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ABSTRACT

The L2-regularized loss of Deep Linear Networks (DLNs) with more than one
hidden layers has multiple local minima, corresponding to matrices with differ-
ent ranks. In tasks such as matrix completion, the goal is to converge to the
local minimum with the smallest rank that still fits the training data. While rank-
underestimating minima can be avoided since they do not fit the data, GD might
get stuck at rank-overestimating minima. We show that with SGD, there is always
a probability to jump from a higher rank critical point to a lower rank one, but the
probability of jumping back is zero. More precisely, we define a sequence of sets
B1 ⊂ B2 ⊂ · · · ⊂ BR so that Br contains all critical points of rank r or less (and
not more) that are absorbing for small enough ridge parameters λ and learning
rates η: SGD has prob. 0 of leaving Br, and from any starting point there is a
non-zero prob. for SGD to go in Br.

1 INTRODUCTION

Several types of algorithmic bias have been observed in DNNs for a range of architectures (10; 34;
27; 28). Understanding and characterizing these types of implicit bias is crucial to understand the
practical performances of Deep Neural Networks (DNNs).

We focus on Deep Linear Networks (DLNs) Aθ = WL · · ·W1 for θ = (W1, . . . ,WL), that are
known to be biased towards low-rank linear maps in a number of settings:

1. Adding L2-regularization to the parameters of a DLN has the effect of adding Lp-Schatten
norm (the Lp norm of the singular values of a matrix) regularization to the learned matrix
for p = 2/L where L is the depth of the network (9).

2. When trained with the cross-entropy loss, Gradient Descent (GD) diverges towards infinity
along direction that maximizes the margin w.r.t. the parameter norm (17), leading to a form
of implicit L2-regularization with the same bias towards low-rank matrices.

3. When the parameters are initialized with a small variance, the network learns incrementally
matrices of growing rank, thus converging to a low-rank solution (23; 14).

This low-rank bias is particularly useful in the context of matrix completion (5), where the goal
is to recover a matrix from a subset of its entries under the assumption that the full matrix is low
rank. The task of finding the lowest rank matrices fitting the observed entries is NP-hard, but convex
approximations can work well (5; 6), as well as DLNs (18; 35).

In the deep case L > 2, the Lp-Schatten norm becomes non-convex (because p = 2/L < 1) and there
are multiple local minima in the L2-regularized loss, each corresponding to matrices with different
ranks (similarly with cross-entropy there could be multiple directions that locally minimize the rank).
Which of these local minima/critical point will GD converge to? And what will be the final rank?

We will see how Stochastic Gradient Descent (SGD) can lead the dynamics to jump between critical
points with a bias towards low-rank points.
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1.1 CONTRIBUTIONS

In this paper, we focus on the implicit bias of SGD in Deep Linear Networks (DLNs) of depth L
larger than 2 with L2-regularization, when trained on Matrix Completion (MC) tasks.

We first describe the many critical points of the L2-regularized loss. We then split them into three
groups, depending on whether they recover the ‘true rank’, underestimate, or overestimate it.

We show that the rank-underestimating critical points can easily be avoided by taking a small enough
ridge λ, but no such strategy exists to avoid rank-overestimating points with GD.

However we show SGD has a small but non-zero probability of jumping from any parameter to a
lower rank parameter, but the probability of jumping to a higher rank is zero. More precisely, we
define sets Br that contain all critical points of rank r or less and show that they are absorbing: the
probability for SGD to leave this set is zero, but the probability for SGD to move from outside of this
set to inside (in sufficiently many steps) is non-zero.

This suggests that rank-overestimation can be avoided if we continue SGD training long enough (but
not too long), since the rank will decrease incrementally. This illustrates the low-rank bias of SGD.

1.2 RELATED WORKS

The low-rank bias of DLNs has been observed in a number of different settings: for example as
a result of L2-regularization or training with the cross-entropy loss (9), and as a result of small
initializations (2; 3; 23; 14). These results rely on similar tools such as the balancedness condition,
however the underlying training dynamics leading to sparsity are very distinct.

Motivated by the empirical observation that SGD improves generalization (20; 19), there has been
interest in the implicit bias of SGD. There is a line of work approximating SGD with different
Stochastic Differential Equations (SDEs) (25; 33; 16; 7), sometimes approximating the parameter
dependent noise covariance with a fixed scalar multiple of the identity thus leading to Langevin
dynamics (16), and in general studying the resulting steady-state distributions (7). These SDE
approximations require small learning rates (22), but approximations to capture the effect of large
learning rates have been proposed too (22; 32).

