
Under review as a conference paper at ICLR 2022

A RELATED WORK
Our work adds the interpretability to temporal point process models and extends the logic learning
method.
Temporal point process models have been an elegant tool for event data learning, either for future
prediction or (quasi-) causality discovery (Yan et al., 2019; 2016; Liu et al., 2017; Wu et al., 2018b).
Traditional parametric models such as Hawkes process (Hawkes, 1971b) are built on simple assump-
tions such that past events will boost the occurrence of future events. To capture more complicated
dynamics, Du et al. (2016a) proposed the first neural point process (NPP) model, where the intensity
function is modeled by a Recurrent Neural Network (RNN). Mei & Eisner (2016) improved RMTPP
by constructing a continuous-time RNN. Zuo et al. (2020); Zhang et al. (2020a) further leveraged the
self-attention mechanism to capture the long-term dependencies of events and meanwhile enhance
the computational efficiency. While these neural-based point process models are flexible and excel at
event prediction, they are hard to interpret. To add transparency to the black-box models, recently
Zhang et al. (2021) introduced Granger causality as a latent graph to explain point processes and
the structures are jointly learned via gradient descent. However, Granger causality is still limited
to the mutual triggering patterns of events. To incorporate more sophisticated and interpretable
event patterns Li et al. (2020) proposed a Temporal Logic Point Process (TLPP), which constructs
intensity function by pre-specified temporal logic rules. In fact, such temporal logic rule guided
symbolic reasoning process will require highly expressive models such as Transformer to have a
good approximate to their solutions (Finkbeiner et al., 2020). However, TLPP can not automatically
discover rules and our TELLER overcomes this major drawback.
Probabilistic logic model dates back to Markov Logic Networks (MLN) (Richardson & Domingos,
2006; Singla & Domingos, 2008), where a Markov random field is used to model the first-order
logic rules and their weights will be learned. Enhanced methods (Papai et al., 2012; Tran & Davis,
2008; Brendel et al., 2011) are generally based on probabilistic graphical models, which allow for
partial and noisy observations yet at the cost of intensive computation for inference. TLPP (Li et al.,
2020) and our TELLER simplify their setting with two assumptions, i.e. causal direction and fully
observed states, and then the temporal logic model can be formulated as a continuous-time point
process, which bridges the first-order temporal logic rules to point process.
Logic learning methods include SATNet (Wang et al., 2019a), which transforms rule mining into
an SDP-relaxed MaxSAT problem, and attention-based methods (Yang & Song, 2019). Some
works (Wang et al., 2017; Evans & Grefenstette, 2018; Wei et al., 2019) formulated logic learning as
learning an explanatory binary classifier. For example, Evans & Grefenstette (2018) constructed a
differentiable model that predicts the conditional probability of the outcome label for a ground atom.
Neural-LP (Yang et al., 2017) provided the first fully differentiable rule mining method based on
TensorLog (Cohen, 2016), and Wang et al. (2019b) extended Neural-LP to learn rules with numerical
values via dynamic programming and cumulative sum operations. In addition, DRUM (Sadeghian
et al., 2019) connected learning rule confidence scores with low-rank tensor approximation. Among
all these methods, Dash et al. (2018) and Wei et al. (2019) first introduced the Column Generation
algorithm in logic learning, which is the closest to our learning framework. However, all these
methods are restricted to the static setting and cannot be directly implemented on event sequences.

B ALLEN’S THIRTEEN TEMPORAL RELATION

Allen’s original paper (Allen, 1990) defined 13 types of temporal relations between two time intervals.
Specifically, define the time intervals for predicate xA and predicate xB as ItA = (tA1 , tA2] and
ItB = (tB1 , tB2] respectively, where tA1 and tB1 are the transition times that the predicate enters
the state, and and tA2 and tB2 are the time that the predicate leaves the state. The temporal relation,
denoted as RA type B(ItA , ItB), is a logic function defined over the time intervals.
See below Table 5 for an illustration. As shown in this table, the temporal relation can be mathemati-
cally evaluated by a step function

g(s) := (s � 0)
and an indicator function

(s) := (s = 0).

