respective strengths and avoiding their respective weaknesses. Splines are accurate for
low-dimensional functions but suffer from curse of dimensionality (COD) problem. MLPs, On the
other hand, suffer less from COD thanks to their ability to learn features and compositional structure,
but are less accurate than splines in low dimensions. KANs have MLPs on the outside and splines
on the inside, combining the best of two things into one.

The paper is organized as follows: In Section 2, we introduce the KAN architecture, analyze the
network’s approximation ability, and propose two training techniques to make KANs interpretable
and accurate. In Section 3, we show that KANs are interpretable and can be used for scientific
discoveries. We use two examples from mathematics (knot theory) and physics (Anderson local-
ization) to demonstrate that KANs can be helpful “collaborators” for scientists to (re)discover math
and physical laws. In Section 4, we show that KANs are more accurate than MLPs for data fitting
and PDE solving with better scaling laws. We conclude in Section 5. Due to limited space, we defer
related works to Appendix Y and discussion to Appendix Z.

2 KOLMOGOROV–ARNOLD NETWORKS (KAN)

Multi-Layer Perceptrons (MLPs) are inspired by the universal approximation theorem. We instead
focus on the Kolmogorov-Arnold representation theorem, which can be realized by a new type of
neural network called Kolmogorov-Arnold networks (KAN). We review the Kolmogorov-Arnold
theorem in Section 2.1, to inspire the design of Kolmogorov-Arnold Networks in Section 2.2. Sec-
tion 2.3 provides mathematical description of KANs’ expressive power. Section 2.5 and Section 2.4
propose techniques to make KANs accurate and interpretable.
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2.1 KOLMOGOROV-ARNOLD REPRESENTATION THEOREM

Vladimir Arnold and Andrey Kolmogorov established that if f is a multivariate continuous function
on a bounded domain, then f can be written as a finite composition of continuous functions of a
single variable and the binary operation of addition. More specifically, for a smooth f : [0, 1]n → R,

f(x) = f(x1, · · · , xn) =
2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (1)

where ϕq,p : [0, 1] → R and Φq : R → R. In a sense, they showed that the only true multivariate
function is addition, since every other function can be written using univariate functions and sum.
One might naively consider this great news for machine learning: learning a high-dimensional func-
tion boils down to learning a polynomial number of 1D functions. However, these 1D functions can
be non-smooth and even fractal, so they may not be learnable in practice Poggio et al. (2020). Be-
cause of this pathological behavior, the Kolmogorov-Arnold representation theorem was regarded
as theoretically sound but practically useless Poggio et al. (2020).

However, we are more optimistic about the usefulness of the Kolmogorov-Arnold theorem for ma-
chine learning. First of all, we need not stick to the original Eq. (1) which has only two-layer
non-linearities and a small number of terms (2n + 1) in the hidden layer: we will generalize the
network to arbitrary widths and depths. Deeper and wider networks potentially have stronger ex-
pressive power with smooth functions. Moreover, most functions in science and daily life are often
smooth and have sparse compositional structures Lin et al. (2017), potentially facilitating smooth
Kolmogorov-Arnold representations.

2.2 KAN ARCHITECTURE

Suppose we have a supervised learning task consisting of input-output pairs {xi, yi}, where we want
to find f such that yi ≈ f(xi) for all data points. Eq. (1) implies that we are done if we can find
appropriate univariate functions ϕq,p and Φq . This inspires us to design a neural network which
explicitly parametrizes Eq. (1). Since all functions to be learned are univariate functions, we can
parametrize each 1D function as a B-spline curve, with learnable coefficients of local B-spline basis
functions 1. Now we have a prototype of KAN, whose computation graph is exactly specified by
Eq. (1) and illustrated in Figure 1 (b) (with the input dimension n = 2), appearing as a two-layer
neural network with activation functions placed on edges instead of nodes (simple summation is
performed on nodes), and with width 2n+ 1 in the middle layer.

As mentioned, such a network is known to be too simple to approximate any function arbitrarily
well in practice with smooth splines! We therefore generalize our KAN to be wider and deeper. The
key insight comes from the analogy between MLPs and KANs. In MLPs, once we define a layer
(which is composed of a linear transformation and nonlinearties), we can stack more layers to make
the network deeper. To build deep KANs, we should first answer: “what is a KAN layer?” It turns
out that a KAN layer with nin-dimensional inputs and nout-dimensional outputs can be defined as a
matrix of 1D functions

Φ = {ϕq,p}, p = 1, 2, · · · , nin, q = 1, 2 · · · , nout, (2)

where the functions ϕq,p have trainable parameters (parameterized as B-splines, see Appendix I), as
detaild below. In the Kolmogov-Arnold theorem, the inner functions form a KAN layer with nin = n
and nout = 2n + 1, and the outer functions form a KAN layer with nin = 2n + 1 and nout = 1.
So the Kolmogorov-Arnold representations in Eq. (1) are simply compositions of two KAN layers.
Now it becomes clear what it means to have deeper Kolmogorov-Arnold representations: simply
stack more KAN layers! The shape of a general KAN is represented by an integer array

[n0, n1, · · · , nL], (3)

where ni is the number of nodes in the ith layer of the computational graph. We denote the ith
neuron in the lth layer by (l, i), and the activation value of the (l, i)-neuron by xl,i. Between layer l
and layer l+1, there are nlnl+1 activation functions: the activation function that connects (l, i) and
(l + 1, j) is denoted by

ϕl,j,i, l = 0, · · · , L− 1, i = 1, · · · , nl, j = 1, · · · , nl+1. (4)

1Details in Appendix I and illustrated in Figure 18 right.
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The pre-activation of ϕl,j,i is simply xl,i; the post-activation of ϕl,j,i is denoted by x̃l,j,i ≡
ϕl,j,i(xl,i). The activation value of the (l + 1, j) neuron is simply the sum of all incoming post-
activations:

xl+1,j =

nl∑
i=1

x̃l,j,i =

nl∑
i=1

ϕl,j,i(xl,i), j = 1, · · · , nl+1. (5)

In matrix form, this reads

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
...

ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl
(·)


︸ ︷︷ ︸

Φl

xl, (6)

where Φl is the function matrix corresponding to the lth KAN layer. A general KAN network is a
composition of L layers: given an input vector x0 ∈ Rn0 , the output of KAN is

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x. (7)
We can also rewrite the above equation to make it more analogous to Eq. (1), assuming output
dimension nL = 1, and define f(x) ≡ KAN(x):

f(x) =

nL−1∑
iL−1=1

ϕL−1,iL,iL−1

 nL−2∑
iL−2=1

· · ·

(
n2∑

i2=1

ϕ2,i3,i2

(
n1∑

i1=1

ϕ1,i2,i1

(
n0∑

i0=1

ϕ0,i1,i0(xi0)

)))
· · ·

 ,

(8)
which is quite cumbersome. In contrast, our abstraction of KAN layers and their visualizations are
cleaner and intuitive. The original Kolmogorov-Arnold representation Eq. (1) corresponds to a 2-
Layer KAN with shape [n, 2n + 1, 1]. Notice that all the operations are differentiable, so we can
train KANs with back propagation. For comparison, an MLP can be written as interleaving of affine
transformations W and non-linearities σ:

MLP(x) = (WL−1 ◦ σ ◦WL−2 ◦ σ ◦ · · · ◦W1 ◦ σ ◦W0)x. (9)
It is clear that MLPs treat linear transformations and nonlinearities separately as W and σ, while
KANs treat them all together in Φ. In Figure 1 (c) and (d), we visualize a three-layer MLP and a
three-layer KAN, to clarify their differences. Implementation details of KANs are left in Appendix I.

Remark: Complexities. Assuming a KAN with depth L, width N , grid size G, spline order k.
The model has O(N2GL) parameters. Suppose a training batch has size B, memory usage is
O(2kBN2GL), the number of operations is O(2kBN2GL) both for forward and backward runs.
The 2k factor is due to the recursive computation of order k splines.

2.3 KAN’S APPROXIMATION ABILITIES AND SCALING LAWS

Recall that in Eq. (1), the 2-Layer width-(2n + 1) representation may be non-smooth. However,
deeper representations may bring the advantages of smoother activations. To facilitate an approx-
imation analysis, we still assume smoothness of activations, but allow the representations to be
arbitrarily wide and deep, as in Eq. (7). To emphasize the dependence of our KAN on the finite set
of grid points, we use ΦG

l and ΦG
l,i,j below to replace the notation Φl and Φl,i,j used in Eq. (5) and

(6).

Theorem 2.1 (Approximation theory, KAN). Let x = (x1, x2, · · · , xn). Suppose that a function
f(x) admits a representation

f = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x , (10)
as in Eq. (7), where each one of the Φl,i,j are (k + 1)-times continuously differentiable. Then
there exists a constant C depending on f and its representation, such that we have the following
approximation bound in terms of the grid size G: there exist k-th order B-spline functions ΦG

l,i,j

such that for any 0 ≤ m ≤ k, we have the bound

∥f − (ΦG
L−1 ◦ΦG

L−2 ◦ · · · ◦ΦG
1 ◦ΦG

0 )x∥Cm ≤ CG−k−1+m . (11)
Here we adopt the notation of Cm-norm measuring the magnitude of derivatives up to order m:

∥g∥Cm = max
|β|≤m

sup
x∈[0,1]n

∣∣Dβg(x)
∣∣ .
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We leave the proof and an in-depth discussion on the implication of the theorem in Appendix J.
Asymptotically, provided that the assumption in Theorem 2.1 holds, KANs with finite grid size
can approximate the function well with a residue rate independent of the dimension. This comes
naturally since we only use splines to approximate 1D functions. In particular, for m = 0, we
recover the accuracy in L∞ norm, which in turn provides a bound of RMSE on the finite domain,
which gives a scaling exponent k+1. Of course, the constant C is dependent on the representation;
hence it will depend on the dimension. Notice that if the assumption in the theorem holds for a
shallow KAN, it automatically holds for a deeper KAN by setting the remaining layers to identity.
A more general version of approximation theory in larger function class can be found in Wang
et al. (2024b). More discussion on how our results are related to neural scaling laws is included in
Appendix K. We also remark that: since the assumption in the theorem is a strong one, the neural
scaling law should not be expected to be universally applicable to all machine learning applications.
Now the basic architecture of KANs is in place, we propose a few techniques to make KANs accurate
and interpretable.

2.4 TRICKS FOR INTERPRETABILITY: PRUNING AND SYMBOLIFYING KANS

How do we choose the KAN shape? If we know that the dataset is generated via the symbolic
formula f(x, y) = exp(sin(πx) + y2), then we know that a [2, 1, 1] KAN is able to express this
function. However, in practice we do not know the shape a priori, so it would be nice to have
approaches to determine this shape automatically. The idea is to start from a large enough KAN
and train it with sparsity regularization followed by pruning. One may even symbolify activation
functions into symbolic functions like exp, sine, etc, to make KANs a useful tool for symbolic
regression. The idea is to match learned spline functions with candidates in a symbolic function
library specified by human users and replace the spline functions with the best-fitting ones. Details
of these simplification tricks are included in Appendix M.

2.5 A TRICK FOR ACCURACY: GRID UPDATE AND GRID EXTENSION

Grid update Since input data and (especially) hidden activations can have time-varying ranges in
training, we update grids on the fly based on the statistics of input/activation ranges. The grid is
initialized to be in [-1,1] (e.g., when G = 5, the grid points are [-1, -0.6, -0.2, 0.2, 0.6, 1.0]),
but once it receives input/activations, say, in the range [-3,3] (the maximum and minimum values
are 3 and -3, respectively), the grid will be updated to [-3,3] (correspondingly, grid points become
[-3,-1.8,-0.6,0.6,1.8,3.0]) to accommodate the whole range.

Grid extension A spline can be made arbitrarily accurate to a target function as the grid can be
made arbitrarily fine-grained. This good feature can be inherited by KANs. By contrast, MLPs do
not have the notion of “fine-graining”. For KANs, one can first train a KAN with fewer parameters
and then extend it to a KAN with more parameters by simply making its spline grids finer, without
the need to retrain the larger model from scratch. The main idea of grid extension is: for each 1D
function defined on a coarse grid, we determine the coefficient of a finer grid using least squares
that minimize the difference between the two curves evaluated on data samples. Details of how to
perform grid extension are included in Appendix L and in Figure 18.

2.6 BENEFITS OF DEEP KANS

It is one of our major contributions to generalize the 2-layer KA representations to multiple layers.
Although it is challenging to prove the benefits of deeper KANs theoretically, we want to present a
concrete example where 3-layer KANs admit smooth representations while 2-layer KANs do not.
We consider fitting a function f(x1, x2, x3, x4) = exp( 12 (sin(π(x

2
1 + x22)) + sin(π(x23 + x24))))

where we draw samples (3000 training, 1000 training) uniformly from [−1, 1]4. We train a 3L
KAN ([4,2,1,1]) and a 2L KAN ([4,9,1]) with the LBFGS optimizer for 250 steps, with increasing
G = 3, 5, 10, 20, 50 (50 steps for each G). As shown in Figure 2, we see that the 3-layer KAN
has smooth representations (as expected, since the parse tree of the symbolic formula has depth 3),
while the 2-layer KAN learns highly oscillatory functions on some edges. The 3-layer KAN also
achieves lower losses than the 2-layer KAN. While the 3-layer KAN has a small train-test gap, the
2-layer KAN starts to overfit at large grid sizes.

3 KANS ARE INTERPRETABLE

In this section, we show that KANs can be interpretable on synthetic toy tasks and realistic research
questions in math and physics.
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Figure 2: Fitting the function f(x1, x2, x3, x4) = exp( 12 (sin(π(x
2
1 + x22)) + sin(π(x23 + x24)))).

(a) 3-Layer KAN admits smooth representations. (b) The 2-Layer KAN learns highly oscillatory
representations. (c) The 3-layer KAN achieves lower losses and has a smaller train-test gap than the
2-layer KAN.

Figure 3: KANs are interpretable for simple symbolic tasks.

Synthetic toy datasets We first examine KANs’ ability to reveal the compositional structures in
symbolic formulas. Three examples are presented in Figure 3. KANs are able to reveal the com-
positional structures present in these formulas, as well as learn the correct univariate functions. (1)
Multiplication f(x, y) = xy. KAN computes it via the equation 2xy = (x + y)2 − (x2 + y2).
(2) Division of positive numbers f(x, y) = x/y. KAN computes it via exp(logx − logy). (3)
Deeper compositions f(x1, x2, x3, x4) = exp(sin(x21 + x22) + sin(x23 + x24)). Discussion about the
implications of these examples is left in Appendix R. We also discussed an unsupervised learning
paradigm and how we can convert unsupervised learning to supervised learning by borrowing ideas
from contrastive learning, detailed in Appendix S.

Application to Mathematics: Knot Theory Knot theory is a subject in low-dimensional topology
that sheds light on topological aspects of three-manifolds and four-manifolds and has a variety of
applications, including in biology and topological quantum computing. In Davies et al. (2021),
supervised learning and human domain experts were utilized to arrive at a new theorem relating
algebraic and geometric knot invariants. They use network attribution methods to find that the
signature σ is mostly dependent on meridinal distance µ (real µr, imag µi) and longitudinal distance
λ. We show that KANs can not only identify these important variables with much smaller networks
and much more automation, but also present some interesting new results and insights.

