
Supplementary Materials of DeBut

Rui Lin1,∗ Jie Ran1,∗ King Hung Chiu2 Grazinao Chesi1 Ngai Wong1,∗
1 Department of Electrical and Electronic Engineering,

The University of Hong Kong, Hong Kong
Emial Address: {linrui, jieran, chesi, nwong}@eee.hku.hk

2 United Microelectronics Centre (Hong Kong) Limited,
Hong Kong Science Park, N.T., Hong Kong

Emial Address: {kuchiu}@umechk.com

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We introduce a new linear transform named DeBut,
which alleviates the square size limitation in the existing approaches.

(b) Did you describe the limitations of your work? [Yes] Now we design the chains
manually based on our experience instead of automatically.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our
work is a neural network compression method, which does not involve ethics or public
security issues.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes] We have checked the guidelines carefully, and are certain our paper
conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Appendix I.
(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix I.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We submit our
codes in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4, implementation details. Besides, we display the
training details in our codes submitted in the supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the error bars by repeating each experiment 10
times under the same setting.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4, implementation
details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the existing

assets we use in our experiments.
(b) Did you mention the license of the assets? [Yes] We use MNIST, CIFAR-10 &

ImageNet, and mention their licenses in Section 4.
∗RL, JR, and NW contributed equally to this work.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
The assets we use are all public and have been used in previous works.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We cite the data we use in our paper.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The datasets we used are common, which do
not contain the mentioned types.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

Appendix I: Complexity of DeBut Multiplication

In this section, we analysis the complexity of DeBut in detail when given a CONV layer with weights
[ci, co, k, k] and an input [ci, Hi,Wi]. We use K ∈ Rco×ci·k·k to denote the flattened weights, and
assume it can be represented by a series of DeBut factors R(pi,qi)

(ri,si,ti)
= (i = 1, · · · , N).

The number of nonzero elements in R
(pi,qi)
(ri,si,ti)

is pi

ri·ti × ri · si · ti = pi · si, or equivalently as
qi

si·ti ×ri ·si · ti = qi ·ri. By using X to denote the corresponding input matrix for K, the convolution
process can be denoted as

K ·X = E1 ·
N−1∏
i=0

R
(p(N−i),q(N−1)

(r(N−i),s(N−i),t(N−i))
· E2 ·X, (A1)

where E1 and E2 are identity matrices of size [co, co] and [k2ci, k
2ci], respectively.

For easier understanding, the input X can be regarded as HoWo columns of length k2ci (cf. Fig. 2).
Since E1, E2 and every R

(pi,qi)
(ri,si,ti)

(i = 1, · · · , N) are sparse, the naive sparse matrix-vector multipli-
cation algorithm can be employed. As he number of nonzero elements in E1 and E2 are co and k2ci,
respectively, the corresponding required matrix-vector operation for them are O(co) and O(k2ci),
which reflect that the complexity cost will be dominated by the DeBut factors.

For each R
(pi,qi)
(ri,si,ti)

, the number of nonzeros is pisi (qiri). Therefore, the matrix-vector multiplication

required by each R
(pi,qi)
(ri,si,ti)

is O(pisi). For the sake of simplicity, we can approximate the required
matrix-vector multiplication operation for all the DeBut factors as O(N · maxi={1,··· ,N} pisi).
Finally, by multiplying the number of columns in X , we can get the complexity of DeBut as
O((N ·maxi={1,··· ,N} pisi ·HoWo).

Appendix II: Alternating Least Squares (ALS) Initialization

In Section 3.2, we introduce how to employ ALS to initialize the DeBut factors. Fig. A1 shows the
relative errors of ALS approximation of an FC layer in LeNet and a CONV layer in VGG-16-BN
using different chains, respectively. The relative error of ALS is defined as ||F − F̂ ||2/||F ||2, where
F is the pretrained flattened filter matrix, and F̂ is the approximation of F by the ALS initialized
DeBut factors. For the FC layer of size [128, 400] in LeNet, four sweeps are enough for the error to
converge. Compared with LeNet, the CONV layer of size [512, 4608] in VGG-16-BN needs more
sweeps for convergence. That said, ten sweeps are enough for large layers in VGG-16-BN to obtain
good initialization.

