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Goal: Giveny = f(x) +n, infer p(x|y).
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Key idea: Use the distribution learned by GAN as a surrogate for Inverse heat conduction:
Challenges: prior distribution and reformulate the inference problem in the Prior realizations from  Prior realizations from Measurement
: low-dimensional latent space of the GAN. true density learned density True  (nonoise)
* Measurement may be corrupted by unknown noise. | -
* Inverse map may not be well-posed. |
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Steps:

| | - 1. Learn the prior distribution: train a GAN using samples from
measurement inferred signal measurement inferred signal  uncertainty

. . . data
[Isaac et al, 2015] data distribution py (x) Prior realizations from Prior realizations from
true density learned density

Inverse Radon transform:

Measurement
(no noise) (noise) MAP Mean SD

2. Characterize the posterior distribution: for a given measurement
Bayesian inference y, evaluate any statistic of |nterestx~z£%ost[m(x)]. Yij = f x dl
x L(tiP))
* A principled approach to account for uncertainty in an inverse MCMC Sampling: pyMCE(z]9) ~ pEOSt(ZW). x = image
problem. Evaluate any point estimate s(x) as, o 5
* Gives probability distribution over inferred field given some 1 N
measurement. s(x) = — z s(g(2)), z ~ plMC (z|p) = sinogram
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Posterior distribution n=1
We use Hamiltonian Monte Carlo (HMC) with burn-in period of 0.5 Liewy = ray/line
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i ! } Elasticity imaging: (using experimental data)
Assumption§: o . V. o ‘ — 0 Shear Modulus (kPa) Axial displacement (mm)
> > —— > * The GAN discriminator d(x; ¢) is smooth. g Measured MAP Mean oredicted measured - predicted
* Derivates of d with respect to its weights ¢ form a dense subset of y ‘ =y, displacement (mm) 0 ;
Challenge | : Priors Cb (‘Qx) I'p axial < 2 0025
Finding a quantitative description of informative and feasible * Number of training samples N and number of weights N, are large o.n ‘ =T 04 p | |
priors. enough. ' 0 = u |
Typical priors.. o = 2x(Vy + (V.y)I) .= plane-stress 0 : ;
J 1 01 0.025
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However what if Convergence results: given any m € C, (1), lateral h | 10
) . = 10 (| -0.025
o the prior knowledge is more complex and difficult to y = displacement field ) 2 ¥
characterize analytically. I 1 N 27 -
o not enough domain knowledge is available to construct - ( (n) ) . X : -
informative priors. Z"IF%?Z ZAI,E;:gx m(x)] N m\g (Z ) Key takeaways: - I | j 005
n=1 0
| . - o - v" GANs trained to learn complex priors in Bayesian inference.
Chaflleng; I! ' Salr.npr:l.nﬁ di onal (103107 < C(N_1 + (N¢) ) v’ Significant reduction in dimension for efficient sampling .
:)n.f?rrelt ilgna 15 | 'gf |ms.nsr.]|odn.a (10_ _1OI). ror . v' Convergence estimate of GAN showing decay of estimated statistics with the size of training set and network.
* Difficult to sample from high dimensional posterior space using o . : : L :
sampling-based methods like MCMC. where C, a are positive constants depending on m. v' Demonstration of method of problems motivated by physics, in the presence of noisy and occluded measurements.
* An efficient sampler is difficult to design in high-dimension. Acknowledgement: The support from ARO grant W911NF2010050 is acknowledged.
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