These works however focus on the bias of SGD in parameter space, showing e.g. that it can be
interpreted as changing the potential/loss (7), or adding a regularization term (32). More recent work
has focused on the bias of SGD in diagonal linear networks (29; 36) leading to a sparsity effect in the
vector represented by this network.

We focus on the effect of SGD in the context of deep fully-connected linear networks with L2-
regularization, showing that SGD strengthens the already existing low-rank bias induced by L2-
regularization. To our knowledge our work is also unique in that it does not rely on a SDE/continuous
approximation.

2 SETUP

We study Deep Linear Networks (DLNs) of depth L and widths w0 = din, w1, . . . , wL = dout
Aθ = WL · · ·W1,

for the wℓ × wℓ−1 weight matrices Wℓ and parameters θ = (W1, . . . ,WL). We will always assume
that the number of neurons in the hidden layers is sufficiently large wℓ ≥ min{din, dout} so that any
dout × din matrix A can be recovered for some parameters θ: A = Aθ.

2.1 MATRIX COMPLETION

We consider the L2-regularized loss

Lλ(θ) = C(Aθ) + λ ∥θ∥2

where C is a loss on matrices such as the Matrix Completion (MC) loss

C(A) =
1

2N

∑
(i,j)∈I

(
A∗

ij −Aθ,ij

)2
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where A∗ is the true matrix we want to recover and I ⊂ {1, . . . , dout} × {1, . . . , din} is the set of
observed entries of A∗ of size N = |I|. While it is not possible in general to recover an entire matrix
A∗ from a subset of its entries, it is possible if A∗ is assumed to be low rank.

The ideal goal is to find the matrix Â with lowest rank that matches the observed entries. We define
the smallest rank as the smallest integer r∗ such that infA:RankA≤r∗ C(A) = 0. Note that one could
also define r∗ to be the smallest integer where this infimum is attained at a finite matrix A, which can
be higher in MC problems where filling in infinitely large entries can allow for lower ranks fitting
functions. In the main we restrict ourselves to the first definition, but we discuss the second choice
and its implications in Appendix A.

Since finding the minimal rank solution is NP-hard in general (5), a popular approximation is to find
the matrix Â that minimizes the MC loss with a nuclear norm regularization

min
A

1

2N

∑
(i,j)∈I

(
A∗

ij −Aij

)2
+ λ ∥A∥∗ ,

where the nuclear norm is the sum of the singular values of A: ∥A∥∗ =
∑RankA

i=1 si(A). This loss is
convex and can be efficiently minimized, and it has been shown that it recovers the true matrix A∗

with high probability with an almost optimal number of observations (5; 6).

DLNs have also been used effectively in Matrix Completion, thanks to their implicit low-rank bias.
The importance of low-rank bias in the Matrix Completion setting, makes it ideal to study the implicit
bias of SGD in DLNs.

2.2 REPRESENTATION COST

The low-rank bias of L2-regularized DLNs can be understood in terms of the representation cost
R(A;L) of DLNs, which equals the minimal parameter norm required to represent a matrix A with a
DLN of depth L:

R(A;L) = min
θ:A=Aθ

∥θ∥2 .

As observed in (9), the representation cost of DLNs equals the Lp-Schatten norm ∥A∥pp (the Lp norm
of the singular values) of A for p = 2/L:

R(A;L) = L ∥A∥2/L
2/L := L

RankA∑
i=1

si(A)
2/L.

This implies that the L2-norm regularization in parameter space can be interpreted as adding a
Lp-Schatten norm regularization in matrix space:

min
θ

C(Aθ) + λ ∥θ∥2 = min
A

C(A) + λL ∥A∥2/L
2/L .

For shallow networks (L = 2), the representation cost equals the nuclear norm R(A; 2) = 2 ∥A∥∗.
The loss has only global minima and strict saddles, thus guaranteeing convergence with probability
1 to a global minimizer θ̂ of the LHS, and the represented matrix Aθ̂ then minimizes the RHS. We
therefore simply recover the convex relaxation of Matrix Completion, with the advantage that the
loss Lλ(θ) is differentiable everywhere, so that it can be optimized with vanilla GD (35).

