
Appendix

A Missing proofs from Section 3.1

Proof of Theorem 3.1. First, note that for any arm a, and phase t, we have µ̂ta =∑t
s=1Msum({rsa,i}

m
i=1)

Nta
, where N t

a = m · t.

We define the clean event C :=
{
∀a ∈ [k],∀t ∈ [T ]

∣∣µ̂ta − µa∣∣ ≤ Ita} , where Ita :=(
2
√
tσε,δ
Nta

+ 1√
Nta

)
·
√

2 log T is a confidence bound interval. We now show that the clean event C

occurs with high probability, that is P (C) ≥ 1− 4T−2, and after that assume the event C to simplify
our analysis.

Indeed, for each arm a, we imagine both a reward tape of length 1× T , with each cell independently
sampled from the distribution Da of arm a, and a private-binary-summation-error tape of length
1×T , with each cell independently sampled from the distribution of (the additive) error of the private
binary summation mechanism Msum for m users.

We assume that in the j’th time a given arm a is pulled by the algorithm, its reward is taken from the
j’th cell in this arm’s reward tape, and similarly the j’th time we compute a private binary sum over
rewards of a batch of users who pulled a, the (additive) error is taken from the j’th cell in the arm’s
private-binary-summation-error tape.16,17

Let t ∈ [T ] and a ∈ [k], and let v̂ta be the approximated reward of arm a that the algorithm
would have held at the end of phase t using the concrete values in the tapes defined above, that is

v̂ta =
∑t
s=1 ds+

∑Nta
i=1 ei

Nta
, where ds is the s’th cell of the private-binary-summation-error tape of a, and

the {ei}
Nta
i=1 are the total N t

a = m · t cells of the reward tape of a that we have used until the end of
the t’th phase.

Our aim is to bound the term
∣∣v̂ta − µa∣∣ =

∑t
s=1 ds+

∑Nta
i=1(ei−µa)

Nta
. We first bound the first sum in the

nominator, then bound the second sum in the nominator, and finally combine the bounds to get a
bound for

∣∣v̂ta − µa∣∣.
To bound the ds’s sum, we apply Hoeffding’s inequality (Lemma 2.1) for a sum of n← t random
variables which are sub-Gaussian with variance σ2

ε,δ and have zero mean (since Msum is unbiased)
to get,

P


∣∣∣∣∣∣
t∑

s=1

ds

∣∣∣∣∣∣ ≤ 2σε,δ ·
√

2t log T

 ≥ 1− 2 exp

(
−
(

4σ2
ε,δ · 2t log T

)
/
(

2tσ2
ε,δ

))
= 1− 2T−4. (1)

To bound the fi = (ei − µa)’s sum, we apply Hoeffding’s inequality (Lemma 2.1) for the sum of
n← N t

a random variables fi, each sub-Gaussian with variance 1/4 (since it is bounded in the interval
[−µa, 1− µa] of size 1), and with zero mean (since by its definition E [ei − µa] = E [ei]− µa = 0),
to get that

P


∣∣∣∣∣∣∣
Nta∑
i=1

(ei − µa)

∣∣∣∣∣∣∣ ≤
√

2N t
a log T

 ≥ 1− 2 exp
(
−(2N t

a log T )/(2N t
a/4)

)
= 1− 2T−4. (2)

16Here we rely on the fact that the distribution of the error of Msum is independent of the input.
17Note that sizes of both tapes have been chosen conservatively to be of size T . We never pass the end of any

these tapes, since there are at most T users in total, and at most T batches (actually roughly T/m in this case),
and we may not use them all.
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Applying a union bound and the triangle inequality on Equation (1) and Equation (2) gives that

P


∣∣∣∣∣∣∣
t∑

s=1

ds +

Nta∑
i=1

(ei − µa)

∣∣∣∣∣∣∣ ≤
(

2
√
tσε,δ +

√
N t
a

)
·
√

2 log T

 ≥ 1− 4T−4,

which by the definition of v̂ta and Ita means that

P
(∣∣v̂ta − µa∣∣ ≤ Ita) ≥ 1− 4T−4. (3)