We treat 17 knot invariants as inputs and signature as outputs. Similar to the setup in Davies
et al. (2021), signatures (which are even numbers) are encoded as one-hot vectors and networks are
trained with cross-entropy loss. We find that an extremely small [17, 1, 14] KAN is able to achieve
81.6% test accuracy (while DeepMind’s 4-layer width-300 MLP achieves 78% test accuracy). The
[17, 1, 14] KAN (G = 3, k = 3) has ≈ 200 parameters, while the MLP has ≈ 3×105 parameters. It
is remarkable that KANs can be both more accurate and much more parameter efficient than MLPs
at the same time. In terms of interpretability, we scale the transparency of each activation according
to its magnitude, so it becomes immediately clear which input variables are important without the
need for feature attribution (see Figure 4 left top): signature is mostly dependent on µr, and slightly
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Figure 4: Knot dataset. Supervised mode (left): we rediscover DeepMind’s three important vari-
ables. Unsupervised mode (right): we discover three “new” relations without supervision.

dependent on µi and λ, while dependence on other variables is small. We then train a [3, 1, 14]
KAN on the three important variables, obtaining test accuracy 78.2% (Figure 4 left bottom). More
ablation results and symbolic formula results are included in Appendix T.

We attempt to make discoveries beyond DeepMind’s in the unsupervised learning mode, where we
treat all 18 variables (including signature) as inputs. We train 200 networks with different random
seeds. They can be grouped into three clusters, with representative KANs displayed in Figure 4.
These three groups of dependent variables are (1) rediscovering DeepMind’s relation in unsuper-
vised learning. (2) cusp volume is by definition of the multiplication of two translations. (3) short
geodesic gr is upper bounded by two times of injecitivy radius Petersen (2006). It is interesting
that KANs’ unsupervised mode can rediscover several known mathematical relations. The good
news is that the results discovered by KANs are probably reliable; the bad news is that we have
not discovered anything new yet. It is worth noting that we have chosen a shallow KAN for simple
visualization, but deeper KANs can probably find more relations if they exist. We would like to
investigate how to discover more complicated relations with deeper KANs in future work.

Remark: symbolic regression benchmarks We have presented KANs’ interpretability as an in-
teractive tool with human users. However, as a network-based method, its strong capability (in
fitting even non-symbolic functions) makes it unfavorable for standard symbolic regression bench-
marks. For example, KAN ranks second-to-last in GEOBENCH (Anonymous, 2024), whereas the
last-ranked one EQL is also a network-based model, which has been shown to be useful at least for
certain problems (Martius & Lampert, 2016; Dugan et al., 2020) despite its inability to do well on
benchmarks. On the one hand, we would like to explore ways to restrict KANs’ hypothesis space so
that KANs can achieve good performance on symbolic regression benchmarks. On the other hand,
we want to point out that KANs have good features that are not reflected by existing benchmarks: (1)
interactivity. It is relatively easier to visualize the training dynamics of KANs, which gives human
users intuition on what could go wrong hence facilitating debugging. (2) The ability to “discover”
new functions. If the ground truth formula contains a special function but is not given in the sym-
bolic library, SR methods will fail. However, KANs can discover the need for a new function whose
numerical behavior suggests maybe it is a Bessel function; see Figure 23 (d) for an example.

4 KANS ARE ACCURATE

In this section, we demonstrate that KANs are more accurate at representing functions than MLPs
in various tasks (regression and PDE solving). When comparing two families of models, it is fair
to compare both their accuracy (loss) and their complexity (number of parameters). Moreover, in
Appendix Q, we show that KANs can naturally work in continual learning without catastrophic
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forgetting. All experiments reported in the paper are reproducible on CPUs usually within minutes,
at most in a day. Codes are built based on pytorch Paszke et al. (2019).
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Figure 5: Compare KANs to MLPs on five toy examples. KANs can almost saturate the fastest
scaling law predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

Toy datasets In Section 2.3, our theory suggested that test RMSE loss ℓ scales as ℓ ∝ N−(k+1) =
N−4(k = 3) with model parameters N . However, this relies on the existence of a smooth
Kolmogorov-Arnold representation. As a sanity check, we construct five examples we know have
smooth KA representations: (1) f(x) = J0(20x), which is the Bessel function. Since it is a univari-
ate function, it can be represented by a spline, which is a [1, 1] KAN. (2) f(x, y) = exp(sin(πx) +
y2). We know that it can be exactly represented by a [2, 1, 1] KAN. (3) f(x, y) = xy. We know
from Figure 3 that it can be exactly represented by a [2, 2, 1] KAN. (4) A high-dimensional exam-
ple f(x1, · · · , x100) = exp( 1

100

∑100
i=1 sin

2(πxi

2 )) which can be represented by a [100, 1, 1] KAN.
(5) A four-dimensional example f(x1, x2, x3, x4) = exp( 12 (sin(π(x

2
1 + x22)) + sin(π(x23 + x24))))

which can be represented by a [4, 4, 2, 1] KAN. The empirical scaling for KANs is quite aligned
with theory and outperforms MLPs. Details of training are included in Appendix N.

Special functions In practice, we may not know the existence of KA representations. Special func-
tions of more than one variables are such cases, e.g., a Bessel function f(ν, x) = Jν(x). We collect
15 special functions common in math and physics, summarized in Table 9 in Appendix O. We find
that: (1) KANs are more efficient and accurate in representing special functions than MLPs, as
shown in Figure 6. In all cases, KANs have better pareto frontiers than MLPs. (2) Finding (approx-
imate) compact KA representations of special functions is possible, revealing novel mathematical
properties of special functions from the perspective of Kolmogorov-Arnold representations. Details
are included in Appendix O.

Fitting Images We task KANs with three images: (1) The Cameraman picture is the standard picture
for the image fitting task. (2) The turbulence profile is taken from PDEBench Takamoto et al.
(2022), demonstrating high-frequency and fractal behavior typical in scientific computing. (3) Van
Gogh’s The Starry Night is quite challenging because it contains fine-grained details as well. In
addition to MLPs, We compare KANs with these stronger baselines: (A) MLP with random Fourier
features (MLP_RFF). Before feeding input coordinates x ≡ (x, y) to the MLP, we first augment
them into a higher-dimensional feature space Φ(x) = (x,Φ1(x), · · · ,ΦNf

(x)), where Φi(x) =

(cos(si · x), sin(si · x)), i = 1, · · · , Nf , and si ∼ N (0, s2) (s controls the frequency bias). We
chooseNf = 50 and s = 3, 30. (B) SIREN (Sitzmann et al., 2020) uses sines as activation functions
in MLPs and uses large initialization for the first layer (effectively creating high-frequency features).
To compare KANs and baselines as fairly as possible, we try two control strategies (same shape or
as,e number of parameters) and report both performance (measured by PSNR) and efficiency (wall
time). All methods are listed below in Table 1. For all baseline models, 1 means their width is the
same as KAN 1, while 2 means their number of parameters is (approximately) the same as KAN 1
(
√
G times wider, where G = 10 is the grid size used in KAN 1). We also explore KAN 2, which

uses a finer grid (G = 100 instead ofG = 10) for the first layer only (inspired by the idea of random
Fourier features in the input layer). The whole image is treated as the training set and there is no test
set. All models are trained with the Adam Optimizer for 15000 steps with learning rate decay (5000
steps for learning rate 10−3, 10−4 and 10−5), with batch size 1024, on a V100 GPU.

We list PSNR and training wall time in Table 1, and fitted images in Figure 9. We have a few
observations from the results: (1) KANs are comparable to or even outperform baseline methods
(including SIREN) in terms of PSNR, however with more training time. (2) having random features
in the inputs is useful for MLPs, especially high-frequency random features (s = 30 outperforms
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Figure 6: Fitting special functions. We show the Pareto Frontier of KANs and MLPs in the plane
spanned by the number of model parameters and RMSE loss. Consistently accross all special func-
tions, KANs have better Pareto Frontiers than MLPs. The definitions of these special functions are
in Table 9.

Figure 7: Image fitting task (a PDE solution from PDEBench Takamoto et al. (2022)). KAN outper-
forms baseline methods in terms of PSNR.

s = 3). We may also understand KANs’ superior performance as being good at generating random
features in early layers. By changing the grid size in the first layer from G = 10 to G = 100
(KAN 2), PSNR significantly increases with little additional overhead in training time. We show the
turbulence profile in Figure 7. Results of the other two images can be found in Appendix A.

Solving partial differential equations (PDEs We consider a Poisson equation with zero Dirichlet
boundary data. For Ω = [−1, 1]2, consider the PDE uxx + uyy = f with zero boundary condition.
We consider the data f = −π2(1 + 4y2) sin(πx) sin(πy2) + 2π sin(πx) cos(πy2) for which u =
sin(πx) sin(πy2) is the true solution. We use the framework of physics-informed neural networks
(PINNs) Raissi et al. (2019); Karniadakis et al. (2021) to solve this PDE, with the loss function given
by losspde = αlossi + lossb := α 1

ni

∑ni

i=1 |uxx(zi) + uyy(zi) − f(zi)|2 + 1
nb

∑nb

i=1 u
2 , where we

use lossi to denote the interior loss, discretized and evaluated by a uniform sampling of ni points
zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary loss, discretized
and evaluated by a uniform sampling of nb points on the boundary. α = 0.01 is the hyperparameter
balancing the effect of the two terms. KANs are shown to have Pareto Frontiers than MLPs for this
simple example.
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Table 1: Image Fitting: Comparing various methods

Method width PSNR ↑ Training Wall Time (s) ↓
Cam Turb Star Cam Turb Star

KAN 1 [2,128,128,128,128,1]
G =[10,10,10,10,10] 32.06 62.45 50.55 1800 1721 1715

KAN 2 [2,128,128,128,128,1]
G =[100,10,10,10,10] 45.76 82.68 71.82 1809 1734 1727

MLP 1 [2,128,128,128,128,1] 20.76 27.18 18.28 162 92 91
MLP 2 [2,404,404,404,404,1] 22.09 33.14 18.96 182 110 110

SIREN 1 [2,128,128,128,128,1] 27.34 49.51 29.88 254 226 232
SIREN 2 [2,404,404,404,404,1] 30.79 51.94 53.05 407 400 404

MLP_RFF 1 (s = 3) [2,128,128,128,128,1] 22.17 33.58 19.19 176 96 96
MLP_RFF 2 (s = 3) [2,404,404,404,404,1] 24.73 42.57 22.00 192 117 118

MLP_RFF 1 (s = 30) [2,128,128,128,128,1] 23.92 43.07 22.68 174 96 97
MLP_RFF 2 (s = 30) [2,404,404,404,404,1] 26.26 46.43 28.62 195 117 121
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Figure 8: The PDE example. We plot L2 squared and H1 squared losses between the predicted
solution and ground truth solution. First and second: training dynamics of losses. Third and fourth:
scaling laws of losses against the number of parameters. KANs converge faster, achieve lower losses,
and have steeper scaling laws than MLPs.

More complicated PDEs. We test more PDE examples in Appendix B, showing that KANs can
achieve reasonable performance for more complicated PDEs. However, we want to note that KANs
are slightly slower than MLPs to train in terms of wall time (reported in Appendix B), despite their
smaller number of parameters. The point we want to make with Figure 8 is that KANs can achieve
the theoretical scaling law in this PDE example (beyond function fitting), but this result should not
be interpreted as an immediate real-world improvement. Also, both the LBFGS optimizer and the
grid extension technique are required to achieve the theoretical scaling law, but in practice, people
use the Adam optimizer and do not need grid extension for MLPs, which we explore in Appendix B.

5 CONCLUSIONS

Inspired by the Kolmogorov-Arnold representation theorem, we propose the Kolmogorov-Arnold
Networks (KANs) as promising alternatives to MLPsOur contributions are three-fold: (1) we put
the KA theorem in the perspective of modern machine learning, relating to MLPs, and generalize
the representation from two-layer to multiple layers via the KAN layers introduced, greatly en-
hancing expressive power. (2) we show that KANs are interpretable, serving as a useful tool for
scientific discoveries. (3) we show that KANs are accurate and have nice scaling laws via theory
and experiments. The major limitation of this work, however, is that our numerical examples fo-
cus on various aspects of science and are relatively small-scale. The scalability and extensibility
of KANs for large-scale machine-learning tasks are left as future work. We also acknowledge that
the similarities and differences between MLPs and KANs require more study, both theoretically and
empirically. For example, a reasonable criticism of KANs is that they can be rewritten as MLPs or
the other way around since the notion of “edge” vs “node” is somewhat dual. Future work should
aim to better clarify similarities and differences from the perspective of optimization, generalization,
etc. For example, a recent preprint Wang et al. (2024b) shows that although KANs and MLPs are
both universal approximators, KANs have fewer spectral biases than MLPs.
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stretches. ACM Transactions on Graphics (TOG), 34(4):1–11, 2015.

Jinchao Xu and Ludmil Zikatanov. Algebraic multigrid methods. Acta Numerica, 26:591–721,
2017.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

16

https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul


Published as a conference paper at ICLR 2025

Shijun Zhang, Zuowei Shen, and Haizhao Yang. Neural network architecture beyond width and
depth. Advances in Neural Information Processing Systems, 35:5669–5681, 2022.

Shumao Zhang, Pengchuan Zhang, and Thomas Y Hou. Multiscale invertible generative networks
for high-dimensional bayesian inference. In International Conference on Machine Learning, pp.
12632–12641. PMLR, 2021.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
S5wmbQc1We.

Xin-Chi Zhou, Yongjian Wang, Ting-Fung Jeffrey Poon, Qi Zhou, and Xiong-Jun Liu. Exact new
mobility edges between critical and localized states. Physical Review Letters, 131(17):176401,
2023.

17

https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We


Published as a conference paper at ICLR 2025

Figure 9: Comparing various methods for fitting the picture of Cameraman (top), turbulent flow
(middle,from PDEBench Takamoto et al. (2022)), and Van Gogh’s the starry night (bottom).

A ADDITIONAL IMAGE FITTING EXAMPLES

B ADDITIONAL PDE EXAMPLES

In Section 4, we showed KANs’ superior performance over MLPs for solving a 2D Poisson equa-
tion with a smooth solution. To really understand the capabilities and limitations of KANs, we test
KANs by taking three (relatively more) challenging PDEs, as suggested by reviewers: (1) Poisson
equations with high-frequency solutions, to test KANs’ ability to model high-frequency modes. (2)
Allen-Cahn equation, to test KANs’ ability to model temporal phenomenon and capture sharp tran-
sitions. (3) Darcy flow, to test KANs’ ability to model random structures (e.g., Darcy flow can be
used to model porous media). The goal of this section is to show that KANs (as they are) can achieve
reasonable performance for these challenging PDEs, rather than attempting to establish SOTA per-
formance. Indeed, PDE modeling with neural networks is a huge field and many techniques (e.g.,
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adaptive weights (McClenny & Braga-Neto, 2020), causality training (Wang et al., 2022), the gat-
ing mechanism in PirateNet (Wang et al., 2024a)) have been developed that can be very useful to
improve KANs in the future.

Remark on the problem setup: In Figure 8, we used the LBFGS optimizer and the grid extension
technique to achieve the theoretical scaling law. However, it is more common to use the Adam
optimizer and the grid extension technique is too specific to KANs. To make fair comparisons in
typical user cases, below we use the Adam optimizer and do not use grid extension (the grid size is
fixed once chosen), to avoid the possibility of any of our algorithmic choices favoring KANs. Said
that this does not mean one should avoid using these tricks in practice when the goal is to optimize
results rather than make fair comparisons. We note that KAN’s training wall time is much reduced
from the last version because we now disable the symbolic front (which takes up most of the training
time but is unnecessary for PDE cases).