In the deep (L > 2) case however, the representation cost R(A;L) = L ∥A∥2/L
2/L is non-convex,

and both RHS and LHS may have distinct local minima with varying rank. We will show that the
correspondence extends to local minima of the RHS and LHS, and that there always exists one local
minimum with the right rank r∗.

But there are multiple local minima and critical poinnts with different ranks, for example the zero
parameters θ = 0 corresponding to the zero matrix Aθ = 0 is always a local minimum. Or there
might also be critical points that overestimate the ‘true rank’ that we want to recover.

For GD with a Gaussian initialization, there is a non-zero probability to converge to any local
minimum. On the other hand, we will see how SGD can jump from local minima to local minima.
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2.3 STOCHASTIC GRADIENT DESCENT

We consider SGD with replacement, that is at each time step t an index (it, jt) is sampled uniformly
from the index set I , independently from the previous iterations. The parameters are then updated
according to the learning rate η

θt+1 = (1− 2ηλ)θt −
η

2
∇θ

(
A∗

itjt −Aθt,itjt

)2
.

Note that due to the L2-regularization there remains noise even at the local minimizers, in contrast
without L2-regularization there is neither noise nor drift at the global minima of the loss. Thus with
L2-regularization the dynamics never completely stop, making it possible for SGD to jump from one
local minimum to another.
Remark 2.1. A number of previous works have approximated SGD by GD with Gaussian noise, the
simplest of which is to approximate SGD by Langevin dynamics. Under this approximation, there
is always a likelihood of jumping from local minimum to any other local minimum, with a higher
likelihood of going to (and staying at) local minima with lower loss. Our theoretical results show a
completely different behavior, where SGD may have non-zero probability of jumping from one local
minimum to another, but zero likelihood of jumping back. Furthermore the likelihood of SGD visiting
a certain local minimum will not scale with the loss of that local minimum, but rather its rank. This
further shows that the Langevin approximation of SGD is inadequate.

It appears that what leads to this difference in dynamics, is that the covariance of the noise is
low-dimensional and highly anisotropic, with a lot of noise along directions that keep or lower the
rank, and almost no noise along directions that increase the rank.

3 MAIN RESULTS

We will first give a description of the loss landscape of L2-regularized DLNs and then state our main
result, which says that SGD has a non-zero probability of jumping from parameters of a certain rank
to a lower rank, and that once in the neighborhood of a low rank critical point, the probability of
reaching a higher rank is zero.

3.1 L2-REGULARIZED LOSS LANDSCAPE

The correspondence of the minimizers of Lλ(θ) and Cλ(A) := C(A) + λL ∥A∥2/L
2/L extends to their

local minima:
Theorem 3.1. If θ̂ is a local minimum of Lλ(θ), then Aθ̂ is a local minimum of Cλ(A). Conversely,
if Â is a local minimum of Cλ(A) then there is a local minimum θ̂ of Lλ(θ) such that Â = Aθ̂.

The critical points of the L2-regularized loss are balanced, i.e. WT
ℓ Wℓ = Wℓ−1W

T
ℓ−1 for all

ℓ = 1, . . . , L − 1 (see Appendix A). This implies that all weight matrices have the same singular
values and the same rank r. We may therefore define the rank of a critical point θ̂ as the rank r of any
weight matrix Wℓ which also matches the rank of the represented matrix Aθ̂.

In general, there are several distinct local minima/critical points with different ranks. The origin
θ = 0 is always a local minimum (since the unregularized loss has vanishing first L− 1 derivatives at
0, it becomes a local min even for any λ > 0), furthermore for small enough ridge λ, there always is
a local minimum that finds the minimal rank required to fit the observed entries:
Proposition 3.1. Consider a matrix completion problem with true matrix A∗ and observed entries I .
For all λ, there is a rank r∗ local minima θ(λ) of Lλ(θ) such that limλ↘0 C(Aθ(λ)) = 0.

Note that finding a fitting matrix of minimal rank is known to be a NP-hard problem in general (5),
which means that it should in general be hard to find this local minimum. There are three types of
problematic local minima/critical points:

Rank-underestimating critical points: these are critical points such as the origin θ = 0 with a rank
lower than the minimal rank r∗, so that the represented matrix Aθ cannot fit the observed entries. GD
with a small enough ridge λ and learning rate η will avoid such rank underestimating minima:
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Proposition 3.2. Given an initialization θ0 such that unregularized (λ = 0) gradient descent
converges to a global minimum, there is a constant c > 0 such that for all small enough ridge λ and
learning rate η, regularized GD θt for all t ≥ t0 the r∗-th largest singular value of the matrix is
non-zero: sr∗ (Aθt) ≥ c.