We set the number of sweeps equal to 5 to initialize small layers in our experiments, namely, all layers
in LeNet and CONV1∼3 and FC1 layers in VGG-16-BN. On the other hand, we set the number of
sweeps equal to 10 for the large layers in VGG-16-BN and ResNet-50.

2

Figure A1: (Left) ALS error plots of DeBut approximation to FC1 layer in the modified LeNet. The
five chains are described in Table A1. (Right) ALS error plots of DeBut approximation to CONV12
layer in VGG-16-BN. The six chains are described in Table A5.

Appendix III: Details of Chains for LeNet

Tables A1 & A2 describe chains for the [128, 400] FC layer and [16, 72] CONV layer in the modified
LeNet. Each table contains monotonic and bulging chains.In the last column, the accuracy outside
the brackets is obtained without ALS initialization of the DeBut factors, while the number in the
brackets shows the performance with ALS initialization.

Monotonic Chains LC ALS Error Acc. (with ALS) (%)

1) 128←−−−−−−
(2,2,64)

128←−−−−−−
(2,2,32)

128←−−−−−−
(2,2,16)

128←−−−−−
(2,2,8)

128←−−−−−−
(8,25,1)

400 91.75% 0.9044 98.76 (98.56)

2) 128←−−−−−−
(2,2,64)

128←−−−−−−
(2,2,32)

128←−−−−−−
(1,2,32)

256←−−−−−−
(2,2,16)

256←−−−−−−−
(16,25,1)

400 85.00% 0.8534 98.82 (98.74)

Bulging Chains LC ALS Error Acc.(%)

1) 128←−−−−−−
(2,4,64)

256←−−−−−−
(2,4,32)

512←−−−−−
(4,5,8)

640←−−−−−
(8,5,1)

400 85.75% 0.8305 98.64 (98.68)

2) 128←−−−−−−
(2,4,64)

256←−−−−−−
(2,4,32)

512←−−−−−−
(2,1,16)

256←−−−−−−−
(16,25,1)

400 83.50% 0.8289 98.64 (98.69)

3) 128←−−−−−−
(2,4,64)

256←−−−−−−
(1,2,64)

512←−−−−−−
(2,2,32)

512←−−−−−−
(2,1,16)

256←−−−−−−−
(16,25,1)

400 82.50% 0.8321 98.71 (98.86)

Table A1: Monotonic and bulging DeBut chains to substitute the largest FC layer in the modified
LeNet. The layer-wise compression (LC) follows the definition in the main paper.

Monotonic Chains LC ALS Error Acc. (with ALS) (%)

1) 16←−−−−−
(4,4,4)

16←−−−−−
(2,2,2)

16←−−−−−
(1,3,2)

48←−−−−−
(2,3,1)

72 75.00% 0.8030 98.87 (99.03)

2) 16←−−−−−
(8,8,2)

16←−−−−−
(1,3,2)

48←−−−−−
(2,3,1)

72 72.22% 0.8434 99.04 (99.05)

3) 16←−−−−−
(2,3,8)

24←−−−−−
(1,2,8)

48←−−−−−
(2,2,4)

48←−−−−−
(4,6,1)

72 58.33% 0.7248 99.00 (99.05)

Bulging Chains LC ALS Error Acc.(%)

1) 16←−−−−−
(2,2,8)

16←−−−−−
(2,6,4)

48←−−−−−
(1,2,4)

96←−−−−−
(4,3,1)

72 55.56% 0.6289 99.12 (99.03)

2) 16←−−−−−
(2,3,8)

24←−−−−−
(1,2,8)

48←−−−−−
(2,4,4)

96←−−−−−
(4,3,1)

72 50.00% 0.6595 98.95 (99.03)

3) 16←−−−−−
(2,6,8)

48←−−−−−
(1,2,8)

96←−−−−−
(2,2,4)

96←−−−−−
(4,3,1)

72 41.67% 0.7042 99.10 (98.96)

Table A2: Monotonic and bulging DeBut chains to substitute the largest CONV layer in the modified
LeNet. The layer-wise compression (LC) follows the definition in the main paper.

Appendix IV: Details of Chains for VGG-16-BN

In Table A3, we give three monotonic and three bulging chains for substituting the CONV13 layer in
VGG-16-BN.