Considering the inverses of the listed relations plus the symmetric relation “Equal”, there are a total
of 13 relations.
In practice, to tolerate noise, i.e., the imprecisely recorded time information, it makes sense to
introduce softened approximation functions for the step function g(s) and the delta function (s) in

13

Under review as a conference paper at ICLR 2022

Table 5: Interval-based temporal relations.
Temporal Relation Logic Function RA type B(ItA , ItB) Illustration

A Before B g(tB1 � tA2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

A Meets B (tA2 � tB1)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

A Overlaps B g(tB1 � tA1) · g(tB1 � tA2) · g(tB2 � tA2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

A Starts B (tA1 � tB1) · g(tB2 � tA2) !"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

A Contains B g(tB1 � tA1) · g(tA2 � tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

A Finished-by B g(tB1 � tA1) · (tA2 � tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%
A Equals B (tA1 � tB1) · (tA2 � tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%
replacement of those used in the definitions of temporal relations in Table 5. Step function g(s) can
be softened as, e.g., a triangular function or a logistic function, i.e.,

g(s) = min(1,max(0,�s+ 1
2)),

or g(s) =
1

1 + exp(��s)
. (11)

Delta function (s) can be softened as a triangular function or a Laplace density function, i.e.,
(s) = max(0,min(s

�2 + 1
� ,�

s
�2 + 1

�)),

or (s) =
exp(�|s|/�)

�
. (12)

Decaying parameters � and � � 1 can be pre-specified or treated as unknown parameters, which can
be learned from data by maximizing the likelihood. In this paper, we pre-specify these decaying
parameters and make them frozen in the learning process (i.e., both the master and the subproblem).

C PROOF OF THE LIKELIHOOD

Given a realization of all predicates {H(t)}0<t<T , one can write out the likelihood function in terms
of the intensity function as follows.
For the head predicate Y , denote the dual conditional intensity function as �

⇤(t) and µ
⇤(t). Let

p(tn+1|Htn , y(tn) = 0) and p(tn+1|Htn , y(tn) = 1) be the conditional density function of the next
event time tn+1 given history and y(tn) = 0, y(tn) = 1, respectively. Let F (t|Htn , y(tn) = 0) and
F (t|Htn , y(tn) = 1) be the corresponding cumulative distribution function for any t > tn.

Based on the definition of the conditional transition intensity (or called hazard function), we have
�⇤(t) =

p(t|Htn , y(tn) = 0)
1� F (t|Ht, y(tn) = 0)

,

and µ⇤(t) =
p(t|Htn , y(tn) = 1)

1� F (t|Htn , y(tn) = 1).
(13)

From (13), we have
�⇤(t) = �

d
dt

log(1� F (t|Ht, y(tn) = 0)),

µ⇤(t) = �
d
dt

log(1� F (t|Ht, y(tn) = 1)).

Integrating both sides, we can get the conditional density and the cumulative distribution function,

p(t|Htn , y(tn) = 0) = �⇤(t) exp

✓
�

Z t

tn

�⇤(s)ds

◆
,

F (t|Htn , y(tn) = 0) = 1� exp

✓
�

Z t

tn

�⇤(s)ds

◆
,

p(t|Htn , y(tn) = 1) = µ⇤(t) exp

✓
�

Z t

tn

µ⇤(s)ds

◆
,

F (t|Htn , y(tn) = 1) = 1� exp

✓
�

Z t

tn

µ⇤(s)ds

◆
.

14

Under review as a conference paper at ICLR 2022

Let t0 = 0. Given the transition times (t1, t2, . . . , tn), and suppose y(t0) = 0, y(tn) = 1 and the head
predicate is still in state 1 at time T , the likelihood function can be factorized into all the conditional
densities of each points given all points before it, i.e., the likelihood function is
L = p(t1|Ht0 , y(t0) = 0)p(t2|Ht1 , y(t1) = 1) · · · p(tn|Htn�1 , y(tn�1) = 0)(1� F (t|Htn , y(tn) = 1)).
Plugging in the conditional density function and the cumulative distribution function, the likelihood
is expressed as,

L = �⇤(t1) exp
⇣
�
R t1
0

�⇤(s)ds
⌘
· µ⇤(t2) exp

⇣
�
R t2
t1

µ⇤(s)ds
⌘

· · ·�⇤(tn) exp
⇣
�
R tn
tn�1

�⇤(s)ds
⌘
· exp

⇣
�
R t

tn
µ⇤(s)ds

⌘
,

which completes the proof.