There exists multiple papers proving convergence to a global minimum under different assumptions
(1; 13; 26), but empirical evidence seem to suggest that convergence to a global minimum is much
more general, and we expect more convergence results to come.

Rank-overestimating critical points: these have a larger rank than r∗ and the represented matrix
Aθ can fit the observed entries (with a small O(λ) error). These are harder to avoid, suggesting that
the NP-hardness of finding an optimal rank r∗ fitting matrix can be related to avoiding these points.
It might happen that there are no rank-overestimating minima/critical points, in which case GD can
recover the minimal rank solution easily, but from now on we will focus on settings where these
rank-overestimating points appear and how SGD manages to avoid them.

‘Bad’ Rank-estimating local minima: Finally there might exists local minima (or non-strict saddles
where GD/SGD might also get stuck) with the right rank r∗ that do not fit the true matrix. This paper
will not focus on how to avoid these points, but we believe that it could be proven that such minima
are rare for large input and output dimensions, using similar tools as (4; 18). The noise of SGD might
also help avoid these minima/saddles. In our numerical experiments, we never encountered such
minima, but we did encounter both other types.

3.2 ONE-WAY JUMPS FROM HIGH TO LOW RANK

We now show how SGD helps avoiding rank-overestimating critical points. More precisely we show
under conditions on the learning rate η and ridge λ that there is always a (small) likelihood of jumping
to a lower rank, but the probability of jumping back is zero. This suggests a strategy: train the
network with a small ridge to guarantee convergence to a critical point of at least the right rank, and
then take advantage of the SGD noise to lower the rank until finding the right rank.

For our analysis, we define a family of regions Br ⊂ RP of parameters θ that are:

1. ϵ1-approximately balanced: for all layers ℓ,
∥∥WT

ℓ Wℓ −Wℓ−1W
T
ℓ−1

∥∥2
F
≤ ϵ1,

2. ϵ2, α-approximately rank r (or less): for all ℓ,
∑RankWℓ

i=1 fα(si(W
⊤
ℓ Wℓ)) ≤ r + ϵ2 where

si(A) is the i-th singular value of A and fα(x) is a twice differentiable function such that
fα(0) = 0, fα(x) = 1 for x > α, 0 ≤ f ′

α(x) ≤ K
α for some constant K and f ′′

α(x) ≤ 0.

3. C-bounded: ∥Wℓ∥2F ≤ C.

Note that we chose the function fα to be differentiable, and to satisfy fα(0) = 0 and fα(x) =
1,∀x ≥ α. This yields a notion of approximate rank that converges to the true rank as α ↘ 0. One

example of such approximate rank is fα(x) =


1

α2
x(2α− x), x ≤ α

1 x > α
.

Since all critical points θ̂ of the L2-regularized loss are balanced, the set Br contains all critical
points of rank r or less for C large enough and all ϵ1, ϵ2 ≥ 0, and it contains no critical point of
higher rank for ϵ2 and α small enough. These sets allows us to separate critical points by rank, with a
small neighborhood.

Proposition 3.3. For any critical point θ̂ in Br, we have
∑RankAθ̂

i=1 fα(si(Aθ̂)
2/L) ≤ r + ϵ2.

Proof. Since θ̂ is balanced, Aθ̂ = U⊤
L SLU0 where S ∈ Rdout×din is the diagonal matrix of

singular values of all Wℓ’s. Since for any ℓ,
∑RankWℓ

i=1 fα(si(W
⊤
ℓ Wℓ)) ≤ r + ϵ2, Aθ̂ satisfies∑RankAθ̂

i=1 fα(si(A
2/L

θ̂
)) ≤ r + ϵ2.

We can now state our main result, which says that the set Br is absorbing for all r, i.e. SGD starting
from anywhere will always end up at some time inside Br and then never leave it:
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Theorem 3.2. For any r ≥ 0, λ ≥ 0, any large enough C and small enough ϵ1, ϵ2, α, η, the set Br is
closed

θt ∈ Br ⇒ θt+1 ∈ Br

and for r ≥ 1 and any parameters θt there is a time T = Ω̃(λ−1η−1) (i.e up to log terms) such that

P (θt+T ∈ Br|θt) ≥
(

r

min{din, dout}

)T

,

thus for any starting point SGD will eventually reach Br:
P(∃T : θt+T ∈ Br|θt) = 1.