The sizes of the flattened layers in VGG-16-BN are listed in Table 1. There are ten different sizes:
[64, 27] (CONV1), [64, 576] (CONV2), [128, 576] (CONV3), [128, 1152] (CONV4), [256, 1152]

3

(CONV5), [256, 2304] (CONV6-7), [512, 2304] (CONV8), [512, 4608] (CONV9-13), [512, 512]
(FC1) and [512, 10] (FC2). Since the number of input channels of CONV1 (3) and the number of
output channels of FC2 (10) are small, we do not use DeBut factors to substitue the two layers.
For CONV layers of size [256, 2304] and [512, 4608], we select CONV7 and CONV12 as the
representatives.

In Table A4, we list monotonic and bulging chains for the flattened layers of size [64, 576], [128, 576],
[128, 1152] and [256, 512], and provide the LC and (relative) ALS errors after initialization.

In Table A5, we show monotonic and bulging chains for the flattened layers of size [256, 2304],
[512, 2304], [512, 4608]. Since the FC layer is of size [512, 512], a square matrix, we employ the
regular Butterfly chain. The LC and (relative) ALS errors are shown as well.

Monotonic Chain(s) LC ALS Error Acc. (with ALS) (%)

1) 2048←−−−−−
(2,2,32)

2048←−−−−−
(2,2,16)

2048←−−−−−
(2,4,8)

4096←−−−−−
(8,9,1)

4608
97.31% 0.9141 92.97 (93.90)

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,2,64)

2) 2048←−−−−−
(2,4,32)

4096←−−−−−
(2,2,16)

4096←−−−−−
(2,2,8)

4096←−−−−−
(8,9,1)

4608
97.05% 0.9307 93.09 (93.73)

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,2,128)

1024←−−−−−
(2,4,64)

3) 4096←−−−−−
(2,2,32)

4096←−−−−−
(2,2,16)

4096←−−−−−
(2,2,8)

4096←−−−−−
(8,9,1)

4608
96.79% 0.9111 93.18 (94.07)

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

Bulging Chain(s) LC ALS Error Acc. (with ALS) (%)

1) 4096←−−−−−
(2,2,32)

4096←−−−−−
(2,4,16)

8192←−−−−−
(4,3,4)

6144←−−−−−
(4,3,1)

4608
96.53% 0.9116 93.23 (93.79)

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

2) 4096←−−−−−
(2,4,32)

8192←−−−−−
(2,2,16)

8192←−−−−−
(4,3,4)

6144←−−−−−
(4,3,1)

4608
96.18% 0.9261 92.69 (93.86)

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

3) 4096←−−−−−
(2,4,32)

8192←−−−−−
(2,2,16)

8192←−−−−−
(16,9,1)

4608
94.88% 0.9121 92.89 (93.93)

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

Table A3: DeBut substitution of the last CONV layer in the modified VGG-16-BN.

Appendix V: Details of Chains for ResNet-50

Tables A6 & A7 describe the chains we use for each CONV layer in the last three blocks except the
downsampling layers.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

4

Layer size Monotonic Chains LC ALS Error

[64, 576]
1) 64←−−−−−

(8,9,8)
72←−−−−−

(2,4,4)
144←−−−−−

(1,2,4)
288←−−−−−

(4,8,1)
576 90.62% 0.9480

(CONV2) 2) 64←−−−−−
(8,16,8)

128←−−−−−
(1,2,8)

256←−−−−−
(2,3,4)

384←−−−−−
(4,6,1)

576 88.19% 0.9478

3) 64←−−−−−
(4,8,16)

128←−−−−−
(1,2,16)

256←−−−−−
(2,3,8)

384←−−−−−
(8,12,1)

576 83.33% 0.8808

Bulging Chains LC ALS Error

[64, 576]
1) 64←−−−−−

(4,8,16)
128←−−−−−

(2,4,8)
256←−−−−−

(2,3,4)
384←−−−−−

(1,2,4)
768←−−−−−

(4,3,1)
576 86.81% 0.9182

(CONV2) 2) 64←−−−−−
(2,4,32)

128←−−−−−
(2,4,16)

256←−−−−−
(2,3,8)

384←−−−−−
(2,4,4)

768←−−−−−
(4,3,1)

576 85.42% 0.8369

3) 64←−−−−−
(2,4,32)

128←−−−−−
(2,4,16)