Since in the analysis above t and a are arbitrary, Equation (3) holds for every t ∈ [T ] and a ∈ [k].
Thus, we take a union bound over all arms a ∈ [k] (assuming k ≤ T ) and all t ∈ [T ], to conclude that

P
(
∀a ∈ [k],∀t ∈ [T ]

∣∣v̂ta − µa∣∣ ≤ Ita) ≥ 1− 4T−2. (4)

Since the event in the probability above in Equation (4) is precisely the event that C holds for a run
of the algorithm using the randomness in the tapes as defined above (by the definitions of v̂ta and µ̂ta),
we get that

P (C) ≥ 1− 4T−2.

For the regret analysis, we assume the clean event C. Consider a suboptimal arm a such that
∆a = µ∗ − µa > 0, and consider the last phase t0 following which we did not remove the arm a yet
(or the last phase if a remains active to the end). Since we assumed the clean event, an optimal arm
a∗ cannot be disqualified, and since a is not yet disqualified, the confidence intervals of the arms a
and a∗ at the end of the t0’s phase must overlap. Therefore,

∆a = µ∗ − µa ≤ 2(It0a + It0a∗) = 4It0a =

(
8
√
tσε,δ

N t0
a

+
4√
N t
a

)
·
√

2 log T , (5)

where the third step follows since a and a∗ were sampled using identical batch sizes throughout the
algorithm, so at the end of the t0’th phase, N t0

a = N t0
a∗ and therefore It0a = It0a∗ , and the last step

follows by the definition of It0a .

Observe that if N t0
a > 128 log T

∆2
a

then 4·
√

2 log T√
N
t0
a

< ∆a

2 , and if N t0
a >

(16σε,δ·
√

2 log T )2

m∆2
a

then

8
√
t0σε,δ·

√
2 log T

N
t0
a

=
8
√
N
t0
a /mσε,δ·

√
2 log T

N
t0
a

=
8σε,δ·

√
2 log T√

mN
t0
a

< 8σε,δ ·
√

2 log T · ∆a

16σε,δ·
√

2 log T
= ∆a

2 ,

so their sum is < ∆a in contradiction to Equation (5). Hence, N t0
a ≤ max

(
128 log T

∆2
a

,
512σ2

ε,δ·log T

m∆2
a

)
.

Therefore the total regret on arm a is

Ra ≤ ∆a · (N t0
a +m) ≤ max

(
128 log T

∆a
,

512σ2
ε,δ · log T

m∆a

)
+m∆a

≤ 128 log T

∆a
+

512σ2
ε,δ · log T

m∆a
+m∆a, (6)

where the first step follows since since the arm a is eliminated following phase t0 + 1 (or if t0 is
the last phase, then we finish and don’t sample a after it) of batch size m and is subsequently never
pulled, and the second step follows by previous bound on N t0

a and since N t0+1
a = N t0

a + m. We
sum up the regret over all arms, to obtain a bound for the total regret denoted by R:

R =
∑

a∈[k]:∆a>0

Ra ≤
∑

a∈[k]:∆a>0

(
128 log T

∆a
+

512σ2
ε,δ · log T

m∆a
+m∆a

)
.

To complete the analysis, we argue that the bad event in whichC does not hold contributes a negligible
amount to the expected regret R(T ). Indeed,
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R(T ) = E
[
R | C

]
· P (C) + E

[
R | C̄

]
· P (C̄)

≤
∑

a∈[k]:∆a>0

(
128 log T

∆a
+

512σ2
ε,δ · log T

m∆a
+m∆a

)
+ T · 4T−2

= O

 ∑
a∈[k]:∆a>0

(
log T

∆a
+
σ2
ε,δ log T

m∆a
+m∆a

) , (7)

where the first step follows by the law of total expectation, and the second step follows since the
regret is at most T , and by the previous bound on P (C).