Proof. (sketch) (1) The closedness of the set of ϵ1-approximately balanced parameters follows from
the fact that in the gradient flow limit η ↘ 0, the balancedness errors WT

ℓ Wℓ −Wℓ−1W
T
ℓ−1 decay

exponentially
∂t
(
WT

ℓ Wℓ −Wℓ−1W
T
ℓ−1

)
= −λ

(
WT

ℓ Wℓ −Wℓ−1W
T
ℓ−1

)
.

To guarantee a similar decay with SGD, we simply need to the control the O(η2) terms.

Given ϵ1-approximately balancedness, the closedness of the ϵ2-approximately rank r or less parame-
ters follows from the fact that the dynamics resulting from the minimization of the cost C(Aθ) are
very slow along the smallest singular vectors of Aθ (1) but the L2-regularization term pushes these
small singular values towards zero. For small enough singular values, this second force dominates,
thus leading to a decay towards zero.

(2) Under the event AT that in the steps s from t to t + T − 1 all the random entries (is, js) are
sampled from the same r of the dout columns, one can show that the dout − r other columns of WL

decay exponentially to approximately 0, implying an approximate rank of r or less. The probability

of that event is at least
(

r
dout

)T
.

This shows the implicit bias of SGD towards low-rank matrices in matrix completion: SGD can avoid
any rank-overestimating minima/critical point given enough training steps.

Explicit bounds on C,α, ϵ1, ϵ2, η can be found in Appendix B. The bounds are rather complex, but
we give here an example of acceptable rates in terms of λ: C ∼ λ−1,α ∼ λ

L+2
L−2 , ϵ1 ∼ λ2L+2

L−2+2L+1,
ϵ2 ∼ λ0, and η ∼ λ4L+1+L+1

L−2 . These rate suggest that an extremely small learning rate η is necessary,
especially for large depths L, thus making the likelihood of a jump appear very small. This seems in
contradiction with our empirical observations that larger depths tend to make these jumps more likely.
We believe our bounds could be made tighter, in particular when it comes to the dependence on the
depth L to better reflect our empirical observations.

We expect this result to generalize to other tasks. The first part of the theorem (the closedness of Br)
should generalize to costs such as the MSE loss and others, and the second part too, under the event
that one samples from the same r training points over T time steps for the MSE loss, or sample from
the same r classes for classification tasks.

A limitation however is that the second part of the result relies on the fact that we sample the observed
entries independently at each time t with possible replacement. In practice, the dataset is randomly
shuffled and taken in this random order, so that every observed entry is chosen exactly once during
each epoch. This would force the jumps to happen within an epoch, which may not be possible
depending on the problem.

Another limitation is the average time required to observe one of our predicted jumps can easily be
absurdly large. To observe a jump in reasonable time, one also needs rather large learning rates η,
leading to very noisy dynamics. This makes periodic learning rate choices attractive, with large η
periods allowing for jumps to lower-rank region, and low η periods allowing for SGD to settle around
a local minimum.

Nevertheless, our result also shows that the common approach of approximating SGD with a SDE
such as Langevin dynamics and studying the stationary distribution (usually with full support over
the parameter space) is misleading. In contrast, our result implies that any stationary distribution
must have support inside Br=1, thus under-estimating the true rank in general. It is thus crucial to
understand the distribution of SGD at intermediate times, when the rank has not yet collapsed to 1.
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Figure 1: Annealing Schedule: DLN with L =
3, w1 = 100 on the 2 × 2 MC problem with
ϵ = 0.25 [Light blue] SGD with λ = 0.1 and
η = 0.2 (η = 0.03 for the first 500 steps to
avoid explosion) [dark blue] at different times,
we create offshoots with λ = 0.001 and η =
0.02 to fit the data. [red] The ratio of the second
to first singular value of Aθ on the large λ, η
path. We see a jump around time 2000, where
the output matrix becomes rank 1. The offshoots
created before this jump fail to fit the missing
entry while those created after succeed.
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Figure 2: Effect of depth: We study the effect
of on the MC problem with ϵ = 0.1. We train 5
networks of each depths L = 3 [blue] and L = 4
[red] with the same schedule: η = 0.03, λ = 0.1
until t = 500, then η = 0.25, λ = 0.1 until t =
5000 and finally η = 0.05, λ = 0.001 until the
end. We see that the five depth L = 3 networks
are unable to jump in this time, while all five
depth L = 4 networks jump at different times
during the first 5000 SGD steps.