B.1 POISSON EQUATION WITH HIGH-FREQUENCY SOLUTIONS

To test KANs’ ability to approximate high-frequency PDE solutions, we revisit the Poisson equation
in the main text but impose high-frequency solutions. To be specific, we consider the Poisson
equation

uxx + uyy = f,Ω ∈ [−1, 1]2 (12)

with zero boundary condition (u(x,−1) = u(x, 1) = u(−1, y) = u(1, y) = 0) and f =
−2n2π2sin(nπx)sin(nπy), which has the solution u(x, y) = sin(nπx)sin(nπy). We train our
models (listed in Table 2) using Adam optimizers with a learning rate 10−3 for 1000 steps except
for 10000 steps for MLP (10x training). The training loss is the PINN loss losspde = αlossi+lossb :=
α 1

ni

∑ni

i=1 |uxx(zi) + uyy(zi) − f(zi)|2 + 1
nb

∑nb

i=1 u
2 , where we use lossi to denote the interior

loss, discretized and evaluated by a uniform sampling of ni = 512 points zi = (xi, yi) inside the
domain, and similarly we use lossb to denote the boundary loss, discretized and evaluated by a uni-
form sampling of nb = 51 points on the boundary. α = 0.01 is the hyperparameter balancing the
effect of the two terms. It is clear that larger n means the solution is more high-frequency and hence
more challenging. We visualize predictions by models in Figure 10, and list their relative ℓ2 error
and training wall time in Table 2. We have a few observations: (1) All the models, i.e., KANs,
MLPs, MLP_RFFs (MLP with random Fourier features) can achieve qualitatively good predictions
given proper hyperparameters. (2) high-frequency Fourier features in MLP_RFFs can be harmful to
training. Similarly, KANs become unstable with large grid sizes and/or depths. This is in contrast
to the results in image fitting in Appendix A. Our explanation is that PINN losses have quite sharp
loss landscapes, and adding high-frequency features will only make things worse. (3) KANs have
slightly higher training time than MLPs, which is due to the recursive evaluations of splines, and
derivatives in the PINN objective makes this problem even more severe. As we will see below, the
observations drawn in this example apply to the two equations below as well.

Figure 10: Comparing various methods on solving 2D Poisson equation with a high-frequency
solution (n = 4).
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Method n = 1 n = 2 n = 4
l2 error↓ time (s) ↓ l2 error↓ time (s) ↓ l2 error↓ time (s) ↓

MLP 0.003 28 0.027 19 0.553 19
MLP (10x training) 0.001 184 0.328 184 0.022 202
MLP_RFF (s = 3) 0.001 254 0.001 233 0.084 232

MLP_RFF (s = 30) 1.000 250 0.999 242 0.934 249
KAN [2,10,1] G = 10 0.006 28 0.135 29 0.729 24
KAN [2,10,1] G = 20 0.221 33 0.082 33 0.295 34
KAN [2,100,1] G = 10 0.001 51 0.006 52 0.099 51
KAN [2,100,1] G = 20 0.326 72 0.135 71 0.090 74

KAN [2,10,10,10,1] G = 10 0.012 89 0.117 95 0.576 92
KAN [2,10,10,10,1] G = 20 0.995 127 0.993 130 0.982 125

Table 2: Comparing various method on solving 2D Poisson equations. All MLPs (including
MLP_RFFs) have shapes [2,128,128,128,1].

Figure 11: Solving the 1D Allen-Cahn equation.

B.2 ALLEN-CAHN EQUATION

To test KANs’ ability to solve temporal PDEs and model phase transitions, we consider the one-
dimensional Allen-Cahn equation with the periodic boundary conditions and the quartic double-well
potential energy, formulated as below

ut − 0.0001uxx + 5(u3 − u) = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(x, 0) = x2cos(πx) ≡ u0(x),

u(−1, t) = u(1, t),

ux(−1, t) = ux(1, t).

(13)

Since we do not have an exact solution, a reference solution is obtained via the direct Euler forward
method (1000 mesh points in space and in time). Although this temporal equation seems innocuous,
using standard PINN training (using MLPs) can lead to a problem – the solution would collapse to
a zero solution very quickly in time! To solve this issue, Wang et al. (2022) proposes causal training
where the temporal domain is divided into several blocks. Each block corresponds to a separate
PINN and these PINNs are trained sequentially in time, where the previous block is used to initialize
the next block. Each block covers ∆t = 0.1, so there are 10 blocks in total. The training loss is the
PINN loss losspde = αilossi + αblossb + αtlosst := αi

1
ni

∑ni

i=1 |ut − 0.0001uxx + 5(u3 − u)|2 +
αb

1
nb

∑nb

i=1(u(1, ti)− u(−1, ti))
2 + (ux(1, ti)− ux(−1, ti))

2 + αt
1
nt

∑nt

i=1(u(xi, 0)− u0(xi))
2,

where we use lossi to denote the interior loss, discretized and evaluated by a uniform sampling of
ni = 512 points zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary
loss, discretized and evaluated by a uniform sampling of nb = 51 points on the boundary. losst to
denote the initial profile, discretized and evaluated by a uniform sampling of nt = 51 points on the
boundary. We choose αi = 1, αb = 1, αt = 100. We train each temporal block with the Adam
optimizer with a learning rate 10−3 for 1000 steps. We show in Figure 11 their prediction profiles.
With 1000 training steps, KANs have already learned good qualitative evolution (although with
some imperfections). Training KANs for 10000 steps probably helps, but that will take about 10h to
train so we did not try this given the limited time during rebuttal. With 1000 training steps, MLPs
do not learn the correct qualitative evolution, but adding training steps to 10000 makes MLPs learn
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Model l22 error ↓ Training wall time (s) ↓
KAN [2,5,5,1] G = 5 3.4× 10−3 2801

KAN [2,5,5,1] G = 10 3.9× 10−3 2831
MLP 1.5× 10−1 478

MLP (10x training) 3.9× 10−4 4766
MLP_RFF (s = 30) 8.0× 10−1 599

Table 3: Comparing various models on the 1D Allen-Cahn equation. All MLPs including
MLP_RFFs have the shape [2,128,128,128,1].

the evolution quite accurately. For MLP with high-frequency random features (s = 30), the training
curve fails to decrease, which is similar to the observation in the Poisson case in Appendix B.1.

B.3 DARCY FLOW

Figure 12: Prediction of various models on Darcy flow

We use Darcy flow to test KANs’ ability to model random media (modeled as Gaussian mixtures).
The equation is similar to the Poisson equation, but the permeability a(x) can be spatially dependent
(x ≡ (x, y)):
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Model l22 error ↓ Training wall time (s) ↓
KAN [2,10,1] G = 5 3.9× 10−3 71
KAN [2,10,1] G = 10 1.3× 10−3 66
KAN [2,10,1] G = 20 3.9× 10−4 66
KAN [2,100,1] G = 5 1.7× 10−5 81

KAN [2,100,1] G = 10 4.3× 10−6 107
KAN [2,100,1] G = 20 1.9× 10−2 136

KAN [2,10,10,10,10,1] G = 5 8.5× 10−5 123
KAN [2,10,10,10,10,1] G = 10 1.2 123
KAN [2,10,10,10,10,1] G = 20 1.3 125

MLP 3.0× 10−5 30
MLP (10x training) 4.5× 10−6 277
MLP_RFF (s = 3) 5.9× 10−6 31
MLP_RFF (s = 30) 4.0× 10−1 31

Table 4: Comparing various models on darcy flow. All MLPs including MLP_RFFs have the shape
[2,128,128,128,1].

∇ · (a(x) · ∇u(x)) = f(x),x ∈ Ω = [−1, 1]2,

u(x) = ut(x),x ∈ ∂Ω,

a(x) = 1 +

Na∑
i=1

exp

(
−
(x− x2a,i) + (y − y2a,i)

2σ2
a,i

)
, xa,i, ya,i ∼ U [−1, 1], σa,i ∼ U [0.1, 0.3],

ut(x) =

Nu∑
i=1

exp

(
−
(x− x2u,i) + (y − y2u,i)

2σ2
u,i

)
, xu,i, yu,i ∼ U [−1, 1], σu,i ∼ U [0.1, 0.3].

(14)
Our setup is exactly the same as the Poisson equation in B.1, except that the ground truth solution is
different, and the left differential operator is slightly different from simple Laplacian. We visualize
prediction solutions in Figure 12 and report errors and training time in Table 12.

B.4 DISCUSSION

From the three examples above, we conclude that KANs can produce reasonable performance for
PDE solving, but face a few challenges that should be addressed to make them competitive with
SOTA PDE methods: (1) Slow training. In the image fitting task, we find that KANs typically
have 2k more wall time than MLPs of same sizes, due to the recursive computation of splines.
However, the slowdown factor is even worse for PDE solving. Potential solutions include more
efficient computations of splines (e.g., pre-computing spline coefficients), or using other activation
functions (e.g., Fourier bases or radial basis functions) to avoid recursive evaluations. (2) Stability
at large depths and large grid sizes. In image fitting, we find that larger depths and larger grids lead
to better performance. However for PDEs, shallow but wide KANs typically perform better than
deep KANs. When grid size is small, increasing it can gain more accuracy; however, when grid size
reaches, say, 20, training can be totally messed up. Potential solutions include leveraging gating
mechanisms as in PirateNet (Wang et al., 2024a), adding residual connections (He et al., 2016), and
trying other regimes (e.g., deep Ritz method) instead of the PINN loss.

C MNIST
To test KANs’ scalability for high-dimensional datasets, we train KANs on MNIST. We normalize
the pixel values into [0,1], and flatten the 28x28 image into a 784-dimensional vector. We train
models (listed in Table 5) with the Adam optimizer (10−2 learning rate) for 2000 steps on the cross-
entropy loss, with batch size 1024. The whole training dataset (60000) and test dataset (10000) are
used to evaluate train/test loss/acc. We report these metrics in Table 5.

There are a few observations: (1) the shape [784,100,10] (1 hidden layer of size 100) is optimal both
for MLP and for KAN, which is an interesting observation. This seems to imply there is something
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universal across different architectures. (2) the effect of grid size: increasing grid size decreases
training loss (since it enhances fitting capability), however, the test metrics may get worse (e.g., for
[784,10]) or may get better (e.g., for [784,100,10]). Combined with (1), this seems to imply that
increasing grid size is beneficial when the shape of the network is correct but might be harmful
otherwise. (3) KANs and MLPs have comparable performance in terms of loss and accuracy. This
is probably because the MNIST dataset is too simple. KANs consume much more training time than
MLPs - Besides the 2k factor slowdown due to the recursive computation of order-k splines, grid
updates are also quite expensive due to the high-dimensional inputs. We expect these slowdown
factors to have straightforward solutions, and combining KANs with Convolutional neural networks
is a promising direction to incorporate symmetry inductive biases into architectures.

Model Train loss ↓ Test loss ↓ Train Acc ↑ Test Acc ↑ Time (s) ↓
KAN [784,10] G = 3 1.5× 10−1 2.8× 10−1 95.7% 93.0% 83.8
KAN [784,10] G = 5 9.9× 10−2 3.3× 10−1 97.0% 92.4% 96.8

KAN [784,10] G = 10 3.4× 10−2 4.4× 10−1 99.1% 91.7% 155.4
MLP [784,10] 2.3× 10−1 2.8× 10−1 93.7% 92.5% 5.8

KAN [784,10,10] G = 3 8.3× 10−2 2.2× 10−1 97.5% 94.5% 106.8
KAN [784,10,10] G = 5 4.0× 10−2 3.1× 10−1 98.7% 94.2% 121.8

KAN [784,10,10] G = 10 1.8× 10−2 3.7× 10−1 99.4% 94.2% 168.0
MLP [784,10,10] 1.6× 10−1 2.3× 10−1 95.1% 93.7% 6.3

KAN [784,100,10] G = 3 4.0× 10−2 2.0× 10−1 99.0% 97.4% 419.3
KAN [784,100,10] G = 5 5.6× 10−5 9.6× 10−2 100.0% 98.2% 435.9
KAN [784,100,10] G = 10 3.8× 10−5 9.2× 10−2 100.0% 98.2% 531.8

MLP [784,100,10] 3.5× 10−4 9.7× 10−2 100.0% 97.9% 8.3
KAN [784,100,100,10] G = 3 1.3× 10−2 1.8× 10−1 99.6% 97.6% 498.6
KAN [784,100,100,10] G = 5 1.6× 10−2 1.9× 10−1 99.5% 97.6% 551.1

KAN [784,100,100,10] G = 10 1.1× 10−2 2.0× 10−1 99.7% 97.5% 655.3
MLP [784,100,100,10] 1.0× 10−2 1.5× 10−1 99.7% 97.7% 9.6

KAN [784,100,100,100,10] G = 3 1.3× 10−2 1.8× 10−1 99.6% 97.8% 631.5
KAN [784,100,100,100,10] G = 5 1.9× 10−2 1.6× 10−1 99.4% 97.3% 643.6

KAN [784,100,100,100,10] G = 10 1.5× 10−2 1.6× 10−1 99.6% 97.4% 813.3
MLP [784,100,100,100,10] 1.8× 10−2 1.4× 10−1 99.6% 97.7% 11.0

Table 5: Comparing KANs and MLPs on MNIST

D HYPERPARAMETER SEARCH OF MLPS AND KANS

To help understand how hyper-parameters affect the comparison of KAN vs MLP performance,
we conduct a hyperparameter sweeping for the function fitting task f(x, y) = exp(sin(πx) + y2)
(randomly generated 1000 training and test samples from U [−1, 1]2). We sweep a few things below:

• Optimizer: Adam or LBFGS.

• Learning rate: For Adam, we choose learning rates from {10−4, 3 × 10−4, 10−3, 3 ×
10−3, 10−2}. For LBFGS, we choose learning rates from {10−2, 3 × 10−2, 10−1, 3 ×
10−1, 1}.

• Network width: 10 or 100.

• Network Depth: 2, 3, or 4.

When we use Adam, we train MLPs for 60000 steps and train KANs with 10000*6 steps (10000
steps for each grid size {3,5,10,20,50,100}). In Figure 13, we show the train/test losses for MLPs
(red) and KANs (green) under different conditions. We have a few observations: (1) learning rate
does not seem to play a big effect (except that large learning rates for Adam lead to more oscilla-
tions). (2) In terms of test performance, KANs outperform MLPs on shallow models (2 or 3 layers),
but are comparable for 4-layer models. (3) In terms of training performance, KANs can fit to much
lower losses than MLPs, both with LBFGS and Adam (despite wild oscillations for Adam, which
can probably be mitigated by learning rate decay). KANs are prone to “overfit”, which might be
good or bad depending on the context, i.e., we expect KANs to improve test performance with more
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training data, but we also expect KANs to have more performance degradation when data contains
noises.

Figure 13: Hyperparameter search for KANs and MLPs. Hyperparameters include depths, widths,
optimization methods, and learning rates.

E WHAT IF THE NETWORK HAS MORE LAYERS THAN NEEDED?

In Figure 2, we have demonstrated that when the KAN network has a depth smaller than needed, the
learned activation functions can be highly oscillatory, appearing to fit some non-smooth functions.
We are also curious about what happens if the network is deeper than needed. We consider fitting
a 2D function f(x, y) = exp(sin(πx) + y2). We know that a 2L KAN can smoothly represent
the function (Figure 14 left). When we attempt to fit the function with more layers (with sparsity
penalty), some edges would become (nearly) identities, shown for 3L (middle) and 4L (right). The
identity shortcuts are easy to form with linear residuals, while SiLU residuals can lead to a complex
network structure even under sparsity penalty. We suspect this is a pathology when depth becomes
larger, which we want to investigate in the future.
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Method lr = 1e-2 lr = 1e-1 lr = 1
train loss↓ test loss↓ train loss↓ test loss↓ train loss↓ test loss↓

MLP D=2, W=10 7.2× 10−2 7.7× 10−2 6.6× 10−2 7.1× 10−2 1.0× 10−1 1.0× 10−1

MLP D=2, W=100 5.1× 10−2 5.4× 10−2 4.9× 10−2 5.3× 10−2 3.1× 10−2 3.3× 10−2

MLP D=3, W=10 1.4× 10−2 1.4× 10−2 4.2× 10−3 4.5× 10−3 3.5× 10−3 3.6× 10−3

MLP D=3, W=100 8.1× 10−3 8.8× 10−3 5.5× 10−3 5.7× 10−3 2.5× 10−3 2.5× 10−3

MLP D=4, W=10 1.5× 10−2 1.7× 10−2 3.6× 10−3 3.8× 10−3 5.0× 10−3 5.2× 10−3

MLP D=4, W=100 2.4× 10−3 2.5× 10−3 1.4× 10−3 1.5× 10−3 1.6× 10−3 1.7× 10−3

KAN D=2, W=10 1.2× 10−5 2.0× 10−4 4.5× 10−6 2.5× 10−4 4.2× 10−6 2.7× 10−4

KAN D=2, W=100 7.3× 10−6 2.9× 10−4 4.2× 10−6 1.9× 10−4 1.3× 10−6 2.2× 10−4

KAN D=3, W=10 7.1× 10−6 8.0× 10−4 4.2× 10−6 4.3× 10−4 2.5× 10−6 3.6× 10−4

KAN D=3, W=100 2.0× 10−5 1.5× 10−3 5.6× 10−6 7.7× 10−4 8.8× 10−6 9.1× 10−4

KAN D=4, W=10 2.2× 10−5 5.4× 10−6 3.9× 10−6 2.4× 10−3 3.9× 10−6 2.4× 10−3

MLP D=4, W=100 8.2× 10−6 1.6× 10−3 8.4× 10−6 1.6× 10−3 2.7× 10−6 8.5× 10−4

Table 6: Results for the example: f(x, y) = exp(sin(πx + y2)) and the LBFGS optimizer. Grid
search width, depth, and learning rate.