Now for the distribution-independent bound, assume the clean even C, and let γ > 0 be a threshold
whose exact value we will set later. We group the arms a based on if ∆a < γ or not, to get

R =
∑

a∈[k]|∆a<γ

Ra +
∑

a∈[k]|∆a≥γ

Ra

≤ T · γ +
∑

a∈[k]|∆a≥γ

(
128 log T

∆a
+

512σ2
ε,δ · log T

m∆a
+m∆a

)

≤ T · γ +
(128 + 512σ2

ε,δ/m)k log T

γ
+mk,

where the first step follows from splitting the regret from before to two sums, the second step follows
since in the first sum ∆a < γ and since there are only T samples in total throughout all arms, and in
the second sum we apply Equation (6), and the final step follows since there are k arms in total and
since the elements in the sum satisfy ∆a ∈ [γ, 1].

We balance the first two terms by defining γ to be γ =

√
(128+512σ2

ε,δ/m)k log T

T , so the total regret is:

R ≤ 2
√

(128 + 512σ2
ε,δ/m)k · T log T +mk. By a similar argument to Equation (7) conditioning

on whether or not C occurred, we get that the expected regret R(T ) satisfies

R(T ) ≤ 2
√

(128 + 512σ2
ε,δ/m)k · T log T+mk+T ·4T−2 = O


√√√√(1 +

σ2
ε,δ

m

)
kT log T +mk

 .

B Missing proofs from Section 3.2

Proof of Theorem 3.3. We continue identically to the proof of Theorem 3.1, except the fact that we
need the t’th index of each arm’s private-binary-summation-error tape to contain an iid sample of
the error of the private binary summation mechanism Msum for mt = 2t users. By the definition
of Msum, which is sub-Gaussian with the same variance for any number of users (batch size), the
application of Hoeffding inequality as in the proof of Theorem 3.1 still follows. We conclude that

the clean event C :=
{
∀a ∈ [k],∀t ∈ [T ]

∣∣µ̂ta − µa∣∣ ≤ Ita} , where Ita :=

(
2
√
tσε,δ
Nta

+ 1√
Nta

)
·

√
2 log T occurs with high probability, that is P (C) ≥ 1− 4T−2.

For the regret analysis, we assume the clean event C. Let a be a suboptimal arm, and let t0 be the last
phase following which we did not remove the arm a yet (or the last phase if a remains active to the
end). As in the proof of Theorem 3.1, we get that

∆a ≤

(
8
√
t0σε,δ

N t0
a

+
4√
N t0
a

)
·
√

2 log T . (8)
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We now diverge from the proof of Theorem 3.1.

Observe that if both N t0
a > 128 log T

∆2
a

and N t0
a >

16
√
t0σε,δ·

√
2 log T

∆a
, then we get a contradiction

to Equation (8) since 4·
√

2 log T√
N
t0
a

< ∆a

2 and 8
√
t0σε,δ·

√
2 log T

N
t0
a

< ∆a

2 respectively. Hence, N t0
a ≤

max
(

128 log T
∆2
a

,
16
√
t0σε,δ·

√
2 log T

∆a

)
. Therefore the total regret on arm a is

Ra ≤ 4∆aN
t0
a ≤ max

(
512 log T

∆a
, 64
√
t0σε,δ ·

√
2 log T

)
≤ 512 log T

∆a
+ 64
√

2σε,δ · log T, (9)

where the first step follows since arm a is eliminated following phase t0 + 1 (or if t0 is the last phase,
then we finish and don’t sample a after it) with batch size 2t0+1 = 2 · 2t0 ≤ 3 ·N t0

a , and the third
step follows since mt0 = 2t0 and t0 ≥ 1, so T ≥ N t

a =
∑t0
s=1m

s = 2t0+1 − 2 ≥ 2t0 and therefore
t0 ≤ log T .

Similarly to the proof of Theorem 3.1 which uses Equation (6) to get the distribution-dependent
bound, here we use the analogous Equation (9) to conclude that the distribution-dependent bound is

R(T ) = O

 ∑
a∈[k]:∆a>0

(
log T

∆a
+ σε,δ log T

) = O


 ∑
a∈[k]:∆a>0

log T

∆a

+ kσε,δ log T

 .