D OPTIMALITY CONDITION AND COMPLEMENTARY SLACKNESS

We will provide more descriptions on the optimality condition and the complementary slackness,
which provides a sound guarantee to our learning algorithm.
Given the original restricted convex problem,

PMaster : w⇤
, b

⇤

0, b
⇤

1 = argmin
w,b0,b1

�`(w, b0, b1) +
X

f2F̄

cfwf ; s.t. wf � 0, f 2 F̄ (14)

where parameter cf depends on the complexity of rule f , such as the number of predicates involved
in f (i.e., rule length).
The Lagrangian of the original master problem is

L(w, b0, b1,⌫) = �` (w, b0, b1) +
X

f2F̄

cfwf �
X

f2F̄

⌫fwf , (15)

where ⌫f � 0 is the Lagrange multiplier associated with the non-negativity constraints of wf . As it
is a convex problem and strong duality holds under mild conditions. Define w⇤

, b
⇤

0, b
⇤

1 as the primal
optimal, and ⌫⇤ as the dual optimal, then:

�`(w⇤
, b

⇤

0, b
⇤

1) = inf
w,b0,b1

L(w, b0, b1,⌫
⇤) (strong duality)

= inf
w,b0,b1

0

@�` (w, b0, b1) +
X

f2F̄

cfwf �
X

f2F̄

⌫
⇤

fwf

1

A

 �` (w⇤
, b

⇤

0, b
⇤

1) +
X

f2F̄

�fw
⇤

f �
X

f2F̄

⌫
⇤

fw
⇤

f

 �` (w⇤
, b

⇤

0, b
⇤

1) +
X

f2F̄

�fw
⇤

f .

(16)

Therefore,
P

f2F̄
⌫
⇤

fw
⇤

f = 0, for f 2 F̄ . This implies the complementary slackness, i.e.,
w

⇤

f = 0) ⌫
⇤

f � 0, w
⇤

f > 0) ⌫
⇤

f = 0 (17)
Given the Karush-Kuhn-Tucker (KKT) conditions, gradient of Lagrangian L(w⇤

, b
⇤

0, b
⇤

1,⌫
⇤) w.r.t.

w⇤
, b

⇤

0, b
⇤

1 vanishes, i.e.,

⌫
⇤

f := � @`(w, b0, b1)

@wf

����
w⇤,b⇤0 ,b

⇤
1

+ cf . (18)

In summary, combining conditions (17) and (18), we obtain the optimalitiy condition,
1. if w⇤

f > 0, then ⌫
⇤

f = 0;

2. if w⇤

f = 0, then ⌫
⇤

f � 0,
where the gradient ⌫⇤f can be computed via (18).

15

Under review as a conference paper at ICLR 2022

E ALGORITHM BOX

Our TELLER alternates between solving a restricted master problem and a subproblem. We summa-
rize the algorithm in Algorithm 1 and Algorithm 2. RMP indicates the Restricted Master Problem
used to update model parameters. SP refers to the Sub-Problem used to construct a new rule. Here
we use RAFS as our search scheme.

Algorithm 1: TELLER (RAFS)
Input: TimeLimit, MaxRuleLen
Output: ruleSet

1 stack empty stack;
2 ruleSet empty set;
3 b 0;
4 w 0;
5 b,w RMP(b,w, ruleSet); // Initialize weights and bases.
6 while RunTime TimeLimit do
7 if stack.isEmpty() then
8 NewRule SP(b,w, ruleSet, None); // Search simple rule with length

= 1.
9 if NewRule is None then

10 break; // If simple rule does not exist, algorithm ends.

