
• A principled approach to account for uncertainty in an inverse 
problem.
• Gives probability distribution over inferred field given some 

measurement.
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Challenge I : Priors
Finding a quantitative description of informative and feasible
priors.
Typical priors..
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However, what if..
o the prior knowledge is more complex and difficult to 

characterize analytically.
o not enough domain knowledge is available to construct 

informative priors.

Challenge II : Sampling
• Inferred signal is high dimensional (103-107).
• Difficult to sample from high dimensional posterior space using
sampling-based methods like MCMC.
• An efficient sampler is difficult to design in high-dimension.
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Motivation

Goal: Given #𝒚 = 𝒇 𝒙 + 𝜼,   infer  𝒑 𝒙 #𝒚 .

Challenges:
• Measurement may be corrupted by unknown noise.
• Inverse map may not be well-posed.
• Uncertainty in inferred solution critical for applications with 

high-stake decisions.

Example: medical imaging

• Example: geophysics 

Inverse heat conduction:

Inverse Radon transform:

Results

Elasticity imaging: (using experimental data)

Key takeaways:

ü GANs trained to learn complex priors in Bayesian inference.
ü Significant reduction in dimension for efficient sampling .
ü Convergence estimate of GAN showing decay of estimated statistics with the size of training set and network. 
ü Demonstration of method of problems motivated by physics, in the presence of noisy and occluded measurements.
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𝝈 = 2𝒙 𝛁𝐬𝐲 + 𝛁. 𝐲 𝐈 ≔ plane-stress

𝒙 ≔ shear modulus

𝒚 ≔ displacement field

Convergence of GAN to prior

Assumptions:
• The GAN discriminator 𝒅(𝒙;𝝓) is smooth.
• Derivates of 𝒅 with respect to its weights 𝝓 form a dense subset of 
𝐶<(Ω=).

• Number of training samples 𝑁 and number of weights 𝑁> are large 
enough.

Convergence results: given any 𝑚 ∈ 𝐶! Ω" ,

𝔼
𝒛~#?

𝔼
𝒛~#@

𝑚 𝒙 −
1
𝑁
'
$%&

'

𝑚 𝒈 𝒛 $

𝟐

< 𝐶 𝑁)& + (𝑁*
)+,)

where 𝐶, 𝛼 are positive constants depending on 𝑚.

[Adler et al, 2018]
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Bayesian inference

GAN as Prior

Key idea: Use the distribution learned by GAN as a surrogate for 
prior distribution and reformulate the inference problem in the 
low-dimensional latent space of the GAN.
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where,
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Steps:
1. Learn the prior distribution: train a GAN using samples from 

data distribution 𝑝!IJ%J(𝒙).

2. Characterize the posterior distribution: for a given measurement 
#𝒚, evaluate any statistic of interest 𝔼
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[𝑚(𝒙)].

MCMC Sampling:      𝑝MNONO 𝒛|#𝒚 ≈ 𝑝M
"#$% 𝒛|#𝒚 . 

Evaluate any point estimate 𝑠 𝒙 as,
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𝑠 𝒈 𝒛 , 𝒛 ~ 𝑝MNONO 𝒛|#𝒚

We use Hamiltonian Monte Carlo (HMC) with burn-in period  of 0.5
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