256←−−−−−
(2,3,8)

384←−−−−−
(1,2,8)

768←−−−−−
(8,6,1)

576 81.25% 0.8295

Layer size Monotonic Chains LC ALS Error

[128, 576]
1) 128←−−−−−

(4,8,32)
256←−−−−−

(2,2,16)
256←−−−−−

(4,6,4)
384←−−−−−

(4,6,1)
576 92.71% 0.9531

(CONV3) 2) 128←−−−−−
(2,4,64)

256←−−−−−
(4,4,16)

256←−−−−−
(4,6,4)

384←−−−−−
(4,6,1)

576 92.71% 0.9135

3) 128←−−−−−−
(8,16,16)

256←−−−−−
(2,2,8)

256←−−−−−
(2,3,4)

384←−−−−−
(4,6,1)

576 92.36% 0.9720

Bulging Chains LC ALS Error

[128, 576]
1) 128←−−−−−

(4,4,32)
128←−−−−−

(4,8,8)
256←−−−−−

(2,3,4)
384←−−−−−

(1,2,4)
768←−−−−−

(4,3,1)
576 92.71% 0.9287

(CONV3) 2) 128←−−−−−
(4,4,32)

128←−−−−−
(2,4,16)

256←−−−−−
(2,3,8)

384←−−−−−
(2,4,4)

768←−−−−−
(4,3,1)

576 92.37% 0.9274

3) 128←−−−−−
(2,2,64)

128←−−−−−
(2,4,32)

256←−−−−−
(2,3,16)

384←−−−−−
(2,4,8)

768←−−−−−
(8,6,1)

576 89.59% 0.8926

Layer size Monotonic Chains LC ALS Error

[128, 1152]
1) 128←−−−−−

(4,8,32)
256←−−−−−

(2,4,16)
512←−−−−−

(2,4,8)
1024←−−−−−

(8,9,1)
1152 90.97% 0.9424

(CONV4) 2) 128←−−−−−
(4,8,32)

256←−−−−−
(4,8,8)

512←−−−−−
(1,2,8)

1024←−−−−−
(8,9,1)

1152 90.97% 0.9413

3) 128←−−−−−
(2,4,64)

256←−−−−−
(8,16,8)

512←−−−−−
(1,2,8)

1024←−−−−−
(8,9,1)

1152 89.93% 0.9135

Bulging Chains LC ALS Error

[128, 1152]
1) 128←−−−−−

(2,4,64)
256←−−−−−

(2,4,32)
512←−−−−−

(2,3,16)
768←−−−−−

(2,4,8)
1536←−−−−−

(8,6,1)
1152 89.58% 0.9195

(CONV4) 2) 128←−−−−−
(2,4,64)

256←−−−−−
(1,2,64)

512←−−−−−
(4,6,16)

768←−−−−−
(2,4,8)

1536←−−−−−
(8,6,1)

1152 88.89% 0.9132

3) 128←−−−−−−
(1,2,128)

256←−−−−−
(2,4,64)

512←−−−−−
(4,6,16)

512←−−−−−
(2,4,8)

256←−−−−−
(18,6,1)

400 88.72% 0.8983

Layer size Monotonic Chains LC ALS Error

[256, 1152]
1) 256←−−−−−−

(8,16,32)
512←−−−−−

(2,2,16)
512←−−−−−

(2,4,8)
1024←−−−−−

(8,9,1)
1152 91.44% 0.9780

(CONV5) 2) 256←−−−−−
(4,8,64)

512←−−−−−
(2,2,32)

512←−−−−−
(4,8,8)

1024←−−−−−
(8,9,1)

1152 91.44% 0.9681

3) 256←−−−−−
(4,8,64)

512←−−−−−
(8,8,8)

512←−−−−−
(1,2,8)

1024←−−−−−
(8,9,1)

1152 91.44% 0.9662

Bulging Chains LC ALS Error

[256, 1152]
1) 256←−−−−−−

(2,4,128)
512←−−−−−

(4,6,32)
768←−−−−−

(8,16,4)
1536←−−−−−

(4,3,1)
1152 94.62% 0.9685

(CONV5) 2) 256←−−−−−−
(2,4,128)

512←−−−−−
(4,6,32)

768←−−−−−
(8,16,4)

1536←−−−−−
(4,3,1)

1152 92.88% 0.9403

3) 256←−−−−−−
(2,4,128)

512←−−−−−−
(16,24,8)

768←−−−−−
(2,4,4)

1536←−−−−−
(4,3,1)

1152 92.88% 0.9401

Table A4: DeBut chains for layers with flattened weight matrices of sizes [64, 576], [128, 576],
[128, 1152], and [256, 1152].