11 else
12 RuleToExtend stack.top();
13 NewRule SP(b,w, ruleSet, RuleToExtend);// Try to extend this rule.
14 if NewRule is None then
15 stack empty stack;// If this rule can not be extended, do

not revisit it.

16 if len(NewRule)=MaxRuleLen then
17 stack empty stack;// If this rule reaches the maximum rule

length, stop extending it.

18 if NewRule then
19 ruleSet.add(NewRule);
20 stack.push(NewRule);
21 b,w RMP(b,w, ruleSet);// After adding new rule, update

weights and bases

22 return ruleSet

16

Under review as a conference paper at ICLR 2022

Algorithm 2: SubProblem (SP)
Input: b,w, ruleSet, RuleToExtend
Output: NewRule

1 TempRelSet {Rbe, Req, Rme, . . . ,Null}; // Thirteen types of temporal
relation and Null (i.e., no temporal relation constraint).

2 bodyPredSet, Y defined by dataset;
3 candRuleSet empty set;
4 if RuleToExtend is None then

// Search simple rule with length = 1.
5 for sign(Y) in {+,�} do
6 for X in bodyPredSet and sign(X) in {+,�} do
7 for RX,Y in TempRelSet do
8 candRuleSet.add((¬)Y (¬)X ^ RX,Y);

9 else
// Try to extend input rule.

10 for X in bodyPredSet.difference(RuleToExtend) and for sign(X) in {+,�} do
11 for X

0 in RuleToExtend do
12 for RX,X0 in TempRelSet do
13 candRuleSet.add((¬)Y RuleToExtend ^ (¬)X (^X0in RuleToExtendRX,X0));

14 optValue, optRule Evaluate the subproblem objective and choose the smallest one from the
candRuleSet;

15 if optValue < 0 then
// This rule is a valid rule, i.e. it can improve RMP.

16 NewRule optRule;
17 else
18 NewRule None;
19 return NewRule

F SEARCH SCHEME FOR SUBPROBLEM: RULE-ADDITION-FIRST SEARCH

The search scheme can also be the Rule-Addition-First Search (RAFS). For the RAFS, the algorithm
starts with an empty rule set and first focuses on discovering all rules with only one body predicate.
Then assign each of them a score that equals the objective function of the subproblem (pricing
problem) applied to the rule. To expand the rules from length l to l + 1, we do the following: we
process all generated rules that have l predicates in increasing order of their score (since we aim to
find a negative reduced cost), and for each such rule, we create new rules by appending an additional
predicate together with the associated temporal relations. Whenever we find a rule with a negative
reduced cost, we add it to the current rule list. When our enumeration terminates, we return the best
rules generated by the heuristic before proceeding to the next value of l. When none of the rules with
length l can be extended to l + 1, we proceed to expand rule from length l + 1 to l + 2. We may also
pre-specify a maximum rule length and set a time limit to the algorithm.

17

Under review as a conference paper at ICLR 2022

G SYNTHETIC EXPERIMENT RESULTS

Dataset description: For synthetic experiment, we systematically considered 12 settings, where
settings-{1, 7, 9, 10, 11, 12} are reported as dataset-{1, 2, 3, 4, 5, 6} in main text Section 4.2. Each
setting corresponds to different rule weights, rule length and number, type of temporal relation, and
intensity of free predicates.
To verify the similarity between the ground truth rules and the generated rules, we further utilize the
Jaccard coefficient to measure the degree of consistency between the generated rules and the truth
rules. For the i-th ground truth rule data, let Ûi be the set of rules in the i-th ground truth rule and Ui

be the i-th rules generated by our method. The Jaccard is defined as |Ui\Ûi|

|Ui[Ûi|
.

The Jaccard similarities (range from 0 to 1) are reported in Table 6 and Fig. 7. We explore how the
sample size (600, 1200, 2400) and the search method (REFS and RAFS) will impact the performance.
We plot the Jaccard of our method in different sample sizes and search methods on 12 settings
(see Table 7 for descriptions). The results are summarized in Fig. 7. We find that the performance
gradually improves with the increase of sample size, which verifies that sufficient data can benefit the
learning performance.
As mentioned in Section 3.3, REFS will always extend the longest existing rule, and RAFS is always
extending the shortest existing rule. As shown in Fig. 7, REFS achieves similar performance with
RAFS on most settings.