3.2.1 NONLINEAR NETWORKS

Since linear networks are a simplification of nonlinear networks, it is natural to wonder whether the
results presented here could be generalized to the nonlinear case. We identify two possible strategy to
generalize our results:

First along the lines of (8) which observes a similar phenomenon where SGD is naturally attracted to
symmetric regions of the loss (where for example two neurons are identical or one neuron is dead)
in nonlinear networks. The L2-regularization is known to make these region more attractive (15),
which could have a compound effect with SGD. In DLNs, the regions of low rank that we prove are
attractive can also be interpreted as neighborhoods of symmetric / invariant regions.

Second, recent work has shown that L2 regularized ReLU DNNs with large depths are biased towards
minimizing a notion of rank over nonlinear functions, the Bottleneck rank (12). We have hope that
our results could be extended to prove a similar low-rank bias with this new notion of rank. This is
further motivated by the observation that such large depth networks exhibit a Bottleneck structure
(11) where the middle layers of the network behave approximately like linear layers.

4 NUMERICAL EXPERIMENTS

For our numerical experiments, we want to find a Matrix Completion problem that GD cannot solve
but SGD can. In particular, we want to find a setup where GD converges with a high probability
to a rank-overestimating minimum, and where SGD can jump from this minimum to a lower rank
minimum in a reasonable amount of time.

It is rather difficult to find a setup that lies between the regimes where both GD and SGD work and
where neither work. This is in line with previous work in the bias of SGD (29): in diagonal networks
a value (determined by the initialization) determines a transition between a sparse and non-sparse
regimes, and SGD has the effect of pushing this value towards the sparse regime; this can have a
significant sparsity effect if the original value was at the transition between regimes, but little effect if
it was far into either regimes.
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Figure 3: Annealing accross ϵ: For a range of
ϵ, we train 4 networks (L = 4,w = 100) with an
annealing schedule as in Figure 1 and plot the
test loss divided by the test loss when putting
zeros in the missing entries. The four networks
are trained for t0 steps with high noise, followed
by 4000 steps in the low noise regime. Without a
noise phase (t0 = 0) the network fails to recover
the rank 1 solution. Larger t0 allow the network
to recover it for even smaller ϵ.
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Figure 4: Periodic Schedule: DLN with L = 3,
w1 = 100 on the 2×2 MC problem with ϵ = 0.2.
We plot 5 runs of SGD with periodic learning
rates alternating between η = 0.1, λ = 0.001
and η = 0.4, λ = 0.1. We see that the different
trials make jumps during the high η, λ period.
After the jump, SGD will settle at a low test
error in the slow periods, allowing us to identify
when the jump happened.

We choose a MC problem, inspired by (30), that allows us to tune the difficulty of finding a sparse
solution. We observe 3 out of 4 entries of a 2× 2 matrix:(

1 ∗
ϵ 1

)
.

Filling the missing entry ∗ with ϵ−1 leads to a rank 1 matrix. The smaller ϵ is, the larger the missing
entry that needs to be filled in needs to be.

In L2-regularized DLNs with L > 2 there are three local minima: the rank 0 minimum at the
origin which can easily be avoided, a set of minima that learn the rank 1 solution, and a set of
rank-overestimating minima that learn a rank 2 solution by filling the missing entry with a small
value.

For small ϵ values, GD almost always converges to a rank-overestimating minimum (see Figure 3).
In such setup, SGD can outperform GD by jumping to a rank 1 solution. To achieve a jump in a
reasonable amount of time, we need the ridge parameter λ and the learning rate η to be large. But
such a choice of large λ, η prevent SGD from minimizing the train error.

We investigate two strategies to take advantage of both the jumping properties of large λ, η and fitting
properties of small λ, η:

‘Annealing’ Schedule: In Figure 1, we run SGD with large λ, η for some time t0, waiting for a jump
and then switch to small values of λ, η for convergence. Another specificity is that we take a small
learning rate for the first few steps, because SGD diverges if we start with a too large learning rate
directly at initialization, whereas large learning rates are possible after a few steps (we do not have a
theoretical explanation for that).