5

Layer size Monotonic Chains LC ALS Error

[256, 2304]
1) 256←−−−−−−

(4,8,64)
512←−−−−−−

(2,4,32)
1024←−−−−−

(4,8,8)
2048←−−−−−

(8,9,1)
2304 94.79% 0.9596

(CONV7) 2) 256←−−−−−−−
(2,4,128)

512←−−−−−−
(4,8,32)

1024←−−−−−
(4,8,8)

2048←−−−−−
(8,9,1)

2304 94.62% 0.9506

3) 256←−−−−−−−
(2,4,128)

512←−−−−−−
(2,4,64)

1024←−−−−−−
(8,16,8)

2048←−−−−−
(8,9,1)

2304 93.58% 0.9420

Bulging Chains LC ALS Error

[256, 2304]
1) 256←−−−−−−−

(2,4,128)
512←−−−−−−−

(1,2,128)
1024←−−−−−−

(4,8,32)
2048←−−−−−

(4,6,8)
3072←−−−−−

(8,6,1)
2304 93.06% 0.9405

(CONV7) 2) 256←−−−−−−−
(2,4,128)

512←−−−−−−−
(1,2,128)

1024←−−−−−−−
(8,16,16)

2048←−−−−−
(2,3,8)

3072←−−−−−
(8,6,1)

2304 92.71% 0.9391

3) 256←−−−−−−−
(2,4,128)

512←−−−−−−
(2,4,64)

1024←−−−−−−
(2,4,32)

2048←−−−−−−
(2,3,16)

3072←−−−−−−−
(16,12,1)

2304 91.49% 0.9357

Layer size Monotonic Chains LC ALS Error

[512, 2304]
1) 512←−−−−−−−

(8,16,64)
1024←−−−−−−

(4,4,16)
1024←−−−−−

(2,4,8)
2048←−−−−−

(8,9,1)
2304 97.05% 0.9854

(CONV8) 2)←−−−−−−
(2,4,64)

2048←−−−−−−
(2,2,32)

2048←−−−−−−
(2,2,16)

2048←−−−−−
(2,2,8)

2048←−−−−−
(8,9,1)

2304
96.79% 0.9654

512←−−−−−−−
(2,2,256)

512←−−−−−−−
(2,4,128)

1024

3) 512←−−−−−−−
(4,8,128)

1024←−−−−−−
(4,8,32)

1024←−−−−−
(4,4,8)

2048←−−−−−
(8,9,1)

2304 96.70% 0.9749

Bulging Chains LC ALS Error

[512, 2304]
1) 512←−−−−−−−

(4,8,128)
1024←−−−−−−

(2,4,64)
2048←−−−−−−

(2,2,32)
2048←−−−−−

(4,6,1)
3072←−−−−−

(8,6,1)
2304 96.35% 0.9755

(CONV8) 2) 512←−−−−−−−
(2,4,256)

1024←−−−−−−−
(2,4,128)

2048←−−−−−−
(4,4,32)

2048←−−−−−
(4,6,8)

3072←−−−−−
(8,6,1)

2304 96.18% 0.9578

3) 512←−−−−−−−
(2,4,256)

1024←−−−−−−−
(2,4,128)

2048←−−−−−−
(4,4,32)

2048←−−−−−−
(2,3,16)

3072←−−−−−−−
(16,12,1)

2304 95.14% 0.9509

Layer size Monotonic Chains LC ALS Error
1)←−−−−−−

(2,2,64)
2048←−−−−−−

(2,2,32)
2048←−−−−−−

(2,2,16)
2048←−−−−−

(2,4,8)
4096←−−−−−

(8,9,1)
4608

97.31% 0.9199

(CONV12) 512←−−−−−−−
(2,4,256)

1024←−−−−−−−
(2,4,128)

2048

2)←−−−−−−
(2,4,64)

2048←−−−−−−
(2,4,32)