Table 6: Synthetic Data: Jaccard similarity with the Ground Truth Rules.
Setting REFS-600 REFS-1200 REFS-2400 RAFS-600 RAFS-1200 RAFS-2400

Setting-1 0.222 0.972 1.000 0.200 1.000 0.500
Setting-2 0.059 0.000 0.250 0.200 0.200 0.222
Setting-3 0.182 0.286 0.750 0.286 0.375 0.750
Setting-4 0.111 0.429 0.600 0.117 0.428 0.600
Setting-5 0.200 0.571 1.000 0.125 0.500 1.000
Setting-6 0.250 0.667 0.750 0.222 0.333 0.600
Setting-7 0.250 0.750 0.750 0.090 0.750 0.600
Setting-8 0.167 0.000 0.286 0.071 0.00 0.200
Setting-9 0.750 0.600 1.000 0.600 0.750 1.000

Setting-10 0.059 0.231 0.600 0.111 0.154 0.750
Setting-11 0.444 0.571 0.800 0.364 0.444 0.800
Setting-12 0.375 0.429 0.750 0.091 0.429 1.000

18

Under review as a conference paper at ICLR 2022

Figure 7: Jaccard similarity on Synthetic Data: with REFS Results in Blue and RAFS Results in Red.

19

Under review as a conference paper at ICLR 2022

Table 7: Synthetic Data Setting and Observations.
Dataset Observation
Setting-1: Same body predicate intensity
w = [1, 1, 1]
� = [1, 1, 1, 1]

Hard scenario since all body predicates have
the same occurrence rate. TELLER can still
recover the rules (Table 2) and their weights.

Setting-2: Low important weights
w = [0.5, 0.5, 0.5]
� = [1, 1, 1, 1]

Lowering the important weights enhances
the challenges in learning.

Setting-3: High important weights
w = [1.5, 1.5, 1.5]
� = [1, 1, 1, 1]

For relatively high rule weights, TELLER
can accurately recover the rules and their weights.

Setting-4: Add rule length
w = [1, 1, 2]
� = [1, 1, 1, 1]

Adding rule length enhances
the challenges in learning.

Setting-5: Add one rule
w = [1, 1, 1, 1]
� = [1, 1, 1, 1]

Adding one rule does not harm
the rule recovery and learning performance.

Setting-6: Add one dummy predicate
w = [1, 1, 1, 1]
� = [1, 1, 1, 1, 0.2]

Adding dummy predicates enhances
the challenges in learning.

Setting-7: Different body predicate intensities
w = [1, 1, 1]
� = [0.6, 0.8, 1.2, 1.4]

Body predicates have different occurrence rates.
The MAE results outperform Setting-1

Setting-8: Different intensities and low weights
w = [0.5, 0.5, 0.5]
� = [0.6, 0.8, 1.2, 1.4]

Lowering the important weights enhances
the challenges in learning,
but different intensities lower the challenges.

Setting-9: Different intensities and high weights
w = [1.5, 1.5, 1.5]
� = [0.6, 0.8, 1.2, 1.4]

Both high weights and different intensities
lower the challenges.

Setting-10: Different intensities and add rule length
w = [1, 1, 2]
� = [0.6, 0.8, 1.2, 1.4]

Both adding rule length and different intensities
enhance the challenges.

Setting-11: Different intensities and add one rule
w = [1, 1, 1, 1]
� = [0.6, 0.8, 1.2, 1.4]

Both adding one rule and different intensities
lower the challenges.

Setting-12: Different intensities and add one dummy predicate
w = [1, 1, 1]
� = [0.6, 0.8, 1.2, 1.4, 0.2]

Adding dummy predicate enhances
the challenges in learning,
but different intensities lower the challenges.