Now for the distribution-independent bound, similarly to the proof of Theorem 3.1, assuming the
clean event C, for any γ > 0 it holds that the total regret

R ≤ T · γ +
512k log T

γ
+ 64
√

2kσε,δ · log T,

and specifically for γ =
√

512k log T
T , the total regret R ≤

√
2048k · T log T + 64

√
2kσε,δ · log T .

Similarly to the argument in Equation (7), conditioning on whether the clean event C occurred or not,
we conclude that the expected regret R(T ) satisfies

R(T ) ≤
√

2048k · T log T + 64
√

2kσε,δ · log T + T · 4T−2 = O
(√

kT log T + kσε,δ log T
)
.

C Private binary summation mechanism for the shuffle model

In this section, for any ε, δ ∈ (0, 1) and number of users, we give an (ε, δ)-SDP private binary
summation mechanism for the shuffle model, with an (additive) error distribution which is unbiased
and sub-Gaussian with variance σ2

ε,δ = O
(

log(1/δ)
ε2

)
, and which does not depend on the input.

Consider a group of m users, each with a binary value xi ∈ {0, 1}, and the target is to calculate the
sum

∑m
i=1 xi. Our mechanism splits to two different internal mechanisms based on whether m is

“small” or “large”. Intuitively, to ensure that we add noise which is roughly 1
ε , when we have less
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than roughly 1
ε2 users, each one adds several bits of noise, and when we have more than roughly 1

ε2

users, each one adds a single bit of noise with some bias. This mechanism is summarized below:

Algorithm 3: (ε, δ)-SDP binary summation mechanism for m users

1 τ ← 96 log(2/δ)
ε2 ;

2
3 // Local Randomizer
4 Function E(x):
5 if m ≤ τ then
6 return (x, y1, . . . , yp) where {yj}pj=1 are iid yj ∼ Bernoulli(1/2), and p =

⌈
τ
m

⌉
;

7 else
8 return (x, y) where y ∼ Bernoulli

(
τ

2m

)
;

9 end
10
11 // Analyzer
12 Function A(z1, . . . , zn):
13 if m ≤ τ then
14 return

∑n
j=1 z1 −

⌈
τ
m

⌉
·m/2;

15 else
16 return

∑n
j=1 z1 − τ/2;

17 end

Theorem C.1. For any m ∈ N, ε < 1 and δ > 0, Algorithm 3 is (ε, δ)-SDP, unbiased, and has an

error distribution which is sub-Gaussian with variance σ2
ε,δ = O

(
log(1/δ)
ε2

)
and independent of the

input.

Proof. We first prove that the mechanism is (ε, δ)-SDP, and then prove the other claims.

Indeed, consider two neighboring inputs X = (0, x2, . . . , xm) and X ′ = (1, x2, . . . , xm). To ease
on the analysis, we define the random variable B to be the sum of all the random bits (i.e., y or
y1, . . . , yp depending on m) over all users in X . We define B′ identically with respect to X ′.

We first claim that the sum M∗(X) = B +
∑m
j=1 xj of the shuffled reported bits is (ε, δ)-DP.

Since B is binomial in both regimes, by Chernoff bounds as in Theorem E.1 in Cheu et al. [9],

for any δ > 0 it holds that P
(∣∣B − E [B]

∣∣ ≥√3E [B] log 2
δ

)
< δ. Therefore, define Ic =(

E [B]−
√

3E [B] log 2
δ ,E [B] +

√
3E [B] log 2

δ

)
, and we get that P (B /∈ Ic) ≤ δ (and similarly

for B′).

To show that P (B=t)
P (B′=t−1) ≤ eε for any t ∈ Ic, we split to the two regimes of m: the small m ≤ τ

regime, and the large m > τ regime.