4096←−−−−−−
(2,2,16)

4096←−−−−−
(2,2,8)

4096←−−−−−
(8,9,1)

4608
97.05% 0.9158

512←−−−−−−−
(2,4,256)

1024←−−−−−−−
(2,2,128)

1024

3)←−−−−−−
(2,4,64)

4096←−−−−−−
(2,2,32)

4096←−−−−−−
(2,2,16)

4096←−−−−−
(2,2,8)

4096←−−−−−
(8,9,1)

4608
96.79% 0.9124

512←−−−−−−−
(2,4,256)

1024←−−−−−−−
(2,4,128)

2048

Bulging Chains LC ALS Error

[512, 4608]
1)←−−−−−−

(2,4,64)
4096←−−−−−−

(2,2,32)
4096←−−−−−−

(2,4,16)
8192←−−−−−

(4,3,4)
6144←−−−−−

(4,3,1)
4096

96.53% 0.9075

512←−−−−−−−
(2,4,256)

1024←−−−−−−−
(2,4,128)

2048

(CONV12) 2)←−−−−−−
(2,4,64)

4096←−−−−−−
(2,4,32)

8192←−−−−−−
(2,2,16)

8192←−−−−−
(4,3,4)

6144←−−−−−
(4,3,1)

4096 96.18% 0.9045

512←−−−−−−−
(2,4,256)

1024←−−−−−−−
(2,4,128)

2048

3)←−−−−−−−
(2,4,128)

2048←−−−−−−
(2,4,64)

4096←−−−−−−
(2,4,32)

8192←−−−−−−
(2,2,16)

8192←−−−−−−
(16,9,1)

4608
94.88% 0.8864

512←−−−−−−−
(2,4,256)

1024

Layer size Regular Chains LC ALS Error

[512, 512] 1)←−−−−−
(2,2,8)

512←−−−−−−
(2,2,16)

512←−−−−−−
(2,2,32)

512←−−−−−−
(2,2,64)

512←−−−−−−−
(2,2,128)

512←−−−−−−−
(2,2,256)

512
96.48% 0.9010

(FC1) 512←−−−−−
(2,2,1)

512←−−−−−
(2,2,2)

512←−−−−−
(2,2,4)

512

Table A5: DeBut chains for layers with flattened weight matrices of sizes [256, 2304], [512, 2304],
[512, 4608], and [512, 512].

6

Layer Chains LC ALS Error

CONV5_1 1024←−−−−−
(2,4,16)

2048←−−−−−
(2,2,8)

2048←−−−−−
(2,2,4)

2048←−−−−−
(4,2,1)

1024
95.51% 0.9630

512←−−−−−−
(2,2,256)

512←−−−−−−
(2,4,128)

1024←−−−−−
(2,2,64)

1024←−−−−−
(2,2,32)

CONV5_2 4096←−−−−−
(2,4,32)

8192←−−−−−
(2,2,16)

8192←−−−−−
(16,9,1)

4608 94.88% 0.9599

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

CONV5_3 1024←−−−−−
(2,2,32)

1024←−−−−−
(2,2,16)

1024←−−−−−
(2,2,8)

1024←−−−−−
(2,2,4)

1024←−−−−−
(4,2,1)

512 97.66% 0.9788

2048←−−−−−−−
(2,2,1024)

2048←−−−−−−
(2,2,512)

2048←−−−−−−
(4,2,128)

1024←−−−−−
(2,2,64)

CONV5_4 8192←−−−−−
(4,4,16)

8192←−−−−−
(4,4,4)

8192←−−−−−
(4,1,1)

2048 89.45% 0.9164

512←−−−−−−
(2,8,256)

2048←−−−−−−
(4,16,64)

CONV5_5 4096←−−−−−
(2,4,32)

8192←−−−−−
(2,2,16)

8192←−−−−−
(16,9,1)

4608 94.88% 0.9567

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

CONV5_6 1024←−−−−−
(2,2,32)

1024←−−−−−
(2,2,16)

1024←−−−−−
(2,2,8)

1024←−−−−−
(2,2,4)

1024←−−−−−
(4,2,1)

512 97.66% 0.9791

2048←−−−−−−−
(2,2,1024)

2048←−−−−−−
(2,2,512)

2048←−−−−−−
(4,2,128)