H REAL EXPERIMENT: MIMIC

H.1 SUPPLEMENTAL INFORMATION

MIMIC-III is a dataset released under PhysioNet Credentialed Health Data License 1.5.01. It was
approved by the Institutional Review Boards of Beth Israel Deaconess Medical Center (Boston, MA)
and the Massachusetts Institute of Technology (Cambridge, MA). The requirement for individual
patient consent was waived because all the patient health information was deidentified. We manually
checked that this data do not contain personally identifiable information or offensive content.

H.2 HYPERPARAMETERS AND EXPERIMENT ENVIRONMENT

For the MIMIC dataset, we limit the maximum rule length to be 3, and the maximum #rules to be
20. The learning rate in solving the restricted master problem is ⇥10�4. The master problem is
optimized by the SGD type of algorithm and we choose to use the projected gradient descent to
take care of the weight constraints. The batch size is 64. Each time we solve the subproblem, we
randomly selected 50% of the training data (i.e., patient sequences) to evaluate the subproblem
objective. To exclude noisy and irrelevant rules, we clip the learned weights and discard these rules
with weights smaller than is 10�2 in solving the restricted master problem. To further reduce the
number of candidate rules, we set a threshold to the subproblem gain as 5 ⇥ 10�3, i.e., we only
include the candidate rules with negative cost smaller than �5 ⇥ 10�3. Our model is trained and
evaluated using 16 processes in parallel, on a server with a Xeon W-3175X CPU.

For the neural-based baselines, we set: 1) TR-GRU with 4 hidden states and 4009 trainable weights,
2) RPPN with 64 hidden states, 64 embedding dimensions, and 33277 trainable weights, 3) CAUSE
with 16 hidden states and 19312 trainable weights, 4) NHP with 8 hidden states, 814 trainable weights,

1https://physionet.org/content/mimiciii/view-license/1.4/

20

Under review as a conference paper at ICLR 2022

5)THP with 8 hidden states, 3608 trainable weights, 6) RMTPP with 32 hidden states, 5440 trainable
weights, and 7) IPP with 3 Gaussian kernels, c = [1, 1, 1],� = [1, 0.8, 0.5].

H.3 PREDICATE DEFINITION IN MIMIC

Table 8: Defined Predicates in Our MIMIC-III Experiment.
Lab Measurements Low/Normal/High-SysBP

Low/Normal/High-SpO2SaO2
Low/Normal/High-CVP
Low/Normal/High-SVR
Low/Normal/High-Potassium
Low/Normal/High-Sodium
Low/Normal/High-Chloride
Low/Normal/High-BUN
Low/Normal/High-Creatinine
Low/Normal/High-CRP
Low/Normal/High-RBCcount
Low/Normal/High-WBCcount
Low/Normal/High-ArterialpH
Low/Normal/High-ArterialBE
Low/Normal/High-ArterialLactete
Low/Normal/High-HCO3
Low/Normal/High-SvO2ScvO2

Output LowUrine

Input Colloid, Crystalloid, Water

Drugs Norepinephrine, Epinephrine,
Dobutamine, Dopamine, Phenylephrine

Suvival Condition Survival

Temporal Relation Type Before, Equal

H.4 DISCOVERED TEMPORAL LOGIC RULES

The discovered rules to explain the real-time urine have been reported in Section 4 Table 4. We list
the discovered rules relate to the survival condition here in Table 9.

21

Under review as a conference paper at ICLR 2022

Table 9: Learned Rules with Survival head predicate for Sepsis Patients in MIMIC-III
Weight Rule

0.95
Rule 1:NotSurvival NormalSVR ^ Epinephrine
^(Epinephrine Before NotSurvival)
^(NormalSVR Before NotSurvival)

0.91
Rule 2:NotSurvival HighArterialBe
^(HighArterialBe Before NotSurvival)

0.82
Rule 3:NotSurvival ^HighBUN ^ Phenylephrine
^(Phenylephrine Before NotSurvival)
^(HighBUN Before NotSurvival)

0.51
Rule 4:NotSurvival HighSodium
^(HighSodium Before NotSurvival)

0.53
Rule 5:NotSurvival HighSodium ^ Norepinephrine
^(HighSodium Before NotSurvival)
^(Norepinephrine Before NotSurvival)

