Bayesian Inference in Physics-Driven Problems with Adversarial Priors

Dhruv V. Patel, Deep Ray, Harisankar Ramaswamy and Assad A. Oberai

\{dhruvvpa, deepray, hramaswa, aoberai) \}usc.edu

Bayesian inference

- A principled approach to account for uncertainty in an inverse problem.
- Gives probability distribution over inferred field given some measurement.
Posterior distribution

Challenge I: Priors
Finding a quantitative description of informative and feasible priors.
Typical priors..

$$
p^{\text {prior }}(\boldsymbol{x})=\exp \left(-\frac{1}{\sigma^{2}}\|x\|^{2}\right)
$$

However, what if.

- the prior knowledge is more complex and difficult to
characterize analytically.
not enough domain knowledge is available to construct informative priors.

Challenge II : Sampling

- Inferred signal is high dimensional $\left(10^{3}-10^{7}\right)$.
- Difficult to sample from high dimensional posterior space using - Difficult to sample from high dimen
sampling-based methods like MCMC.
- An efficient sampler is difficult to design in high-dimension.

Key idea: Use the distribution learned by GAN as a surrogate for prior distribution and reformulate the inference problem in the low-dimensional latent space of the GAN.

$$
\begin{aligned}
\underset{x \sim p_{x}^{\text {post }}}{\mathbb{E}}[m(\boldsymbol{x})] & =\frac{1}{Q} \underset{\boldsymbol{x} \sim p_{x}^{\text {prior }}}{\mathbb{E}}\left[m(\boldsymbol{x}) p_{\eta}(\hat{\boldsymbol{y}}-\boldsymbol{f}(\boldsymbol{x}))\right] \\
& =\frac{1}{Q} \underset{\boldsymbol{x} \sim p_{x}^{\text {datata }}}{\mathbb{E}}\left[m(\boldsymbol{x}) p_{\eta}(\hat{\boldsymbol{y}}-\boldsymbol{f}(\boldsymbol{x}))\right] \\
& =\frac{1}{Q} \underset{\boldsymbol{z} \sim p_{\boldsymbol{Z}}}{\mathbb{E}}\left[m(\boldsymbol{g}(\mathbf{z})) p_{\eta}(\hat{\boldsymbol{y}}-\boldsymbol{f}(\boldsymbol{g}(\mathbf{z})))\right] \\
& =\frac{1}{Q_{\mathbf{z} \sim p_{z}^{\text {post }}}^{\mathbb{E}}[m(\boldsymbol{g}(\mathbf{z}))]}
\end{aligned}
$$

where,

$$
p_{\boldsymbol{z}}^{\text {post }} \propto p_{\eta}(\widehat{\boldsymbol{y}}-\boldsymbol{f}(\boldsymbol{g}(\mathbf{z}))) p_{z}(\mathbf{z})
$$

Steps:

1. Learn the prior distribution: train a GAN using samples from data distribution $p_{X}^{\text {data }}(\boldsymbol{x})$.
2. Characterize the posterior distribution: for a given measurement

$$
\widehat{\boldsymbol{y}} \text {, evaluate any statistic of interest } \underset{x \sim p_{x}^{\text {post }}}{\mathbb{E}}[m(\boldsymbol{x})] .
$$

$$
\text { MCMC Sampling: } \quad p_{Z}^{M C M C}(\boldsymbol{z} \mid \hat{\boldsymbol{y}}) \approx p_{Z}^{\text {post }}(\mathbf{z} \mid \hat{\boldsymbol{y}}) .
$$

$$
\text { Evaluate any point estimate } s(\boldsymbol{x}) \text { as, }
$$

$$
s(\boldsymbol{x}) \approx \frac{1}{N} \sum_{n=1}^{N} s(\boldsymbol{g}(\boldsymbol{z})), \quad \boldsymbol{z} \sim p_{Z}^{M C M C}(\boldsymbol{z} \mid \hat{\boldsymbol{y}})
$$

We use Hamiltonian Monte Carlo (HMC) with burn-in period of 0.5

Convergence of GAN to prior

Assumptions:

- The GAN discriminator $\boldsymbol{d}(\boldsymbol{x} ; \boldsymbol{\phi})$ is smooth.

Derivates of \boldsymbol{d} with respect to its weights $\boldsymbol{\phi}$ form a dense subset of
$C_{b}\left(\Omega_{x}\right)$.
Number of training samples N and number of weights N_{ϕ} are large enough.

Convergence results: given any $m \in C_{b}\left(\Omega_{x}\right)$,

$$
\begin{aligned}
& \underset{\mathbf{z} \sim p_{Z}}{\mathbb{E}}\left[\left(\underset{\mathbf{z} \sim p_{x}}{\mathbb{E}}[m(\boldsymbol{x})]-\frac{1}{N} \sum_{n=1}^{N} m\left(\boldsymbol{g}\left(\mathbf{z}^{(n)}\right)\right)\right)^{2}\right] \\
& <C\left(N^{-1}+\left(N_{\phi}\right)^{-2 \alpha}\right)
\end{aligned}
$$

where C, α are positive constants depending on m.

Inverse Radon transform:

Elasticity imaging: (using experimental data)
$\left.\nabla \cdot \sigma\right|_{\Omega}=\mathbf{0}$
$\left.y\right|_{\Gamma_{\mathrm{D}}}=\boldsymbol{y}_{D}$
$\boldsymbol{\sigma} .\left.\boldsymbol{n}\right|_{\Gamma_{N}}=\boldsymbol{\tau}$
$\boldsymbol{\sigma}=2 \boldsymbol{x}\left(\boldsymbol{\nabla}^{\mathbf{s}} \mathbf{y}+(\boldsymbol{\nabla} \cdot \mathbf{y}) \mathbf{I}\right):=$ plane-stress
$x:=$ shear modulus
$y:=$ displacement field
Key takeaways:
\checkmark GANs trained to learn complex priors in Bayesian inference.
\checkmark Significant reduction in dimension for efficient sampling.
\checkmark Convergence estimate of GAN showing decay of estimated statistics with the size of training set and network. \checkmark Demonstration of method of problems motivated by physics, in the presence of noisy and occluded measurements. Acknowledgement: The support from ARO grant W911NF2010050 is acknowledged.