1024←−−−−−
(2,2,64)

CONV5_7 8192←−−−−−
(4,4,16)

8192←−−−−−
(4,4,4)

8192←−−−−−
(4,1,1)

2048 89.45% 0.9189

512←−−−−−−
(2,8,256)

2048←−−−−−−
(4,16,64)

CONV5_8 4096←−−−−−
(2,4,32)

8192←−−−−−
(2,2,16)

8192←−−−−−
(16,9,1)

4608 94.88% 0.9544

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

CONV5_9 1024←−−−−−
(2,2,32)

1024←−−−−−
(2,2,16)

1024←−−−−−
(2,2,8)

1024←−−−−−
(2,2,4)

1024←−−−−−
(4,2,1)

512 97.66% 0.9778

2048←−−−−−−−
(2,2,1024)

2048←−−−−−−
(2,2,512)

2048←−−−−−−
(4,2,128)

1024←−−−−−
(2,2,64)

Table A6: The bulging chains for DeBut-bulging. CONV5_1 to CONV5_9 are convolution layers
from the last three blocks denoted in [1].

Layer Chains LC ALS Error

CONV5_1 512←−−−−−−
(2,4,256)

1024←−−−−−
(4,4,64)

1024←−−−−−
(4,4,16)

1024←−−−−−
(4,4,4)

1024←−−−−−
(4,4,1)

1024 96.48% 0.9640

CONV5_2 4096←−−−−−
(2,2,32)

4096←−−−−−
(2,2,16)

4096←−−−−−
(2,2,8)

4096←−−−−−
(8,9,1)

4608 96.79% 0.9730

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

CONV5_3 1024←−−−−−
(2,2,32)

1024←−−−−−
(2,2,16)

1024←−−−−−
(2,2,8)

1024←−−−−−
(2,2,4)

1024←−−−−−
(4,2,1)

512 97.66% 0.9788

2048←−−−−−−−
(2,2,1024)

2048←−−−−−−
(2,2,512)

2048←−−−−−−
(4,2,128)

1024←−−−−−
(2,2,64)

CONV5_4 1024←−−−−−
(2,4,16)

2048←−−−−−
(4,4,4)

2048←−−−−−
(4,4,1)

2048 97.36% 0.9705

512←−−−−−−
(2,2,256)

512←−−−−−−
(2,4,128)

1024←−−−−−
(4,4,32)

CONV5_5 4096←−−−−−
(2,2,32)

4096←−−−−−
(2,2,16)

4096←−−−−−
(2,2,8)

4096←−−−−−
(8,9,1)

4608 96.79% 0.9699

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

CONV5_6 1024←−−−−−
(2,2,32)

1024←−−−−−
(2,2,16)

1024←−−−−−
(2,2,8)

1024←−−−−−
(2,2,4)

1024←−−−−−
(4,2,1)

512 97.66% 0.9791

2048←−−−−−−−
(2,2,1024)

2048←−−−−−−
(2,2,512)

2048←−−−−−−
(4,2,128)

1024←−−−−−
(2,2,64)

CONV5_7 1024←−−−−−
(2,4,16)

2048←−−−−−
(4,4,4)

2048←−−−−−
(4,4,1)

2048 97.36% 0.9716

512←−−−−−−
(2,2,256)

512←−−−−−−
(2,4,128)

1024←−−−−−
(4,4,32)

CONV5_8 4096←−−−−−
(2,2,32)

4096←−−−−−
(2,2,16)

4096←−−−−−
(2,2,8)

4096←−−−−−
(8,9,1)

4608 96.79% 0.9669

512←−−−−−−
(2,4,256)

1024←−−−−−−
(2,4,128)

2048←−−−−−
(2,4,64)

CONV5_9 1024←−−−−−
(2,2,32)

1024←−−−−−
(2,2,16)

1024←−−−−−
(2,2,8)

1024←−−−−−
(2,2,4)

1024←−−−−−
(4,2,1)

512 97.66% 0.9778

2048←−−−−−−−
(2,2,1024)

2048←−−−−−−
(2,2,512)

2048←−−−−−−
(4,2,128)

1024←−−−−−
(2,2,64)

Table A7: The monotonic chains for DeBut-mono. CONV5_1 to CONV5_9 are convolution layers
from the last three blocks denoted in [1].

7