0.89
Rule 6:Survival NormalAterialPH
^(NormalAterialPH Before Survival)

0.55
Rule 7:NotSurvival HighPotassium
^(HighPotassium Before NotSurvival)

1.19
Rule 8:NotSurvival ^HighPotassium ^ Colloid
^(HighPotassium Before NotSurvival)
^(Colloid Before NotSurvival)

1.00
Rule 9:NotSurvival HighlAterialPH ^ UseNorepinephrine
^(HighlAterialPH Before NotSurvival)
^(HighlAterialPH Before NotSurvival)

0.61 Rule 10:NotSurvival HighHCO3 ^ (HighHCO3 Before Survival)

I REAL EXPERIMENT: CRIME

Crime Incident Reports are provided by Boston Police Department to document the type of each
incident as well as when and where it occurred (of Innovation & Technology, 2015).

I.1 SUPPLEMENTAL INFORMATION

This dataset is released by the Boston Department of Innovation and Technology under Open Data
Commons Public Domain Dedication and License (PDDL). The publisher does not discuss how the
data was collected and whether consent was obtained. We manually checked that this data does not
contain personally identifiable information or offensive content.
Predicate Definition and Dataset statistics. We are interested in the top four most frequent crime
types: vandalism, theft from motor vehicles, assault, and shoplifting. Another ten predicates are
defined to describe the occurrence time properties, such as whether it is in the morning or the
afternoon, on weekdays or weekends, in spring or winter, etc. The set of defined predicates is
displayed in Table 10. We consider all the crime reports from June 2015 to May 2021 and split the
data into 1879 sequences according to days. We randomly choose 80% of these sequences as training
data and the remaining as testing data. On average, each sequence contains 46.03 events.

Table 10: Defined Predicates for Crime.
Period of Crime Spring, Summer, Autumn, Winter, Weekday, Weekend,

Morning, Afternoon, Evening, Night

Crime Types Vandalism, TheftFromMV, Assault, Shoplifting

Temporal Relation Type Before, Equal

I.2 HYPERPARAMETERS AND EXPERIMENT ENVIRONMENT.

Our model is trained and evaluated using 16 processes in parallel, on a server with a Xeon W-3175X
CPU. For this Crime dataset, we limit the maximum rule length to be 2, and the maximum #rules to
be 20. The learning rate used in updating model parameters in the restricted master problem is 10�4.
The master problem is optimized by SGD with a batch size of 64. The subproblem objective function

22

Under review as a conference paper at ICLR 2022

is evaluated on the entire training data. To exclude noisy and irrelevant rules, we clip the learned
weights and discard these rules with weights smaller than is 10�2 in solving the restricted master
problem. To further reduce the number of candidate rules, we set a threshold to the subproblem gain
as ⇥10�2, i.e., we only include the candidate rules with negative cost smaller than �⇥ 10�2.
For the non-parametric baselines, we set: 1) TR-GRU with 4 hidden states and 1129 trainable weights,
2) RPPN with 64 hidden states, 64 embedding dimensions, and 27037 trainable weights, 3) CAUSE
with 16 hidden states and 5872 trainable weights, 4) NHP with 8 hidden states, 382 trainable weights,
5)THP with 8 hidden states, 2408 trainable weights, 6)RMTPP with 32 hidden states, 2240 trainable
weights, and 7)IPP with 3 Gaussian kernels, c = [1, 1, 1],� = [1, 0.8, 0.5].

I.3 PREDICTION ACCURACY

Table 11: Crime: MAE of Event Time Prediction.

Method Vandalism
Larceny

TheftFromMV Assault Larceny
Shoplifting

RPPN 0.881 1.137 1.185 0.777
HExp 0.761 0.949 1.912 0.704

TR-GRU 0.759 1.351 1.400 1.092
CAUSE 0.962 1.127 1.206 0.892

NHP 0.613 1.300 1.887 1.269
THP 0.973 1.043 0.957 0.939

RMTPP 0.874 1.021 1.059 0.763
IPP 0.908 1.274 1.508 1.179

TELLER 0.770 0.826 1.465 0.710

The mean absolute error (MAE) of the predicted event times are displayed in Table 11. Our model
outperforms other models in predicting TheftFromMV. It has a comparable performance with the
Hawkes baseline on the remaining three tasks. We can think of Hawkes process as a special case of
our model and this is especially true if we restrict our model to learn short rules.