Method lr = 1e-4 lr = 1e-3 lr = 1e-2
train loss↓ test loss↓ train loss↓ test loss↓ train loss↓ test loss↓

MLP D=2, W=10 1.6× 10−1 1.7× 10−1 4.6× 10−2 4.9× 10−2 4.7× 10−2 5.2× 10−2

MLP D=2, W=100 2.3× 10−2 2.4× 10−2 2.4× 10−2 2.6× 10−2 1.6× 10−2 1.7× 10−2

MLP D=3, W=10 4.1× 10−3 4.2× 10−3 3.4× 10−3 3.4× 10−3 4.1× 10−3 4.3× 10−3

MLP D=3, W=100 3.5× 10−3 4.1× 10−3 3.0× 10−3 3.9× 10−3 2.7× 10−3 4.0× 10−3

MLP D=4, W=10 3.4× 10−3 3.7× 10−3 2.1× 10−3 2.1× 10−3 1.5× 10−3 1.5× 10−3

MLP D=4, W=100 7.3× 10−4 8.3× 10−4 7.6× 10−4 9.2× 10−4 7.9× 10−4 9.4× 10−4

KAN D=2, W=10 2.4× 10−7 3.4× 10−4 2.4× 10−7 1.0× 10−4 2.2× 10−7 1.3× 10−4

KAN D=2, W=100 1.4× 10−7 2.0× 10−4 1.6× 10−7 3.1× 10−4 1.6× 10−7 4.8× 10−4

KAN D=3, W=10 1.5× 10−6 7.1× 10−3 2.1× 10−7 4.4× 10−3 3.2× 10−7 2.5× 10−3

KAN D=3, W=100 1.2× 10−7 8.2× 10−4 1.8× 10−7 1.2× 10−3 1.8× 10−7 1.7× 10−3

KAN D=4, W=10 2.2× 10−5 2.5× 10−2 2.8× 10−6 1.0× 10−2 5.6× 10−7 1.0× 10−2

KAN D=4, W=100 1.9× 10−7 3.2× 10−3 1.9× 10−7 2.5× 10−3 3.4× 10−7 2.7× 10−3

Table 7: Results for the example: f(x, y) = exp(sin(πx + y2)) and the Adam optimizer. Grid
search width, depth, and learning rate.

F EXISTENCE OF REDUNDANT NEURONS/EDGES WITH SMALL OR NO
SPARSITY PENALTY

In Figure 15, we show that sparsity penalty strength λ controls the number of redundant neurons.
When λ = 0, all five neurons appear to be active, with a few neurons/edges appearing to be highly
similar. When λ = 0.001, only two neurons are active and they appear almost identical (except that
they differ by a minus sign). When λ = 0.1, there is only one active neuron in the hidden layer
hence there is no redundant neuron.

G THE NECESSITY OF SKIP CONNECTIONS

In Figure 16, we show the necessity of using skip connections, i.e., the learnable function f(x) =
b(x)+spline(x) with non-zero b(x). By default we choose b(x) = SiLU(x). To test the necessity of
such a b(x), we use a simple 2D function regression task f(x, y) = exp(sin(πx)+y2). [2,1,1] KANs
(G = 10) are trained with the LBFGS optimizer with samples drawn from U [−1, 1]2 (1000 training
and 1000 test samples). We visualize KANs at step 10: KANs using SiLU and linear residual
connections have already learned the correct representation, while KANs without skip connections
still struggle to learn the correct representations.

The intuition is: since B-splines are piecewise polynomials, they behave like order-k polynomials
locally. When KANs become deeper (layer L) without skip connections, the function would become

25



Published as a conference paper at ICLR 2025

Figure 14: Fitting a 2D function f(x, y) = exp(sin(πx) + y2). We know that a 2L KAN can
smoothly represent the function (left). When we attempt to fit the function with more layers (with
sparsity penalty), some edges would become (nearly) identities, shown for 3L (middle) and 4L
(right). The identity shortcuts are easy to form with linear residuals, while SiLU residuals can lead
to a complex network structure even under sparsity penalty.

Figure 15: Existence of redundant neurons/edges with small or no sparsity penalty. λ is the sparsity
penalty strength.

order-kL polynomials which is quite pathological (it is known that high-order polynomials have
bad numerical properties). By including the skip connections, the function can have low-order
polynomial components by leveraging the skip connections.

Figure 16: Skip connections (either SiLU or linear) make training landscapes smoother, leading to
faster training. The visualizations are for KANs at step 10.
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H THE NECESSITY OF GRID EXTENSIONS

One may ask: why don’t we just use the large grid size from scratch, instead of using a small grid
size first and then do grid extension? In Figure 17, we show that a KAN with a large grid size
can easily get stuck at local minima (probably due to a bad loss landscape). By contrast, a well-
initialized KAN with a large grid size (obtained by grid extension from smaller grid sizes) does not
have such a problem. With grid extension: we train the model starting from G = 3 for 50 steps with
LBFGS, and then we do grid extension to increase G to be 5, 10, 20 (each grid is trained for another
50 steps). Without grid extension: The KAN is initialized to have G = 20 and is trained for 200
steps.

Figure 17: Grid extension is needed to avoid bad loss landscapes when initial grid sizes are large.

I IMPLEMENTATION DETAILS OF KAN

Figure 18: Left: Notations of activations that flow through the network. Right: an activation function
is parameterized as a B-spline, which allows switching between coarse-grained and fine-grained
grids.

Implementation details. Although a KAN layer Eq. (5) looks extremely simple, it is non-trivial to
make it well optimizable. The key tricks are:

(1) Residual activation functions. We include a basis function b(x) (similar to residual connec-
tions) such that the activation function ϕ(x) is the sum of the basis function b(x) and the spline
function:

ϕ(x) = wbb(x) + wsspline(x). (15)

We set

b(x) = silu(x) = x/(1 + e−x) (16)
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in most cases. spline(x) is parametrized as a linear combination of B-splines such that

spline(x) =
∑
i

ciBi(x) (17)

where cis are trainable (see Figure 18 for an illustration). In principle wb and ws are redundant
since it can be absorbed into b(x) and spline(x). However, we still include these factors (which
are by default trainable) to better control the overall magnitude of the activation function.

(2) Initialization scales. Each activation function is initialized to have ws = 1 and spline(x) ≈ 0 2.
wb is initialized according to the Xavier initialization, which has been used to initialize linear
layers in MLPs.

(3) Update of spline grids. We update each grid on the fly according to its input activations, to
address the issue that splines are defined on bounded regions but activation values can evolve
out of the fixed region during training 3 Grid updates (grid size G1 → G1) use the same least
square method as grid extensions (grid size G1 → G2 > G1), as detailed in L.

Parameter count. For simplicity, let us assume a network

(1) of depth L,

(2) with layers of equal width n0 = n1 = · · · = nL = N ,

(3) with each spline of order k (usually k = 3) on G intervals (for G+ 1 grid points).

Then there are in total O(N2L(G + k)) ∼ O(N2LG) parameters. In contrast, an MLP with depth
L and width N only needs O(N2L) parameters, which appears to be more efficient than KAN.
Fortunately, KANs usually require much smaller N than MLPs, which not only saves parameters,
but also achieves better generalization (see e.g., Figure 5 and 8) and facilitates interpretability. We
remark that for 1D problems, we can take N = L = 1 and the KAN network in our implementation
is nothing but a spline approximation. For higher dimensions, we characterize the generalization
behavior of KANs with a theorem below.

J PROOF OF THEOREM 2.1

Proof. By the classical 1D B-spline theory De Boor (1978) and the fact that Φl,i,j as continuous
functions can be uniformly bounded on a bounded domain, we know that there exist finite-grid
B-spline functions ΦG

l,i,j such that for any 0 ≤ m ≤ k,

∥(Φl,i,j◦Φl−1◦Φl−2◦· · ·◦Φ1◦Φ0)x−(ΦG
l,i,j◦Φl−1◦Φl−2◦· · ·◦Φ1◦Φ0)x∥Cm ≤ C0G

−k−1+m ,

with a constant C0 independent ofG. We fix those B-spline approximations. Therefore we have that
the residue Rl defined via

Rl := (ΦG
L−1 ◦ · · · ◦ΦG

l+1 ◦Φl ◦Φl−1 ◦ · · · ◦Φ0)x− (ΦG
L−1 ◦ · · · ◦ΦG

l+1 ◦ΦG
l ◦Φl−1 ◦ · · · ◦Φ0)x

satisfies
∥Rl∥Cm ≤ C1G

−k−1+m ,

with another constant independent of G. Finally notice that

f − (ΦG
L−1 ◦ΦG

L−2 ◦ · · · ◦ΦG
1 ◦ΦG

0 )x = RL−1 +RL−2 + · · ·+R1 +R0 ,

we know that (11) holds for another constant C independent of G.

Remark: We can be more precise about the dependence of the constant C in the theorem. Define
the compositionally smooth function class Cn,W,L,kas the class of functions in the form of (10) such
that the input dimension equals n, the width or max0≤i≤L ni in the definition (3) equals W ≥ n,
depth equals L, smoothness equals k. Then C only depends on W,L, k and max ∥ϕl,i,j∥Cm .
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Paper Idea Scaling exponent α
Sharma & Kaplan Sharma & Kaplan (2020) Intrinsic dimensionality (k + 1)/d

Michaud et al. Michaud et al. (2023b) maximum arity (k + 1)/2
Poggio et al. Poggio et al. (2020) compositional sparsity m/2

Ours K-A representation k + 1

Table 8: Scaling exponents from different theories ℓ ∝ N−α. ℓ: test RMSE loss, N : number of
model parameters, d: input intrinsic dimension, k: order of piecewise polynomial, m: derivative
order as in function class Wm.

K NEURAL SCALING LAWS

We remark that although the Kolmogorov-Arnold theorem Eq. (1) corresponds to a KAN represen-
tation with shape [d, 2d+1, 1], its functions are not necessarily smooth. On the other hand, if we are
able to identify a smooth representation (maybe at the cost of extra layers or making the KAN wider
than the theory prescribes), then Theorem 2.1 indicates that we can beat the curse of dimensionality
(COD). This should not come as a surprise since we can inherently learn the structure of the function
and make our finite-sample KAN approximation interpretable.

Neural scaling laws: comparison to other theories. Neural scaling laws are the phenomenon
where test loss decreases with more model parameters, i.e., ℓ ∝ N−α where ℓ is test RMSE, N is
the number of parameters, and α is the scaling exponent. A larger α promises more improvement
by simply scaling up the model. Different theories have been proposed to predict α. Sharma &
Kaplan Sharma & Kaplan (2020) suggest that α comes from data fitting on an input manifold of
intrinsic dimensionality d. If the model function class is piecewise polynomials of order k (k = 1
for ReLU), then the standard approximation theory implies α = (k + 1)/d from the approximation
theory. This bound suffers from the curse of dimensionality, so people have sought other bounds
independent of d by leveraging compositional structures. In particular, Michaud et al. Michaud
et al. (2023b) considered computational graphs that only involve unary (e.g., squared, sine, exp) and
binary (+ and ×) operations, finding α = (k + 1)/d∗ = (k + 1)/2, where d∗ = 2 is the maximum
arity. Poggio et al. Poggio et al. (2020) leveraged the idea of compositional sparsity and proved
that given function class Wm (function whose derivatives are continuous up to m-th order), one
needs N = O(ϵ−

2
m ) number of parameters to achieve error ϵ, which is equivalent to α = m

2 . Our
approach, which assumes the existence of smooth Kolmogorov-Arnold representations, decomposes
the high-dimensional function into several 1D functions, giving α = k+1 (where k is the piecewise
polynomial order of the splines). We choose k = 3 cubic splines so α = 4 which is the largest and
best scaling exponent compared to other works. We will show in Section 4 toy datasets that this
bound α = 4 can in fact be achieved empirically with KANs, while previous work Michaud et al.
(2023b) reported that MLPs have problems even saturating slower bounds (e.g., α = 1) and plateau
quickly. Of course, we can increase k to match the smoothness of functions, but too high k might
be too oscillatory, leading to optimization issues.

Comparison between KAT and UAT. The power of fully-connected neural networks is justified by
the universal approximation theorem (UAT), which states that given a function and error tolerance
ϵ > 0, a two-layer network with k > N(ϵ) neurons can approximate the function within error ϵ.
However, the UAT guarantees no bound for how N(ϵ) scales with ϵ. Indeed, it suffers from the
COD, and N has been shown to grow exponentially with d in some cases Lin et al. (2017). The
difference between KAT and UAT is a consequence that KANs take advantage of the intrinsically
low-dimensional representation of the function while MLPs do not. In KAT, we highlight quantify-
ing the approximation error in the compositional space. In the literature, generalization error bounds,
taking into account finite samples of training data, for a similar space have been studied for regres-
sion problems; see Horowitz & Mammen (2007); Kohler & Langer (2021), and also specifically
for MLPs with ReLU activations Schmidt-Hieber (2020). On the other hand, for general function
spaces like Sobolev or Besov spaces, the nonlinear n-widths theory DeVore et al. (1989; 1993);

2This is done by drawing B-spline coefficients ci ∼ N (0, σ2) with a small σ, typically we set σ = 0.1.
3Other possibilities are: (a) the grid is learnable with gradient descent, e.g., Xu et al. (2015); (b) use nor-

malization such that the input range is fixed. We tried (b) at first but its performance is inferior to our current
approach.
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Siegel (2024) indicates that we can never beat the curse of dimensionality, while MLPs with ReLU
activations can achieve the tight rate Yarotsky (2017); Bartlett et al. (2019); Siegel (2023). This
fact again motivates us to consider functions of compositional structure, the much "nicer" functions
that we encounter in practice and in science, to overcome the COD. Compared with MLPs, we may
use a smaller architecture in practice, since we learn general nonlinear activation functions; see also
Schmidt-Hieber (2020) where the depth of the ReLU MLPs needs to reach at least log n to have the
desired rate, where n is the number of samples. Indeed, we will show that KANs are nicely aligned
with symbolic functions while MLPs are not.

L DETAILS OF GRID EXTENSION
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Fitting f(x, y) = exp(sin( x) + y2)

Figure 19: We can make KANs more accurate by grid extension (fine-graining spline grids). Top
left (right): training dynamics of a [2, 5, 1] ([2, 1, 1]) KAN. Both models display staircases in their
loss curves, i.e., loss suddently drops then plateaus after grid extension. Bottom left: test RMSE
follows scaling laws against grid size G. Bottom right: training time scales favorably with grid size
G.

