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1 HOW DOES THIS WORK COMPARE TO OVERSMOOTHING RESULTS?

Our results informally align with oversmoothing results, however, we do not provide rigorous
theorems in this regard because our focus is on regimes where GNNs work better compared to an
MLP, rather than regimes where the oversmoothing phenomenon is observed. A theoretical study
of the oversmoothing problem in our framework requires computing the distribution of the feature
representations of nodes at each layer, along with the effects of graph convolutions on this distribution.
For the XOR-CSBM data model, an analysis on multi-layer networks with non-linearities requires
non-trivial ideas, because the random variables (representing node features) become highly correlated
when convolutions are applied in deeper layers. We leave this analysis for future work. However, for
intuition, let us describe this effect for a simpler data model: the binary CSBM with means µ,−µ for
the two components, and a network with only one layer. Points from the component with mean−µ are
in one class and points from the other component with mean µ are in the other class. Using Lemma
A.3, we observe that in expectation, for any K ≥ 2, the value of ρ(K) is 1

n (1 + Γ(p, q)2K), where
Γ(p, q) = |p− q|/(p+ q). We also note that for this simple model, a single graph convolution moves
the means from µ,−µ to Γ(p, q)µ,−Γ(p, q)µ. Thus the distance between the means is reduced by a
factor of Γ(p, q)K after K convolutions. One can now compare the reduction in this distance with the
reduction in the variance (ρ(K)) to obtain a condition on K in terms of n, p, q. When the distance
between the means is small compared to the standard deviation, there is a large overlap between
the two distributions, causing misclassification. Even for the simple binary CSBM case, this result
requires stronger assumptions on the graph density to show that the value of ρ(K) is close to its
expectation. Since oversmoothing is not the focus of our results, we defer the complete analysis of
oversmoothing in the XOR-CSBM data model for future work.

2 WHAT IS THE INTUITIVE INTERPRETATION OF THEOREM 2?

Theorem 2 identifies a critical threshold involving the product of two quantities: Γ and ζ, where
Γ = |p−q|

p+q represents the signal of the graph (relational data), and ζ is a function of ‖µ−ν‖2σ

representing the signal of the Gaussian mixture (feature data). We obtain lower bounds on the product
Γζ for perfect classification of all nodes. This condition encapsulates how the regime of perfect
classification varies with ‖µ−ν‖σ and |p−q|p+q . We have also added section A.8 in the appendix, where
we show how to obtain the previously stated result from the general theorem statement. In Fig. 6
(g-h), the accuracy is poor because p and q are large and very close to each other, i.e., Γ (which
represents the signal in the graph) is very small. Thus, a convolution averages the features of a roughly
equivalent number of nodes from both the classes. Fig. 6 (a-h) are arranged in decreasing order of Γ,
which explains the degrading performance as Γ becomes smaller.

3 HOW DO THE RESULTS HOLD FOR HETEROGENOUS GRAPHS?

Our analysis holds for arbitrary p and q. Note that the ansatz we construct in Proposition A.7 consists
of the factor sgn(p − q). The GCN architecture works the same way for the case q > p as it does
for p > q and obtains the same variance reduction as expected. The intuition behind why our results
hold for heterophilous case as well is that graph convolution is an averaging operation, and hence, to
compute the feature representation of a node in class C0, it gathers more information from nodes in
C0 than in C1 for p > q, and more information from nodes in C1 than in C0 for p < q. In both cases,
it performs a variance reduction on the data which is the key to the improvement in the threshold.
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4 WHY ARE EXPERIMENTS ONLY FOR NETWORKS WITH UP TO 3 LAYERS?

There are two reasons for choosing to restrict ourselves to networks with up to three layers.

1. Our work is theoretical in nature, hence, from a theoretical standpoint if is sufficient to
consider three-layer networks to show the effects of graph convolutions at various layers
and draw a subsequent comparison.

2. The real-world datasets that we work with to demonstrate our theoretical results are known
to have state-of-the-art models consisting of at most three layer networks. In fact, we show
for the OGB datasets that the number of graph convolutions is what matters, instead of the
number of layers.
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