Smallm ≤ τ : In this case, B ∼ Binomial(
⌈
τ
m

⌉
·m, 1/2), so E [B] =

⌈
τ
m

⌉
·m/2. For any t ∈ Ic,

it holds that

P (B = t)

P (B′ = t− 1)
=

2E [B]− t+ 1

t
≤

E [B] +
√

3E [B] log 2
δ + 1

E [B]−
√

3E [B] log 2
δ

≤
τ/2 +

√
τ/2 · 3 log 2

δ + 1

τ/2−
√
τ/2 · 3 log 2

δ

=
1 +

√
6 log 2

δ /τ + 2/τ

1−
√

6 log 2
δ /τ

=
1 + ε/4 + 2/τ

1− ε/4
≤

1 + ε/4 + ε
4

1− ε/4
=

1 + ε/2

1− ε/4
≤ eε, (10)
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where the first step follows since B,B′ are iid binomial with
⌈
τ
m

⌉
·m = 2E [B] trials of success

probability 1/2, the second step follows since t ∈ Ic ⇒ t ≥ E [B] −
√

3E [B] log 2
δ (which is

non-negative) and since 2E[B]+1−t
t is a decreasing function of t for t ≥ 0, the third step follows

since x+
√
ax+1

x−
√
ax

is a decreasing function of x for x > a, where we take a = 3 log 2
δ and x = E [B] ≥

τ/2 > a, the fourth step follows by dividing the nominator and the denominator by τ/2, the fifth
step follows by the definition of τ , the sixth step follows since ε < 1 so τ ≥ 8/ε, and the last step
follows since 1+x/2

1−x/4 ≤ e
x for any x ∈ [0, 1]. This concludes the case m ≤ τ .

Large m > τ : In this case, B ∼ Binomial(m, τ
2m ), so E [B] = τ/2. For any t ∈ Ic, it holds that

P (B = t)

P (B′ = t− 1)
=
m− t+ 1

t
·

τ
2m

1− τ
2m

≤
m− τ/2 +

√
3
2τ log 2

δ + 1

τ/2−
√

3
2τ log 2

δ

·
τ

2m

1− τ
2m

=
m− τ/2 +

√
3
2τ log 2

δ + 1

τ/2−
√

3
2τ log 2

δ

· τ/2

m− τ/2

=
m− τ/2 +

√
3
2τ log 2

δ + 1

m− τ/2
· τ/2

τ/2−
√

3
2τ log 2

δ

=

1 +

√
3
2τ log 2

δ + 1

m− τ/2

 · 1

1−
√

6 log 2
δ /τ

≤

(
1 +

√
6 log

2

δ
/τ + 2/τ

)
· 1

1−
√

6 log 2
δ /τ

=
1 + ε/4 + 2/τ

1− ε/4
≤ 1 + ε/4 + ε/4

1− ε/4
≤ eε, (11)

where the first step follows since B,B′ are iid binomial with m trials of success probability τ
2m , the

second step follows since t ∈ Ic ⇒ t ≥ E [B] −
√

3E [B] log 2
δ = τ/2 −

√
3
2τ log 2

δ (which is

non-negative) and since m+1−t
t is a decreasing function of t for t ≥ 0, the sixth step follows since

m− τ/2 ≥ τ − τ/2 = τ/2, the seventh step follows by the definition of τ , the eighth step follows
since ε < 1 so τ ≥ 8/ε2 ≥ 8/ε, and the last step follows since 1+x/2

1−x/4 ≤ e
x for any x ∈ [0, 1]. This

concludes the case m > τ .

We therefore conclude that in both regimes of m,

∀t ∈ Ic,
P (B = t)

P (B′ = t− 1)
≤ eε. (12)

A dual argument shows that P (B=t)
P (B′=t−1) ≥ e−ε using the fact that t ∈ Ic so t ≤ E [B] +√

3E [B] log 2
δ and substituting in the value of E [B] as in the cases above.