We next describe how to perform grid extension (illustrated in Figure 18 right), which is basi-
cally fitting a new fine-grained spline to an old coarse-grained spline. Suppose we want to ap-
proximate a 1D function f in a bounded region [a, b] with B-splines of order k. A coarse-grained
grid with G1 intervals has grid points at {t0 = a, t1, t2, · · · , tG1 = b}, which is augmented to
{t−k, · · · , t−1, t0, · · · , tG1 , tG1+1, · · · , tG1+k}. There are G1 + k B-spline basis functions, with
the ith B-spline Bi(x) being non-zero only on [t−k+i, ti+1] (i = 0, · · · , G1 + k − 1). Then f
on the coarse grid is expressed in terms of linear combination of these B-splines basis functions
fcoarse(x) =

∑G1+k−1
i=0 ciBi(x). Given a finer grid with G2 intervals, f on the fine grid is cor-

respondingly ffine(x) =
∑G2+k−1

j=0 c′jB
′
j(x). The parameters c′js can be initialized from the pa-

rameters ci by minimizing the distance between ffine(x) to fcoarse(x) (over some distribution of
x):

{c′j} = argmin
{c′j}

E
x∼p(x)

G2+k−1∑
j=0

c′jB
′
j(x)−

G1+k−1∑
i=0

ciBi(x)

2

, (18)

which can be implemented by the least squares algorithm. We perform grid extension for all splines
in a KAN independently.

Complexity of grid extension Suppose we have batch size B, the number of evaluations to create
the “supervised” dataset is O(G1B). The least-square problem requires the number of operations

30



Published as a conference paper at ICLR 2025

O(G2
2B) since it is a singular-value decomposition and typicallyB > G2. This analysis also applies

to grid refinements, only by setting G2 = G1.

Toy example: staircase-like loss curves. We use a toy example f(x, y) = exp(sin(πx) + y2) to
demonstrate the effect of grid extension. In Figure 19 (top left), we show the train and test RMSE for
a [2, 5, 1] KAN. The number of grid points starts as 3, increases to a higher value every 200 LBFGS
steps, ending up with 1000 grid points. It is clear that every time fine graining happens, the training
loss drops faster than before (except for the finest grid with 1000 points, where optimization ceases
to work probably due to bad loss landscapes). However, the test losses first go down then go up,
displaying a U-shape, due to the bias-variance tradeoff (underfitting vs. overfitting). We conjecture
that the optimal test loss is achieved at the interpolation threshold when the number of parameters
match the number of data points. Since our training samples are 1000 and the total parameters of a
[2, 5, 1] KAN is 15G (G is the number of grid intervals), we expect the interpolation threshold to be
G = 1000/15 ≈ 67, which roughly agrees with our experimentally observed value G ∼ 50.

Small KANs generalize better. Is this the best test performance we can achieve? Notice that the
synthetic task can be represented exactly by a [2, 1, 1] KAN, so we train a [2, 1, 1] KAN and present
the training dynamics in Figure 19 top right. Interestingly, it can achieve even lower test losses
than the [2, 5, 1] KAN, with clearer staircase structures and the interpolation threshold is delayed
to a larger grid size as a result of fewer parameters. This highlights a subtlety of choosing KAN
architectures. If we do not know the problem structure, how can we determine the minimal KAN
shape? In Section 2.4, we will propose a method to auto-discover such minimal KAN architecture
via regularization and pruning.

Scaling laws: comparison with theory. We are also interested in how the test loss decreases as the
number of grid parameters increases. In Figure 19 (bottom left), a [2,1,1] KAN scales roughly as
test RMSE ∝ G−3. However, according to the Theorem 2.1, we would expect test RMSE ∝ G−4.
We found that the errors across samples are not uniform. This is probably attributed to boundary
effects Michaud et al. (2023b). In fact, there are a few samples that have significantly larger errors
than others, making the overall scaling slow down. If we plot the square root of the median (not
mean) of the squared losses, we get a scaling closer to G−4. Despite this suboptimality (probably
due to optimization), KANs still have much better scaling laws than MLPs, for data fitting (Figure 5)
and PDE solving (Figure 8). In addition, the training time scales favorably with the number of grid
points G, shown in Figure 19 bottom right 4.

External vs Internal degrees of freedom. A new concept that KANs highlights is a distinction
between external versus internal degrees of freedom (parameters). The computational graph of how
nodes are connected represents external degrees of freedom (“dofs”), while the grid points inside
an activation function are internal degrees of freedom. KANs benefit from the fact that they have
both external dofs and internal dofs. External dofs (that MLPs also have but splines do not) are
responsible for learning compositional structures of multiple variables. Internal dofs (that splines
also have but MLPs do not) are responsible for learning univariate functions.

M TECHNIQUES FOR INCREASING INTERPRETABILITY

M.1 SIMPLIFICATION TECHNIQUES

1. Sparsification. For MLPs, L1 regularization of linear weights is used to favor sparsity. KANs
can adapt this high-level idea, but need two modifications:

(1) There is no linear “weight” in KANs. Linear weights are replaced by learnable activation func-
tions, so we should define the L1 norm of these activation functions.

(2) We find L1 to be insufficient for sparsification of KANs; instead an additional entropy regular-
ization is necessary (see Appendix W for more details).

4When G = 1000, training becomes significantly slower, which is specific to the use of the LBFGS opti-
mizer with line search. We conjecture that the loss landscape becomes bad for G = 1000, so line search with
trying to find an optimal step size within maximal iterations without early stopping.

31



Published as a conference paper at ICLR 2025

We define the L1 norm of an activation function ϕ to be its average magnitude over its Np inputs,
i.e.,

|ϕ|1 ≡ 1

Np

Np∑
s=1

∣∣∣ϕ(x(s))∣∣∣ . (19)

Then for a KAN layer Φ with nin inputs and nout outputs, we define the L1 norm of Φ to be the
sum of L1 norms of all activation functions, i.e.,

|Φ|1 ≡
nin∑
i=1

nout∑
j=1

|ϕi,j |1 . (20)

In addition, we define the entropy of Φ to be

S(Φ) ≡ −
nin∑
i=1

nout∑
j=1

|ϕi,j |1
|Φ|1

log

(
|ϕi,j |1
|Φ|1

)
. (21)

The total training objective ℓtotal is the prediction loss ℓpred plus L1 and entropy regularization of
all KAN layers:

ℓtotal = ℓpred + λ

(
µ1

L−1∑
l=0

|Φl|1 + µ2

L−1∑
l=0

S(Φl)

)
, (22)

where µ1, µ2 are relative magnitudes usually set to µ1 = µ2 = 1, and λ controls overall regulariza-
tion magnitude.

2. Visualization. When we visualize a KAN, to get a sense of magnitudes, we set the transparency
of an activation function ϕl,i,j proportional to tanh(βAl,i,j) where β = 3 . Hence, functions with
small magnitude appear faded out to allow us to focus on important ones.

3. Pruning. After training with sparsification penalty, we may also want to prune the network to a
smaller subnetwork. We sparsify KANs on the node level (rather than on the edge level). For each
node (say the ith neuron in the lth layer), we define its incoming and outgoing score as

Il,i = max
k

(|ϕl−1,k,i|1), Ol,i = max
j

(|ϕl+1,j,i|1), (23)

and consider a node to be important if both incoming and outgoing scores are greater than a threshold
hyperparameter θ = 10−2 by default. All unimportant neurons are pruned.

4. Symbolification. In cases where we suspect that some activation functions are in fact sym-
bolic (e.g., cos or log), we provide an interface to set them to be a specified symbolic form,
fix_symbolic(l,i,j,f) can set the (l, i, j) activation to be f . However, we cannot sim-
ply set the activation function to be the exact symbolic formula, since its inputs and outputs may
have shifts and scalings. So, we obtain preactivations x and postactivations y from samples, and
fit affine parameters (a, b, c, d) such that y ≈ cf(ax + b) + d. The fitting is done by iterative grid
search of a, b and linear regression.

Besides these techniques, we provide additional tools that allow users to apply more fine-grained
control to KANs, listed in Appendix V.

M.2 A TOY EXAMPLE: HOW HUMANS CAN INTERACT WITH KANS

Above we have proposed a number of simplification techniques for KANs. We can view these
simplification choices as buttons one can click on. A user interacting with these buttons can decide
which button is most promising to click next to make KANs more interpretable. We use an example
below to showcase how a user could interact with a KAN to obtain maximally interpretable results.

Let us again consider the regression task

f(x, y) = exp
(
sin(πx) + y2

)
. (24)

Given data points (xi, yi, fi), i = 1, 2, · · · , Np, a hypothetical user Alice is interested in figuring
out the symbolic formula. The steps of Alice’s interaction with the KANs are described below
(illustrated in Figure 20):
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Figure 20: An example of how to do symbolic regression with KAN.

Step 1: Training with sparsification. Starting from a fully-connected [2, 5, 1] KAN, training with
sparsification regularization can make it quite sparse. 4 out of 5 neurons in the hidden layer appear
useless, hence we want to prune them away.

Step 2: Pruning. Automatic pruning is seen to discard all hidden neurons except the last one,
leaving a [2, 1, 1] KAN. The activation functions appear to be known symbolic functions.

Step 3: Setting symbolic functions. Assuming that the user can correctly guess these symbolic
formulas from staring at the KAN plot, they can set

fix_symbolic(0,0,0,‘sin’)

fix_symbolic(0,1,0,‘xˆ2’)

fix_symbolic(1,0,0,‘exp’).

(25)

In case the user has no domain knowledge or no idea which symbolic functions these activation
functions might be, we provide a function suggest_symbolic to suggest symbolic candidates.

Step 4: Further training. After symbolifying all the activation functions in the network, the only
remaining parameters are the affine parameters. We continue training these affine parameters, and
when we see the loss dropping to machine precision, we know that we have found the correct sym-
bolic expression.

Step 5: Output the symbolic formula. Sympy is used to compute the symbolic formula of the
output node. The user obtains 1.0e1.0y

2+1.0sin(3.14x), which is the true answer (we only displayed
two decimals for π).

N ACCURACY: TOY SYMBOLIC DATASETS

We train these KANs by increasing grid points every 200 steps, in total covering G =
{3, 5, 10, 20, 50, 100, 200, 500, 1000}. We train MLPs with different depths and widths as base-
lines. Both MLPs and KANs are trained with LBFGS for 1800 steps in total. We plot test RMSE as
a function of the number of parameters for KANs and MLPs in Figure 5, showing that KANs have
better scaling curves than MLPs, especially for the high-dimensional example. For comparison, we
plot the lines predicted from our KAN theory as red dashed (α = k+1 = 4), and the lines predicted
from Sharma & Kaplan Sharma & Kaplan (2020) as black-dashed (α = (k + 1)/d = 4/d). KANs
can almost saturate the steeper red lines, while MLPs struggle to converge even as fast as the slower
black lines and plateau quickly. We also note that for the last example, the 2-Layer KAN [4, 9, 1] be-
haves much worse than the 3-Layer KAN (shape [4, 2, 2, 1]). This highlights the greater expressive
power of deeper KANs, which is the same for MLPs: deeper MLPs have more expressive power
than shallower ones. Note that we have adopted the vanilla setup where both KANs and MLPs are
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Name scipy.special API Minimal KAN shape
test RMSE < 10−2 Minimal KAN test RMSE Best KAN shape Best KAN test RMSE MLP test RMSE

Jacobian elliptic functions ellipj(x, y) [2,2,1] 7.29× 10−3 [2,3,2,1,1,1] 1.33× 10−4 6.48× 10−4

Incomplete elliptic integral of the first kind ellipkinc(x, y) [2,2,1,1] 1.00× 10−3 [2,2,1,1,1] 1.24× 10−4 5.52× 10−4

Incomplete elliptic integral of the second kind ellipeinc(x, y) [2,2,1,1] 8.36× 10−5 [2,2,1,1] 8.26× 10−5 3.04× 10−4

Bessel function of the first kind jv(x, y) [2,2,1] 4.93× 10−3 [2,3,1,1,1] 1.64× 10−3 5.52× 10−3

Bessel function of the second kind yv(x, y) [2,3,1] 1.89× 10−3 [2,2,2,1] 1.49× 10−5 3.45× 10−4

Modified Bessel function of the second kind kv(x, y) [2,1,1] 4.89× 10−3 [2,2,1] 2.52× 10−5 1.67× 10−4

Modified Bessel function of the first kind iv(x, y) [2,4,3,2,1,1] 9.28× 10−3 [2,4,3,2,1,1] 9.28× 10−3 1.07× 10−2

Associated Legendre function (m = 0) lpmv(0, x, y) [2,2,1] 5.25× 10−5 [2,2,1] 5.25× 10−5 1.74× 10−2

Associated Legendre function (m = 1) lpmv(1, x, y) [2,4,1] 6.90× 10−4 [2,4,1] 6.90× 10−4 1.50× 10−3

Associated Legendre function (m = 2) lpmv(2, x, y) [2,2,1] 4.88× 10−3 [2,3,2,1] 2.26× 10−4 9.43× 10−4

spherical harmonics (m = 0, n = 1) sph_harm(0, 1, x, y) [2,1,1] 2.21× 10−7 [2,1,1] 2.21× 10−7 1.25× 10−6

spherical harmonics (m = 1, n = 1) sph_harm(1, 1, x, y) [2,2,1] 7.86× 10−4 [2,3,2,1] 1.22× 10−4 6.70× 10−4

spherical harmonics (m = 0, n = 2) sph_harm(0, 2, x, y) [2,1,1] 1.95× 10−7 [2,1,1] 1.95× 10−7 2.85× 10−6

spherical harmonics (m = 1, n = 2) sph_harm(1, 2, x, y) [2,2,1] 4.70× 10−4 [2,2,1,1] 1.50× 10−5 1.84× 10−3

spherical harmonics (m = 2, n = 2) sph_harm(2, 2, x, y) [2,2,1] 1.12× 10−3 [2,2,3,2,1] 9.45× 10−5 6.21× 10−4

Table 9: Special functions

trained with LBFGS without advanced techniques, e.g., switching between Adam and LBFGS, or
boosting Wang & Lai (2024). We leave the comparison of KANs and MLPs in advanced setups for
future work.

O ACCURACY: SPECIAL FUNCTIONS

We choose MLPs with fixed width 5 or 100 and depths swept in {2, 3, 4, 5, 6}. We run KANs both
with and without pruning. KANs without pruning: We fix the shape of KAN, whose width are
set to 5 and depths are swept in {2,3,4,5,6}. KAN with pruning. We use the sparsification (λ =
10−2 or 10−3) and pruning technique in Section M.1 to obtain a smaller KAN pruned from a fixed-
shape KAN. Each KAN is initialized to have G = 3, trained with LBFGS, with increasing number
of grid points every 200 steps to cover G = {3, 5, 10, 20, 50, 100, 200}. For each hyperparameter
combination, we run 3 random seeds.

For each dataset and each model family (KANs or MLPs), we plot the Pareto frontier 5, in the
(number of parameters, RMSE) plane, shown in Figure 6. KANs’ performance is shown to be con-
sistently better than MLPs, i.e., KANs can achieve lower training/test losses than MLPs, given the
same number of parameters. Moreover, we report the (surprisingly compact) shapes of our auto-
discovered KANs for special functions in Table 9. On one hand, it is interesting to interpret what
these compact representations mean mathematically. On the other hand, these compact representa-
tions imply the possibility of breaking down a high-dimensional lookup table into several 1D lookup
tables, which can potentially save a lot of memory, with the (almost negligible) overhead to perform
a few additions at inference time.

P ACCURACY: FEYNMAN DATASETS

Feynman datasets Given the structure of the dataset, we may construct KANs by hand, but can
KANs find more compact representations? The Feynman dataset Udrescu & Tegmark (2020);
Udrescu et al. (2020), consisting of symbolic equations in physics, is a good testbed. We find
that KAN shapes discovered by pruning are usually smaller than human-constructed KAN shapes,
with comparable accuracy. Here we focus on a sample equation called the relativistic velocity addi-
tion formula f(u, v) = (u + v)/(1 + uv). We can manually construct a 5-Layer KAN to compute
this function, considering the resources required by two multiplications, one inversion and two ad-
ditions. However, the auto-discovered KANs are only 2 layers deep! In hindsight, this is actually
expected if we recall the rapidity trick in relativity: define the two “rapidities” a ≡ arctanh u and
b ≡ arctanh v. The relativistic composition of velocities are simple additions in rapidity space, i.e.,
u+v
1+uv = tanh(arctanh u+ arctanh v), which can be realized by a two-layer KAN.