I.4 DISCOVERED RULES

We displayed the discovered important rules in Table 12, from which one can observe the following
crime patterns. Shoplifting and TheftFromMV may trigger Vandalism. One explanatory reason is
that larceny may involve break-in and destruction of security devices (Rule 1, 2, and 3). Shoplifting
triggers TheftFromMV. These two events are special types of larceny, and thus they may exhibit
similar crime patterns (Rule 4). TheftFromMV exhibits self-exciting (i.e., clustering) patterns in
summer. This is may due to that winter is extremely cold in Boston, and summer, however, is
a nice period of the year for outdoor activities and thus motor vehicles may pour into the area,
which potentially increases the likelihood of theft (Rule 5). Assault shows a self-exciting pattern on
weekends. People tend to have more social activities on weekends, which increases the possibility
of domestic violence and affray (Rule 6). Shoplifting triggers Assault. This might be explained by
the fact that if shoplifting is spotted at the scene, the thief may have a physical conflict with the
security guard (Rule 7). TheftFromMV and Vandalism will work together to trigger Shoplifting,
which is consistent with our previous observations 1 and 2 (Rule 8 and 9). Shoplifting is self-exiting
on weekdays. Stores are busier on weekends than on weekdays, and thus weekdays might be a better
choice for shoplifters (Rule 10).

23

Under review as a conference paper at ICLR 2022

Table 12: Temporal Logic Rules Discovered for Four Types of Crime Events.
Weight Rule

3.84
Rule 1:Vandalism Shoplifting
^(Shoplifting Before Vandalism)

1.83
Rule 2:Vandalism TheftFromMV
^(TheftFromMV Before Vandalism)

0.43
Rule 3:Vandalism TheftFromMV ^ Shoplifting
^(Shoplifting Before Vandalism)
^(TheftFromMV Before Vandalism)

2.46
Rule 4:TheftFromMV Shoplifting^
(Shoplifting Before TheftFromMV)

1.42
Rule 5:TheftFromMV TheftFromMV ^ Summer
^(TheftFromMV Equal Summer)
^(TheftFromMV Before TheftFromMV)

0.40
Rule 6:Assault Assault ^ Weekend
^(Weekend Equal Assault)
^(Assault Equal Assault)

3.62
Rule 7:Assault Shoplifting ^ Assault
^(Shoplifting Before Assault)
^(Assault Before Assault)

1.67
Rule 8:Shoplifting TheftFromMV
^(TheftFromMV Before Shoplifting)

1.14
Rule 9:Shoplifting Shoplifting ^ Vandalism
^(Vandalism Before Shoplifting)
^(Shoplifting Before Shoplifting)

1.30
Rule 10:Shoplifting Shoplifting ^ Weekday
^(Shoplifting Before Shoplifting)
^(Weekday Equal Shoplifting)

24

	Introduction
	Background
	First-order Temporal Logic Rules
	Temporal Logic Point Process

	The Proposed Method: TELLER
	Temporal logic rule learning problem (Master Problem)
	Criterion to add rules
	Propose a New Temporal Logic Rule
	Discussion on Scalability of the Algorithm

	Experiments
	Baselines
	Synthetic Data
	Real Data: Treatment on MIMIC-III

	Conclusion
	Related Work
	Allen's Thirteen Temporal Relation
	Proof of the Likelihood
	Optimality Condition and Complementary Slackness
	Algorithm Box
	Search Scheme for Subproblem: Rule-Addition-First Search
	Synthetic Experiment Results
	Real Experiment: MIMIC
	Supplemental Information
	Hyperparameters and Experiment Environment
	Predicate Definition in MIMIC
	Discovered Temporal Logic Rules

	Real Experiment: Crime
	Supplemental Information
	Hyperparameters and experiment environment.
	Prediction Accuracy
	Discovered Rules