We define k =
∑m
j=2 xj to be the true sum of the bits of X , and the true sum of the bits of X ′ minus

one. Therefore, for any F ⊆ N it holds that

P (M∗(X) ∈ F ) = P (M∗(X) ∈ F ∧B ∈ Ic) + P (M∗(X) ∈ F ∧B /∈ Ic)
≤ P (M∗(X) ∈ F ∧B ∈ Ic) + P (B /∈ Ic)
≤ P (M∗(X) ∈ F ∧B ∈ Ic) + δ
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= δ +
∑
s∈F

P (M∗(X) = s ∧B ∈ Ic)

= δ +
∑
s∈F

P (B = s− k ∧B ∈ Ic)

= δ +
∑
s∈F

P (B = s− k ∧ s− k ∈ Ic)

≤ δ +
∑
s∈F

eε · P (B′ = s− k − 1 ∧ s− k ∈ Ic)

= δ + eε ·
∑
s∈F

P (M∗(X ′) = s ∧ s− k ∈ Ic)

≤ δ + eε ·
∑
s∈F

P (M∗(X ′) = s)

= δ + eε · P (M∗(X ′) ∈ F ),

where the first step follows by the law of total probability, the third step follows since P (B /∈ Ic) ≤ δ,
the fourth step follows by the law of total probability, the fifth step follows by the definition of
M∗(X) = k +B, the seventh step follows by substituting t← s− k ∈ Ic into Equation (12), and
the eighth step follows by the definition of M∗(X ′) = k + 1 +B′. A similar dual argument uses the
fact that ∀t ∈ Ic, P (B=t)

P (B′=t−1) ≥ e
−ε to show that P (M∗(X ′) ∈ F ) ≤ δ + eεP (M∗(X) ∈ F ), and

we conclude that M∗ is (ε, δ)-DP.

To see that M is (ε, δ)-SDP, note that in our mechanism M(X), given the number of users m, the
total number of bits U that the server receives is constant. Therefore, the shuffler’s output is a
random permutation of its input, which is of constant size. Thus, the shuffler’s output’s distribution is
identical to the output distribution of the mechanism which first selects the number s of ones in the
shuffler’s input where s ∼M∗(X), and then post-processes the output s by outputting a randomly
shuffled binary vector with s ones, and U − s zeros. Since we have shown that M∗ is (ε, δ)-DP, by
post-processing arguments we conclude the shuffler’s output is (ε, δ)-DP, so M is (ε, δ)-SDP.

Now for the other claims, first recall that in both regimes of m, the output of the mechanism is of
the form z = B +

∑m
j=1 xj − E [B] where B is the only source of randomness in the mechanism.

Therefore, the mechanism is unbiased since E
[
z −

∑m
j=1 xj

]
= E

[
B − E [B]

]
= 0. In addition,

the (additive) error of the mechanism which is precisely B − E [B], is obviously independent of the
input {xi}mi=1, and only depends on the natural parameters of the problem.

Finally, to see that the mechanism’s additive error is sub-Gaussian with variance O
(

log(1/δ)
ε2

)
, it

suffices to show that B is sub-Gaussian with variance O
(

log(1/δ)
ε2

)
, since B is the additive error

shifted by a constant (this constant is E [B] and adding constants does not change the sub-Gaussian
variance).

Indeed, recall that in both cases B is binomial, where in the small m ≤ τ case E [B] =
⌈
τ
m

⌉
·

m/2 ≤ (τ + m)/2 ≤ (τ + τ)/2 = τ , and in the large m > τ case E [B] = τ/2 ≤ τ as well.
Therefore, by Chernoff bounds as in Theorem E.1 in Cheu et al. [9], we get that for any t > 0,
P
(
B − E [B] ≤ t

)
< exp

(
−t2

3E[B]

)
≤ exp

(
−t2
3τ

)
and P

(
B − E [B] ≥ −t

)
< exp

(
−t2

3E[B]

)
=

exp
(
−t2
3τ

)
, so by the equivalent definition of a sub-Gaussian variable, B is sub-Gaussian with

parameter O(τ) = O
(

log(1/δ)
ε2

)
.
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