We compare four kinds of neural networks:

5Pareto frontier is defined as fits that are optimal in the sense of no other fit being both simpler and more
accurate.
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Feynman Eq. Original Formula Dimensionless formula Variables Human-constructed
KAN shape

Pruned
KAN shape

(smallest shape
that achieves

RMSE < 10−2)

Pruned
KAN shape
(lowest loss)

Human-constructed
KAN loss

(lowest test RMSE)

Pruned
KAN loss

(lowest test RMSE)

Unpruned
KAN loss

(lowest test RMSE)

MLP
loss

(lowest test RMSE)

I.6.2 exp(− θ2

2σ2 )/
√
2πσ2 exp(− θ2

2σ2 )/
√
2πσ2 θ, σ [2,2,1,1] [2,2,1] [2,2,1,1] 7.66× 10−5 2.86× 10−5 4.60× 10−5 1.45× 10−4

I.6.2b exp(− (θ−θ1)
2

2σ2 )/
√
2πσ2 exp(− (θ−θ1)

2

2σ2 )/
√
2πσ2 θ, θ1, σ [3,2,2,1,1] [3,4,1] [3,2,2,1,1] 1.22× 10−3 4.45× 10−4 1.25× 10−3 7.40× 10−4

I.9.18 Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2
a

(b−1)2+(c−d)2+(e−f)2 a, b, c, d, e, f [6,4,2,1,1] [6,4,1,1] [6,4,1,1] 1.48× 10−3 8.62× 10−3 6.56× 10−3 1.59× 10−3

I.12.11 q(Ef +Bvsinθ) 1 + asinθ a, θ [2,2,2,1] [2,2,1] [2,2,1] 2.07× 10−3 1.39× 10−3 9.13× 10−4 6.71× 10−4

I.13.12 Gm1m2(
1
r2

− 1
r1
) a( 1b − 1) a, b [2,2,1] [2,2,1] [2,2,1] 7.22× 10−3 4.81× 10−3 2.72× 10−3 1.42× 10−3

I.15.3x x−ut√
1−(u

c )
2

1−a√
1−b2

a, b [2,2,1,1] [2,1,1] [2,2,1,1,1] 7.35× 10−3 1.58× 10−3 1.14× 10−3 8.54× 10−4

I.16.6 u+v
1+uv

c2

a+b
1+ab a, b [2,2,2,2,2,1] [2,2,1] [2,2,1] 1.06× 10−3 1.19× 10−3 1.53× 10−3 6.20× 10−4

I.18.4 m1r1+m2r2
m1+m2

1+ab
1+a a, b [2,2,2,1,1] [2,2,1] [2,2,1] 3.92× 10−4 1.50× 10−4 1.32× 10−3 3.68× 10−4

I.26.2 arcsin(nsinθ2) arcsin(nsinθ2) n, θ2 [2,2,2,1,1] [2,2,1] [2,2,2,1,1] 1.22× 10−1 7.90× 10−4 8.63× 10−4 1.24× 10−3

I.27.6 1
1
d1

+ n
d2

1
1+ab a, b [2,2,1,1] [2,1,1] [2,1,1] 2.22× 10−4 1.94× 10−4 2.14× 10−4 2.46× 10−4

I.29.16
√
x21 + x22 − 2x1x2cos(θ1 − θ2)

√
1 + a2 − 2acos(θ1 − θ2) a, θ1, θ2 [3,2,2,3,2,1,1] [3,2,2,1] [3,2,3,1] 2.36× 10−1 3.99× 10−3 3.20× 10−3 4.64× 10−3

I.30.3 I∗,0
sin2(nθ

2 )

sin2( θ
2 )

sin2(nθ
2 )

sin2( θ
2 )

n, θ [2,3,2,2,1,1] [2,4,3,1] [2,3,2,3,1,1] 3.85× 10−1 1.03× 10−3 1.11× 10−2 1.50× 10−2

I.30.5 arcsin( λ
nd ) arcsin( an ) a, n [2,1,1] [2,1,1] [2,1,1,1,1,1] 2.23× 10−4 3.49× 10−5 6.92× 10−5 9.45× 10−5

I.37.4 I∗ = I1 + I2 + 2
√
I1I2cosδ 1 + a+ 2

√
acosδ a, δ [2,3,2,1] [2,2,1] [2,2,1] 7.57× 10−5 4.91× 10−6 3.41× 10−4 5.67× 10−4

I.40.1 n0exp(−mgx
kbT

) n0e
−a n0, a [2,1,1] [2,2,1] [2,2,1,1,1,2,1] 3.45× 10−3 5.01× 10−4 3.12× 10−4 3.99× 10−4

I.44.4 nkbT ln(
V2

V1
) nlna n, a [2,2,1] [2,2,1] [2,2,1] 2.30× 10−5 2.43× 10−5 1.10× 10−4 3.99× 10−4

I.50.26 x1(cos(ωt) + αcos2(wt)) cosa+ αcos2a a, α [2,2,3,1] [2,3,1] [2,3,2,1] 1.52× 10−4 5.82× 10−4 4.90× 10−4 1.53× 10−3

II.2.42 k(T2−T1)A
d (a− 1)b a, b [2,2,1] [2,2,1] [2,2,2,1] 8.54× 10−4 7.22× 10−4 1.22× 10−3 1.81× 10−4

II.6.15a 3
4πϵ

pdz
r5

√
x2 + y2 1

4π c
√
a2 + b2 a, b, c [3,2,2,2,1] [3,2,1,1] [3,2,1,1] 2.61× 10−3 3.28× 10−3 1.35× 10−3 5.92× 10−4

II.11.7 n0(1 +
pdEf cosθ

kbT
) n0(1 + acosθ) n0, a, θ [3,3,3,2,2,1] [3,3,1,1] [3,3,1,1] 7.10× 10−3 8.52× 10−3 5.03× 10−3 5.92× 10−4

II.11.27 nα
1−nα

3
ϵEf

nα
1−nα

3
n, α [2,2,1,2,1] [2,1,1] [2,2,1] 2.67× 10−5 4.40× 10−5 1.43× 10−5 7.18× 10−5

II.35.18 n0

exp(µmB
kbT

)+exp(−µmB
kbT

)

n0

exp(a)+exp(−a) n0, a [2,1,1] [2,1,1] [2,1,1,1] 4.13× 10−4 1.58× 10−4 7.71× 10−5 7.92× 10−5

II.36.38 µmB
kbT

+ µmαM
ϵc2kbT

a+ αb a, α, b [3,3,1] [3,2,1] [3,2,1] 2.85× 10−3 1.15× 10−3 3.03× 10−3 2.15× 10−3

II.38.3 Y Ax
d

a
b a, b [2,1,1] [2,1,1] [2,2,1,1,1] 1.47× 10−4 8.78× 10−5 6.43× 10−4 5.26× 10−4

III.9.52 pdEf

h
sin2((ω−ω0)t/2)
((ω−ω0)t/2)2

a
sin2( b−c

2 )

( b−c
2 )2

a, b, c [3,2,3,1,1] [3,3,2,1] [3,3,2,1,1,1] 4.43× 10−2 3.90× 10−3 2.11× 10−2 9.07× 10−4

III.10.19 µm

√
B2

x +B2
y +B2

z

√
1 + a2 + b2 a, b [2,1,1] [2,1,1] [2,1,2,1] 2.54× 10−3 1.18× 10−3 8.16× 10−4 1.67× 10−4

III.17.37 β(1 + αcosθ) β(1 + αcosθ) α, β, θ [3,3,3,2,2,1] [3,3,1] [3,3,1] 1.10× 10−3 5.03× 10−4 4.12× 10−4 6.80× 10−4

Table 10: Feynman dataset

(1) Human-constructued KAN. Given a symbolic formula, we rewrite it in Kolmogorov-Arnold
representations. For example, to multiply two numbers x and y, we can use the identity xy =
(x+y)2

4 − (x−y)2

4 , which corresponds to a [2, 2, 1] KAN. The constructued shapes are listed in
the “Human-constructed KAN shape” in Table 10.

(2) KANs without pruning. We fix the KAN shape to width 5 and depths are swept over {2,3,4,5,6}.

(3) KAN with pruning. We use the sparsification (λ = 10−2 or 10−3) and the pruning technique
from Section M.1 to obtain a smaller KAN from a fixed-shape KAN from (2).

(4) MLPs with fixed width 20, depths swept in {2, 3, 4, 5, 6}, and activations chosen from
{Tanh,ReLU,SiLU}.

Each KAN is initialized to have G = 3, trained with LBFGS, with an increasing number of grid
points every 200 steps to cover G = {3, 5, 10, 20, 50, 100, 200}. For each hyperparameter combina-
tion, we try 3 random seeds. For each dataset (equation) and each method, we report the results of
the best model (minimal KAN shape, or lowest test loss) over random seeds and depths in Table 10.
We find that MLPs and KANs behave comparably on average. We conjecture that the Feynman
datasets are too simple to let KANs make further improvements, in the sense that variable depen-
dence is usually smooth or monotonic, which is in contrast to the complexity of special functions
which often demonstrate oscillatory behavior.

We report the pruned KAN shape in two columns of Table 10; one column is for the minimal pruned
KAN shape that can achieve reasonable loss (i.e., test RMSE smaller than 10−2); the other column
is for the pruned KAN that achieves lowest test loss. It is interesting to observe that auto-discovered
KAN shapes (for both minimal and best) are usually smaller than our human constructions. This
means that KA representations can be more efficient than we imagine. At the same time, this may
make interpretability subtle because information is being squashed into a smaller space than what
we are comfortable with.

Q “CONTINUAL LEARNING” OF A 1D TOY FUNCTION?

We show that KANs have local plasticity and can avoid catastrophic forgetting by leveraging the
locality of splines, for 1D functions. The idea is simple: since spline bases are local, a sample will
only affect a few nearby spline coefficients, leaving far-away coefficients intact (which is desirable
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Figure 21: A toy continual learning problem. The dataset is a 1D regression task with 5 Gaussian
peaks (top row). Data around each peak is presented sequentially (instead of all at once) to KANs
and MLPs. KANs (middle row) can perfectly avoid catastrophic forgetting, while MLPs (bottom
row) display severe catastrophic forgetting.

since far-away regions may have already stored information that we want to preserve). By con-
trast, since MLPs usually use global activations, e.g., ReLU/Tanh/SiLU etc., any local change may
propagate uncontrollably to regions far away, destroying the information being stored there.

We use a toy example to validate this intuition. The 1D regression task is composed of 5 Gaussian
peaks. Data around each peak is presented sequentially (instead of all at once) to KANs and MLPs,
as shown in Figure 21 top row. KAN and MLP predictions after each training phase are shown in
the middle and bottom rows. As expected, KAN only remodels regions where data is present on
in the current phase, leaving previous regions unchanged. By contrast, MLPs remodels the whole
region after seeing new data samples, leading to catastrophic forgetting. We want to mention that
this toy example is somewhat trivial and is attributed to local activation functions rather than the
KAN architecture. We simply feel this is a cute example to share in case anyone is inspired by it.
However, this should not be interpreted as solving the continual learning problem. Indeed, when we
try a deeper KAN [1,5,5,1], the continual learning feature is partially lost, depending on grid sizes
(see Figure 22).

Figure 22: When KANs become deep, the continual learning ability is partially lost. Top: grid size
200; bottom: grid size 10.
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Figure 23: KANs are interepretable for simple symbolic tasks.

R INTERPRETABILITY: SUPERVISED TOY DATASETS

We tried KANs for 6 symbolic tasks, shown in Figure 23. (1) Multiplication f(x, y) = xy. A [2, 5, 1]
KAN is pruned to a [2, 2, 1] KAN. The learned activation functions are linear and quadratic. From
the computation graph, we see that the way it computes xy is leveraging 2xy = (x+y)2−(x2+y2).
(2) Division of positive numbers f(x, y) = x/y. A [2, 5, 1] KAN is pruned to a [2, 1, 1] KAN. The
learned activation functions are logarithmic and exponential functions, and the KAN is computing
x/y by leveraging the identity x/y = exp(logx− logy). (3) Numerical to categorical. The task is to
convert a real number in [0, 1] to its first decimal digit (as one hots), e.g., 0.0618 → [1, 0, 0, 0, 0, · · · ],
0.314 → [0, 0, 0, 1, 0, · · · ]. Notice that activation functions are learned to be spikes located around
the corresponding decimal digits. (4) Special function f(x, y) = exp(J0(20x)+y

2). One limitation
of symbolic regression is that it will never find the correct formula of a special function if the special
function is not provided as prior knowledge. KANs can learn special functions – the highly wiggly
Bessel function J0(20x) is learned (numerically) by KAN. (5) Phase transition f(x1, x2, x3) =
tanh(5(x41 + x42 + x43 − 1)). Phase transitions are of great interest in physics, so we want KANs
to be able to detect phase transitions and to identify the correct order parameters. We use the tanh
function to simulate the phase transition behavior, and the order parameter is the combination of
the quartic terms of x1, x2, x3. Both the quartic dependence and tanh dependence emerge after
KAN training. This is a simplified case of a localization phase transition discussed in Section U. (6)
Deeper compositions f(x1, x2, x3, x4) =

√
(x1 − x2)2 + (x3 − x4)2. To compute this, we would

need the identity function, squared function, and square root, which requires at least a three-layer
KAN. Indeed, we find that a [4, 3, 3, 1] KAN can be auto-pruned to a [4, 2, 1, 1] KAN, which exactly
corresponds to the computation graph we would expect.

S INTERPRETABILITY: UNSUPERVISED TOY DATASETS

Given a set of variables (x1, x2, · · · , xd), we want to discover a structural relationship between the
variables. Specifically, we want to find a non-zero f such that f(x1, x2, · · · , xd) ≈ 0.

Unsupervised toy dataset Given a set of variables (x1, x2, · · · , xd), we want to discover a struc-
tural relationship between the variables. Specifically, we want to find a non-zero f such that
f(x1, x2, · · · , xd) ≈ 0. Via contrastive learning formulation, we are able to turn this unsupervised
learning problem into supervised learning (details in Appendix S).
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Figure 24: Unsupervised learning of a toy task. KANs can identify groups of dependent variables,
i.e., (x1, x2, x3) and (x4, x5) in this case.

We demonstrate that the unsupervised paradigm works for a synthetic 6D dataset, where (x1, x2, x3)
are dependent variables such that x3 = exp(sin(x1) + x22); (x4, x5) are dependent variables with
x5 = x34; x6 is independent of the other variables. In Figure 24, we show that for seed = 0, KAN
reveals the functional dependence among x1,x2, and x3; for another seed = 2024, KAN reveals the
functional dependence between x4 and x5. Our preliminary results rely on randomness (different
seeds) to discover different relations; in the future we would like to investigate a more systematic
and more controlled way to discover a complete set of relations. Even so, our tool in its current status
can provide insights for scientific tasks. We present our results with the knot dataset in Appendix T.

We tackle the unsupervised learning problem by turning it into a supervised learning problem on
all of the d features, without requiring the choice of a splitting. The essential idea is to learn a
function f(x1, . . . , xd) = 0 such that f is not the 0-function. To do this, similar to contrastive
learning, we define positive samples and negative samples: positive samples are feature vectors of
real data. Negative samples are constructed by feature corruption. To ensure that the overall feature
distribution for each topological invariant stays the same, we perform feature corruption by random
permutation of each feature across the entire training set. Now we want to train a network g such
that g(xreal) = 1 and g(xfake) = 0 which turns the problem into a supervised problem. However,
remember that we originally want f(xreal) = 0 and f(xfake) ̸= 0. We can achieve this by having
g = σ ◦ f where σ(x) = exp(− x2

2w2 ) is a Gaussian function with a small width w, which can be
conveniently realized by a KAN with shape [..., 1, 1] whose last activation is set to be the Gaussian
function σ and all previous layers form f . Except for the modifications mentioned above, everything
else is the same for supervised training.

T INTERPRETABILITY: KNOT THEORY

Knot theory is a subject in low-dimensional topology that sheds light on topological aspects of three-
manifolds and four-manifolds and has a variety of applications, including in biology and topological
quantum computing. Mathematically, a knot K is an embedding of S1 into S3. Two knots K and
K ′ are topologically equivalent if one can be deformed into the other via deformation of the ambient
space S3, in which case we write [K] = [K ′]. Some knots are topologically trivial, meaning that
they can be smoothly deformed to a standard circle. Knots have a variety of deformation-invariant
features f called topological invariants, which may be used to show that two knots are topologically
inequivalent, [K] ̸= [K ′] if f(K) ̸= f(K ′). In some cases the topological invariants are geometric
in nature. For instance, a hyperbolic knot K has a knot complement S3 \K that admits a canonical
hyperbolic metric g such that volg(K) is a topological invariant known as the hyperbolic volume.
Other topological invariants are algebraic in nature, such as the Jones polynomial.

Given the fundamental nature of knots in mathematics and the importance of its applications, it
is interesting to study whether ML can lead to new results. For instance, in Gukov et al. (2023)
reinforcement learning was utilized to establish ribbonness of certain knots, which ruled out many
potential counterexamples to the smooth 4d Poincaré conjecture.

Our results have one subtle difference from results in Davies et al. (2021): they find that signature
is mostly dependent on µi, while we find that signature is mostly dependent on µr. This difference
could be due to subtle algorithmic choices, but has led us to carry out the following experiments: (a)
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Id Formula Discovered by test
acc

r2 with
Signature

r2 with DM
formula

A λµr

(µ2
r+µ2

i )
Human (DM) 83.1% 0.946 1

B −0.02sin(4.98µi+0.85)+0.08|4.02µr+6.28|−0.52−
0.04e−0.88(1−0.45λ)2

[3, 1] KAN 62.6% 0.837 0.897

C 0.17tan(−1.51+0.1e−1.43(1−0.4µi)
2+0.09e−0.06(1−0.21λ)2

+

1.32e−3.18(1−0.43µr)
2

)

[3, 1, 1] KAN 71.9% 0.871 0.934

D −0.09 + 1.04exp(−9.59(−0.62sin(0.61µr + 7.26)) −
0.32tan(0.03λ − 6.59) + 1 − 0.11e−1.77(0.31−µi)

2)2 −
1.09e−7.6(0.65(1−0.01λ)3 + 0.27atan(0.53µi − 0.6) +
0.09 + exp(−2.58(1− 0.36µr)

2))

[3, 2, 1] KAN 84.0% 0.947 0.997

E 4.76λµr

3.09µi+6.05µ2
r+3.54µ2

i

[3,2,1] KAN
+ Pade approx 82.8% 0.946 0.997

F 2.94−2.92(1−0.10µr)
2

0.32(0.18−µr)2+5.36(1−0.04λ)2+0.50 [3, 1] KAN/[3, 1] KAN 77.8% 0.925 0.977

Table 11: Symbolic formulas of signature as a function of meridinal translation µ (real µr, imag µi)
and longitudinal translation λ. In Davies et al. (2021), formula A was discovered by human scientists
inspired by neural network attribution results. Formulas B-F are auto-discovered by KANs. KANs
can trade-off between simplicity and accuracy (B, C, D). By adding more inductive biases, KAN
is able to discover formula E which is not too dissimilar from formula A. KANs also discovered
a formula F which only involves two variables (µr and λ) instead of all three variables, with little
sacrifice in accuracy.

ablation studies. We show that µr contributes more to accuracy than µi (see Figure 4): for example,
µr alone can achieve 65.0% accuracy, while µi alone can only achieve 43.8% accuracy. (b) We find
a symbolic formula (in Table 11) which only involves µr and λ, but can achieve 77.8% test accuracy.

To investigate (2), i.e., obtain the symbolic form of σ, we formulate the problem as a regression
task. Using auto-symbolic regression introduced in Section M.1, we can convert a trained KAN into
symbolic formulas. We train KANs with shapes [3, 1], [3, 1, 1], [3, 2, 1], whose corresponding sym-
bolic formulas are displayed in Table 11 B-D. It is clear that by having a larger KAN, both accuracy
and complexity increase. So KANs provide not just a single symbolic formula, but a whole Pareto
frontier of formulas, trading off simplicity and accuracy. However, KANs need additional inductive
biases to further simplify these equations to rediscover the formula from Davies et al. (2021) (Ta-
ble 11 A). We have tested two scenarios: (1) in the first scenario, we assume the ground truth formula
has a multi-variate Pade representation (division of two multi-variate Taylor series). We first train
[3, 2, 1] and then fit it to a Pade representation. We can obtain Formula E in Table 11, which bears
similarity with DeepMind’s formula. (2) We hypothesize that the division is not very interpretable
for KANs, so we train two KANs (one for the numerator and the other for the denominator) and
divide them manually. Surprisingly, we end up with the formula F (in Table 11) which only involves
µr and λ, although µi is also provided but ignored by KANs.

unsupervised learning Knot data are positive samples, and we randomly shuffle features to obtain
negative samples. An [18, 1, 1] KAN is trained to classify whether a given feature vector belongs to
a positive sample (1) or a negative sample (0). We manually set the second layer activation to be
the Gaussian function with a peak one centered at zero, so positive samples will have activations at
(around) zero, implicitly giving a relation among knot invariants

∑18
i=1 gi(xi) = 0 where xi stands

for a feature (invariant), and gi is the corresponding activation function which can be readily read
off from KAN diagrams. We train the KANs with λ = {10−2, 10−3} to favor sparse combination
of inputs, and seed = {0, 1, · · · , 99}.

U INTERPRETABILITY: ANDERSON LOCALIZATION

Application to Physics: Anderson localization Anderson localization is the fundamental phe-
nomenon in which disorder in a quantum system leads to the localization of electronic wave func-
tions, causing all transport to be ceased Anderson (1958). More background information is available
in Appendix U. Here, we apply KANs to numerical data generated from quasiperiodic tight-binding
models to extract their mobility edges (phase transition boundaries), including generalized Aubry-
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System Origin Mobility Edge Formula Accuracy

GAAM
Theory αE + 2λ− 2 = 0 99.2%

KAN auto ����
1.52E2 + 21.06αE +���0.66E +����

3.55α2 +���0.91α + 45.13λ− 54.45 = 0 99.0%

MAAM

Theory E + exp(p)− λcoshp = 0 98.6%

KAN auto 13.99sin(0.28sin(0.87λ+2.22)− 0.84arctan(0.58E− 0.26)+ 0.85arctan(0.94p+
0.13)−8.14)−16.74+43.08exp(−0.93(0.06(0.13−p)2−0.27tanh(0.65E+0.25)+
0.63arctan(0.54λ− 0.62) + 1)2) = 0

97.1%

KAN man (step 2) + auto 4.19(0.28sin(0.97λ+2.17)− 0.77arctan(0.83E − 0.19) + arctan(0.97p+0.15)−
0.35)2 − 28.93 + 39.27exp(−0.6(0.28cosh2(0.49p − 0.16) − 0.34arctan(0.65E +
0.51) + 0.83arctan(0.54λ− 0.62) + 1)2) = 0

97.7%

KAN man (step 3) + auto −4.63E − 10.25(−0.94sin(0.97λ − 6.81) + tanh(0.8p − 0.45) + 0.09)2 +
11.78sin(0.76p− 1.41) + 22.49arctan(1.08λ− 1.32) + 31.72 = 0

97.7%

KAN man (step 4A) 6.92E − 6.23(−0.92λ − 1)2 + 2572.45(−0.05λ + 0.95cosh(0.11p + 0.4) − 1)2 −
12.96cosh2(0.53p+ 0.16) + 19.89 = 0

96.6%

KAN man (step 4B) 7.25E − 8.81(−0.83λ− 1)2 − 4.08(−p− 0.04)2 + 12.71(−0.71λ+ (0.3p+ 1)2 −
0.86)2 + 10.29 = 0

95.4%

Table 12: Symbolic formulas for two systems GAAM and MAAM, ground truth ones and KAN-
discovered ones.

Figure 25: Human-KAN collaboration to discover mobility edges of GAAM and MAAM. The
human user can choose to be lazy (using the auto mode) or more involved (using the manual mode).

André model (GAAM) Ganeshan et al. (2015) and the modified Aubry-André model (MAAM) Bid-
dle & Sarma (2010), leaving results on a simpler tutorial case, the Mosaic model (MM) Wang et al.
(2020), to Appendix U.

We highlight how users (scientists) can interact with KANs to get more interpretable results (in
Figure 25). For the simpler GAAM case where the mobility edge is a quadratic function, the user
can choose to be lazy and let KANs automatically do everything all the way through. KANs will be
able to output the correct formula with some negligible error terms (shown in Table 12). However,
for the more complex MAAM case, the fully automated mode find a too complicated formula. A
user can choose to interact with KANs by fixing some activation to be known symbolic formulas
and do further training. In the end, the user can obtain a family of symbolic formulas (instead of just
one) that trade off between accuracy and simplicity.

Anderson localization is the fundamental phenomenon in which disorder in a quantum system leads
to the localization of electronic wave functions, causing all transport to be ceased Anderson (1958).
In one and two dimensions, scaling arguments show that all electronic eigenstates are exponen-
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tially localized for an infinitesimal amount of random disorder Thouless (1972); Abrahams et al.
(1979). In contrast, in three dimensions, a critical energy forms a phase boundary that separates
the extended states from the localized states, known as a mobility edge. The understanding of these
mobility edges is crucial for explaining various fundamental phenomena such as the metal-insulator
transition in solids Lagendijk et al. (2009), as well as localization effects of light in photonic de-
vices Segev et al. (2013); Vardeny et al. (2013); John (1987); Lahini et al. (2009); Vaidya et al.
(2023). It is therefore necessary to develop microscopic models that exhibit mobility edges to en-
able detailed investigations. Developing such models is often more practical in lower dimensions,
where introducing quasiperiodicity instead of random disorder can also result in mobility edges that
separate localized and extended phases. Furthermore, experimental realizations of analytical mobil-
ity edges can help resolve the debate on localization in interacting systems De Roeck et al. (2016);
Li et al. (2015). Indeed, several recent studies have focused on identifying such models and deriving
exact analytic expressions for their mobility edges An et al. (2021); Biddle & Sarma (2010); Duthie
et al. (2021); Ganeshan et al. (2015); Wang et al. (2020; 2021); Zhou et al. (2023).

Here, we apply KANs to numerical data generated from quasiperiodic tight-binding models to ex-
tract their mobility edges. In particular, we examine three classes of models: the Mosaic model
(MM) Wang et al. (2020), the generalized Aubry-André model (GAAM) Ganeshan et al. (2015) and
the modified Aubry-André model (MAAM) Biddle & Sarma (2010). For the MM, we testify KAN’s
ability to accurately extract mobility edge as a 1D function of energy. For the GAAM, we find that
the formula obtained from a KAN closely matches the ground truth. For the more complicated
MAAM, we demonstrate yet another example of the symbolic interpretability of this framework. A
user can simplify the complex expression obtained from KANs (and corresponding symbolic formu-
las) by means of a “collaboration” where the human generates hypotheses to obtain a better match
(e.g., making an assumption of the form of certain activation function), after which KANs can carry
out quick hypotheses testing.

To quantify the localization of states in these models, the inverse participation ratio (IPR) is com-
monly used. The IPR for the kth eigenstate, ψ(k), is given by

IPRk =

∑
n |ψ

(k)
n |4(∑

n |ψ
(k)
n |2

)2 (26)

where the sum runs over the site index. Here, we use the related measure of localization – the fractal
dimension of the states, given by

Dk = − log(IPRk)

log(N)
(27)

where N is the system size. Dk = 0(1) indicates localized (extended) states.

Mosaic Model (MM) We first consider a class of tight-binding models defined by the Hamilto-
nian Wang et al. (2020)

H = t
∑
n

(
c†n+1cn + H.c.

)
+
∑
n

Vn(λ, ϕ)c
†
ncn, (28)

where t is the nearest-neighbor coupling, cn(c†n) is the annihilation (creation) operator at site n and
the potential energy Vn is given by

Vn(λ, ϕ) =

{
λ cos(2πnb+ ϕ) j = mκ

0, otherwise,
(29)

To introduce quasiperiodicity, we set b to be irrational (in particular, we choose b to be the golden
ratio 1+

√
5

2 ). κ is an integer and the quasiperiodic potential occurs with interval κ. The energy
(E) spectrum for this model generically contains extended and localized regimes separated by a
mobility edge. Interestingly, a unique feature found here is that the mobility edges are present for an
arbitrarily strong quasiperiodic potential (i.e. there are always extended states present in the system
that co-exist with localized ones).

The mobility edge can be described by g(λ,E) ≡ λ − |fκ(E)| = 0. g(λ,E) > 0 and g(λ,E) <
0 correspond to localized and extended phases, respectively. Learning the mobility edge therefore
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hinges on learning the “order parameter” g(λ,E). Admittedly, this problem can be tackled by many
other theoretical methods for this class of models Wang et al. (2020), but we will demonstrate below
that our KAN framework is ready and convenient to take in assumptions and inductive biases from
human users.

Let us assume a hypothetical user Alice, who is a new PhD student in condensed matter physics,
and she is provided with a [2, 1] KAN as an assistant for the task. Firstly, she understands that this
is a classification task, so it is wise to set the activation function in the second layer to be sigmoid
by using the fix_symbolic functionality. Secondly, she realizes that learning the whole 2D
function g(λ,E) is unnecessary because in the end she only cares about λ = λ(E) determined by
g(λ,E) = 0. In so doing, it is reasonable to assume g(λ,E) = λ−h(E) = 0. Alice simply sets the
activation function of λ to be linear by again using the fix_symbolic functionality. Now Alice
trains the KAN network and conveniently obtains the mobility edge, as shown in Figure 26. Alice
can get both intuitive qualitative understanding (bottom) and quantitative results (middle), which
well match the ground truth (top).

Figure 26: Results for the Mosaic Model. Top: phase diagram. Middle and Bottom: KANs can
obtain both qualitative intuition (bottom) and extract quantitative results (middle). φ = 1+

√
5

2 is the
golden ratio.

Generalized Andre-Aubry Model (GAAM) We next consider a class of tight-binding models de-
fined by the Hamiltonian Ganeshan et al. (2015)

H = t
∑
n

(
c†n+1cn + H.c.

)
+
∑
n

Vn(α, λ, ϕ)c
†
ncn, (30)

where t is the nearest-neighbor coupling, cn(c†n) is the annihilation (creation) operator at site n and
the potential energy Vn is given by

Vn(α, λ, ϕ) = 2λ
cos(2πnb+ ϕ)

1− α cos(2πnb+ ϕ)
, (31)

which is smooth for α ∈ (−1, 1). To introduce quasiperiodicity, we again set b to be irrational (in
particular, we choose b to be the golden ratio). As before, we would like to obtain an expression for
the mobility edge. For these models, the mobility edge is given by the closed form expression Gane-
shan et al. (2015); Wang et al. (2021),

αE = 2(t− λ). (32)
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We randomly sample the model parameters: ϕ, α and λ (setting the energy scale t = 1) and calculate
the energy eigenvalues as well as the fractal dimension of the corresponding eigenstates, which
forms our training dataset.

Here the “order parameter” to be learned is g(α,E, λ, ϕ) = αE + 2(λ − 1) and mobility edge
corresponds to g = 0. Let us again assume that Alice wants to figure out the mobility edge but
only has access to IPR or fractal dimension data, so she decides to use KAN to help her with the
task. Alice wants the model to be as small as possible, so she could either start from a large model
and use auto-pruning to get a small model, or she could guess a reasonable small model based on
her understanding of the complexity of the given problem. Either way, let us assume she arrives
at a [4, 2, 1, 1] KAN. First, she sets the last activation to be sigmoid because this is a classification
problem. She trains her KAN with some sparsity regularization to accuracy 98.7% and visualizes the
trained KAN in Figure 25 (a) step 1. She observes that ϕ is not picked up on at all, which makes her
realize that the mobility edge is independent of ϕ (agreeing with Eq. (32)). In addition, she observes
that almost all other activation functions are linear or quadratic, so she turns on automatic symbolic
snapping, constraining the library to be only linear or quadratic. After that, she immediately gets a
network which is already symbolic (shown in Figure 25 (a) step 2), with comparable (even slightly
better) accuracy 98.9%. By using symbolic_formula functionality, Alice conveniently gets the
symbolic form of g, shown in Table 12 GAAM-KAN auto (row three). Perhaps she wants to cross
out some small terms and snap coefficient to small integers, which takes her close to the true answer.

This hypothetical story for Alice would be completely different if she is using a symbolic regres-
sion method. If she is lucky, SR can return the exact correct formula. However, the vast majority
of the time SR does not return useful results and it is impossible for Alice to “debug” or inter-
act with the underlying process of symbolic regression. Furthermore, Alice may feel uncomfort-
able/inexperienced to provide a library of symbolic terms as prior knowledge to SR before SR is
run. By constrast in KANs, Alice does not need to put any prior information to KANs. She can first
get some clues by staring at a trained KAN and only then it is her job to decide which hypothesis
she wants to make (e.g., “all activations are linear or quadratic”) and implement her hypothesis in
KANs. Although it is not likely for KANs to return the correct answer immediately, KANs will
always return something useful, and Alice can collaborate with it to refine the results.

Modified Andre-Aubry Model (MAAM) The last class of models we consider is defined by the
Hamiltonian Biddle & Sarma (2010)

H =
∑
n ̸=n′

te−p|n−n′| (c†ncn′ + H.c.
)
+
∑
n

Vn(λ, ϕ)c
†
ncn, (33)

where t is the strength of the exponentially decaying coupling in space, cn(c†n) is the annihilation
(creation) operator at site n and the potential energy Vn is given by

Vn(λ, ϕ) = λ cos(2πnb+ ϕ), (34)

As before, to introduce quasiperiodicity, we set b to be irrational (the golden ratio). For these models,
the mobility edge is given by the closed form expression Biddle & Sarma (2010),

λ cosh(p) = E + t = E + t1exp(p) (35)

where we define t1 ≡ texp(−p) as the nearest neighbor hopping strength, and we set t1 = 1 below.

Let us assume Alice wants to figure out the mobility edge for MAAM. This task is more complicated
and requires more human wisdom. As in the last example, Alice starts from a [4, 2, 1, 1] KAN and
trains it but gets an accuracy around 75% which is less than acceptable. She then chooses a larger
[4, 3, 1, 1] KAN and successfully gets 98.4% which is acceptable (Figure 25 (b) step 1). Alice
notices that ϕ is not picked up on by KANs, which means that the mobility edge is independent
of the phase factor ϕ (agreeing with Eq. (35)). If Alice turns on the automatic symbolic regression
(using a large library consisting of exp, tanh etc.), she would get a complicated formula in Tabel 12-
MAAM-KAN auto, which has 97.1% accuracy. However, if Alice wants to find a simpler symbolic
formula, she will want to use the manual mode where she does the symbolic snapping by herself.
Before that she finds that the [4, 3, 1, 1] KAN after training can then be pruned to be [4, 2, 1, 1],
while maintaining 97.7% accuracy (Figure 25 (b)). Alice may think that all activation functions
except those dependent on p are linear or quadratic and snap them to be either linear or quadratic
manually by using fix_symbolic. After snapping and retraining, the updated KAN is shown
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Functionality Descriptions
model.fit(dataset) training model on dataset

model.plot() plotting
model.prune() pruning

model.fix_symbolic(l,i,j,fun)
fix the activation function ϕl,i,j
to be the symbolic function fun

model.suggest_symbolic(l,i,j)
suggest symbolic functions that match

the numerical value of ϕl,i,j

model.auto_symbolic()
use top 1 symbolic suggestions from suggest_symbolic

to replace all activation functions
model.symbolic_formula() return the symbolic formula

Table 13: KAN functionalities

in Figure 25 (c) step 3, maintaining 97.7% accuracy. From now on, Alice may make two different
choices based on her prior knowledge. In one case, Alice may have guessed that the dependence
on p is cosh, so she sets the activations of p to be cosh function. She retrains KAN and gets 96.9%
accuracy (Figure 25 (c) Step 4A). In another case, Alice does not know the cosh p dependence, so
she pursues simplicity and again assumes the functions of p to be quadratic. She retrains KAN and
gets 95.4% accuracy (Figure 25 (c) Step 4B). If she tried both, she would realize that cosh is better
in terms of accuracy, while quadratic is better in terms of simplicity. The formulas corresponding
to these steps are listed in Table 12. It is clear that the more manual operations are done by Alice,
the simpler the symbolic formula is (which slight sacrifice in accuracy). KANs have a “knob" that
a user can tune to trade-off between simplicity and accuracy (sometimes simplicity can even lead to
better accuracy, as in the GAAM case).

V KAN FUNCTIONALITIES

Table 13 includes common functionalities that users may find useful.

W DEPENDENCE ON HYPERPARAMETERS

We show the effects of hyperparamters on the f(x, y) = exp(sin(πx) + y2) case in Figure 27. To
get an interpretable graph, we want the number of active activation functions to be as small (ideally
3) as possible.

(1) We need entropy penalty to reduce the number of active activation functions. Without entropy
penalty, there are many duplicate functions.

(2) Results can depend on random seeds. With some unlucky seed, the pruned network could be
larger than needed.

(3) The overall penalty strength λ effectively controls the sparsity.

(4) The grid number G also has a subtle effect on interpretability. When G is too small, because
each one of activation function is not very expressive, the network tends to use the ensembling
strategy, making interpretation harder.

(5) The piecewise polynomial order k only has a subtle effect on interpretability. However, it be-
haves a bit like the random seeds which do not display any visible pattern in this toy example.

X REMARK ON GRID SIZE

For both PDE and regression tasks, when we choose the training data on uniform grids, we witness
a sudden increase in training loss (i.e., sudden drop in performance) when the grid size is updated to
a large level, comparable to the different training points in one spatial direction. This could be due
to implementation of B-spline in higher dimensions and needs further investigation.
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Figure 27: Effects of hyperparameters on interpretability results.

Y RELATED WORKS

Kolmogorov-Arnold theorem and neural networks. The connection between the Kolmogorov-
Arnold theorem (KAT) and neural networks is not new in the literature Poggio (2022); Schmidt-
Hieber (2021); Sprecher & Draghici (2002); Köppen (2002); Lin & Unbehauen (1993); Lai & Shen
(2021); Leni et al. (2013); Fakhoury et al. (2022); Ismayilova & Ismailov (2024); Poluektov & Polar
(2023), but the pathological behavior of inner functions makes KAT appear unpromising in prac-
tice Poggio (2022). Most of these prior works stick to the original 2-layer width-(2n+ 1) networks,
which were limited in expressive power and many of them are even predating back-propagation.
Therefore, most studies were built on theories with rather limited or artificial toy experiments. More
broadly speaking, KANs are also somewhat related to generalized additive models (GAMs) Agarwal
et al. (2021), graph neural networks Zaheer et al. (2017) and kernel machines Song et al. (2018). The
connections are intriguing and fundamental but might be out of the scope of the current paper. Our
contribution lies in generalizing the Kolmogorov network to arbitrary widths and depths, revitalizing
and contexualizing them in today’s deep learning stream, as well as highlighting its potential role as
a foundation model for AI + Science.

Neural Scaling Laws (NSLs). NSLs are the phenomena where test losses behave as power laws
against model size, data, compute etc Kaplan et al. (2020); Henighan et al. (2020); Gordon et al.
(2021); Hestness et al. (2017); Sharma & Kaplan (2020); Bahri et al. (2021); Michaud et al. (2023a);
Song et al. (2024). The origin of NSLs still remains mysterious, but competitive theories include
intrinsic dimensionality Kaplan et al. (2020), quantization of tasks Michaud et al. (2023a), resource
theory Song et al. (2024), random features Bahri et al. (2021), compositional sparsity Poggio (2022),
and maximum arity Michaud et al. (2023b). This paper contributes to this space by showing that a
high-dimensional function can surprisingly scale as a 1D function (which is the best possible bound
one can hope for) if it has a smooth Kolmogorov-Arnold representation. Our paper brings fresh
optimism to neural scaling laws. We have shown in our experiments that this fast neural scaling
law can be achieved on synthetic datasets, but future research is required to address the question
whether this fast scaling is achievable for more complicated tasks (e.g., language modeling): Do
KA representations exist for general tasks? If so, does our training find these representations in
practice?

Mechanistic Interpretability (MI). MI is an emerging field that aims to mechanistically under-
stand the inner workings of neural networks Olsson et al. (2022); Meng et al. (2022); Wang et al.
(2023); Elhage et al. (2022b); Nanda et al. (2023); Zhong et al. (2023); Liu et al. (2023); Elhage
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et al. (2022a); Cunningham et al. (2023). MI research can be roughly divided into passive and active
MI research. Most MI research is passive in focusing on understanding existing neural networks
trained with standard methods. Active MI research attempts to achieve interpretability by designing
intrinsically interpretable architectures or developing training methods to explicitly encourage inter-
pretability Liu et al. (2023); Elhage et al. (2022a). Our work lies in the second category, where the
model and training method are by design interpretable.

Learnable activations. The idea of learnable activations in neural networks is not new in machine
learning. Trainable activations functions are learned in a differentiable way Goyal et al. (2019);
Fakhoury et al. (2022); Ramachandran et al. (2017); Zhang et al. (2022) or searched in a discrete
way Bingham & Miikkulainen (2022). Activation function are parametrized as polynomials Goyal
et al. (2019), splines Fakhoury et al. (2022); Bohra et al. (2020); Aziznejad & Unser (2019), sigmoid
linear unit Ramachandran et al. (2017), or neural networks Zhang et al. (2022). KANs use B-splines
to parametrize their activation functions.

Symbolic Regression. There are many off-the-shelf symbolic regression methods based on genetic
algorithms (Eureka Dubcáková (2011), GPLearn gpl, PySR Cranmer (2023)), neural-network based
methods (EQL Martius & Lampert (2016), OccamNet Dugan et al. (2020)), physics-inspired method
(AI Feynman Udrescu & Tegmark (2020); Udrescu et al. (2020)), and reinforcement learning-based
methods Mundhenk et al. (2021). KANs are most similar to neural network-based methods, but
differ from previous works in that our activation functions are continuously learned before symbolic
snapping rather than manually fixed Dubcáková (2011); Dugan et al. (2020).

Physics-Informed Neural Networks (PINNs) and Physics-Informed Neural Operators
(PINOs). In Section 4 PDE, we demonstrate that KANs can replace the paradigm of using MLPs
for imposing PDE loss when solving PDEs. We refer to Deep Ritz Method Yu et al. (2018), PINNs
Raissi et al. (2019); Karniadakis et al. (2021) for PDE solving, and Fourier Neural operator Li et al.
(2020), PINOs Li et al. (2021); Kovachki et al. (2023); Maust et al. (2022), DeepONet Lu et al.
(2021) for operator learning methods learning the solution map. There is potential to replace MLPs
with KANs in all the aforementioned networks.

AI for Mathematics. AI has recently been applied to several problems in Knot theory, includ-
ing detecting whether a knot is the unknot Gukov et al. (2021); Kauffman et al. (2020) or a
ribbon knot Gukov et al. (2023), and predicting knot invariants and uncovering relations among
them Hughes (2020); Craven et al. (2021; 2022); Davies et al. (2021). For a summary of data
science applications to datasets in mathematics and theoretical physics see e.g. Ruehle (2020); He
(2023), and for ideas how to obtain rigorous results from ML techniques in these fields, see Gukov
et al. (2024).

Z DISCUSSION

In this section, we discuss KANs’ limitations and future directions from the perspective of mathe-
matical foundation, algorithms and applications.

Mathematical aspects: Although we have presented preliminary mathematical analysis of KANs
(Theorem 2.1), our mathematical understanding of them is still very limited. The Kolmogorov-
Arnold representation theorem has been studied thoroughly in mathematics, but the theorem corre-
sponds to KANs with shape [n, 2n + 1, 1], which is a very restricted subclass of KANs. Does our
empirical success with deeper KANs imply something fundamental in mathematics? An appeal-
ing generalized Kolmogorov-Arnold theorem could define “deeper” Kolmogorov-Arnold represen-
tations beyond depth-2 compositions, and potentially relate smoothness of activation functions to
depth. Hypothetically, there exist functions which cannot be represented smoothly in the original
(depth-2) Kolmogorov-Arnold representations, but might be smoothly represented with depth-3 or
beyond. Can we use this notion of “Kolmogorov-Arnold depth” to characterize function classes?

Algorithmic aspects: We discuss the following:

(1) Accuracy. Multiple choices in architecture design and training are not fully investigated so
alternatives can potentially further improve accuracy. For example, spline activation functions
might be replaced by radial basis functions or other local kernels. Adaptive grid strategies can
be used.
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(2) Efficiency. One major reason why KANs run slowly is because different activation functions
cannot leverage batch computation (large data through the same function). Actually, one can
interpolate between activation functions being all the same (MLPs) and all different (KANs),
by grouping activation functions into multiple groups (“multi-head”), where members within a
group share the same activation function.

(3) Hybrid of KANs and MLPs. KANs have two major differences compared to MLPs:

(i) activation functions are on edges instead of on nodes,

(ii) activation functions are learnable instead of fixed.

(4) Adaptivity. Thanks to the intrinsic locality of spline basis functions, we can introduce adaptivity
in the design and training of KANs to enhance both accuracy and efficiency: see the idea of
multi-level training like multigrid methods as in Zhang et al. (2021); Xu & Zikatanov (2017), or
domain-dependent basis functions like multiscale methods as in Chen et al. (2023).

Application aspects: We have presented some preliminary evidences that KANs are more effective
than MLPs in science-related tasks, e.g., fitting physical equations and PDE solving. We expect that
KANs may also be promising for solving Navier-Stokes equations, density functional theory, or any
other tasks that can be formulated as regression or PDE solving. We would also like to apply KANs
to machine-learning-related tasks, which would require integrating KANs into current architectures,
e.g., transformers – one may propose “kansformers” which replace MLPs by KANs in transformers.

KAN as a “language model” for AI + Science The reason why large language models are so
transformative is because they are useful to anyone who can speak natural language. The language
of science is functions. KANs are composed of interpretable functions, so when a human user stares
at a KAN, it is like communicating with it using the language of functions. This paragraph aims
to promote the AI-Scientist-Collaboration paradigm rather than our specific tool KANs. Just like
people use different languages to communicate, we expect that in the future KANs will be just one
of the languages for AI + Science, although KANs will be one of the very first languages that would
enable AI and human to communicate. However, enabled by KANs, the AI-Scientist-Collaboration
paradigm has never been this easy and convenient, which leads us to rethink the paradigm of how
we want to approach AI + Science: Do we want AI scientists, or do we want AI that helps scientists?
The intrinsic difficulty of (fully automated) AI scientists is that it is hard to make human preferences
quantitative, which would codify human preferences into AI objectives. In fact, scientists in different
fields may feel differently about which functions are simple or interpretable. As a result, it is more
desirable for scientists to have an AI that can speak the scientific language (functions) and can
conveniently interact with inductive biases of individual scientist(s) to adapt to a specific scientific
domain.
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