We test different switching times to small λ, η values, and we see clearly that if we switch after the
jump at time ∼ 2000, we obtain a rank 1 solution, but if we switch before the jump then training fails
and recovers a rank 2 solution.

By changing ϵ we can tune the difficulty of finding the rank 1 solution. We see in Figure 3 that the
smaller ϵ, the longer one needs to wait for a jump, and thus the longer one needs to stay in the high
noise setting. We also see that without a high noise period (i.e. when we are close to GD) the network
fails to recover the rank 1 solution even for ϵ = 1.
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Periodic Schedule: Another strategy it to alternate between large and small λ, η. We see in Figure 4
how the jumps all happen during the large λ, η periods. It is also interesting to see that even after
SGD has settled in the vicinity of a local minimum in one of the small λ, η periods, SGD can still
jump to another minimum in a subsequent large λ, η period.

Finally we also study the effect of depth in Figure 2, and observe that depth increases the probability
of jumps. We train networks of depths L = 3 and L = 4 on the 2× 2 MC task with ϵ = 0.1. While
for the choice ϵ = 0.25, a depth L = 3 network was able to jump in a reasonable amount of time, for
this smaller choice of ϵ we do not observe a jump (even with the same hyper-parameters). In contrast,
the deeper networks L = 4 all jump in a reasonable amount of time, suggesting that depth increases
the likelihood of a jump.

5 CONCLUSION

We have given a description of the loss landscape of L2-regularized DLNs, giving a classification of
its critical points by their rank. We have then shown that SGD has a non-zero probability of jumping
from any higher rank critical point to a lower rank one, but it has a zero probability of jumping in the
other direction. We observe these jumps empirically. To our knowledge, this is the first description of
the low-rank bias of SGD in the context of fully-connected linear networks with two or more hidden
layers.

Our analysis is also significantly different from previous approaches that rely on approximating SGD
with a continuous stochastic process, and/or studying of the limiting distribution of this continuous
process. It appears that the phenomenon of absorbing sets of different ranks cannot be recovered with
a continuous approximation, and the jumps we describe happen before SGD has reached its limiting
distribution. This puts into question the adequacy of the continuous approximation and limiting
distribution assumption.
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The Appendix is organized as follows:

• Section A contains the proofs of Theorem 3.1 and Propositions 3.1 and 3.2 of the main.

• Section B then describes how Theorem 3.2 of the main can be split into two statements:
Theorems B.1 and B.2.

• Section C state some preliminary result for the proofs.

• Section D proves the first part of Theorem 3.2 from the main, that is Theorem B.1.

• Section E proves the second part of Theorem 3.2, that is Theorem B.2.

• Section F states and proves a more general version of Proposition 3.3 of the main.

A LOSS LANDSCAPE

Proposition A.1. Let θ̂ be a critical point of the loss Lλ, then θ̂ is balanced, i.e. WℓW
T
ℓ =

WT
ℓ+1Wℓ+1.

Proof. At a critical point, we have

WT
ℓ+1 · · ·WT

L ∇C(Aθ)W
T
1 · · ·WT

ℓ−1 + 2λWℓ = 0.

Thus

WℓW
T
ℓ = − 1

2λ
WT

ℓ+1 · · ·WT
L ∇C(Aθ)W

T
1 · · ·WT

ℓ = WT
ℓ+1Wℓ+1.

Proposition A.2. Let θ̂ be a critical point of the loss Lλ, then:

• θ̂ is a local minimum if and only if Aθ̂ is a local minimum of Cλ.

• θ̂ is a strict saddle/maximum if and only if Aθ̂ is a strict saddle/maximum.

Proof. We know that any critical point of the L2-regularized loss is balanced. The parameters
θ̂ = (W1, . . . ,WL) are therefore of the form

Wℓ = UℓS
1
LUT

ℓ−1,

for some d× d diagonal S (where d = min{din, dout}) and wℓ × d matrices Uℓ with orthonormal
columns (UT

ℓ Uℓ = Id).

(0) For any sequence of matrices A1, A2, . . . converging to Aθ̂ with SVD decompositions Ai =

ŨiSiṼ
T
i (chosen so that Ũi, Si and Ṽi converge to the SVD decomposition Aθ̂ = ULSU

T
0 ) we can

construct parameters θi with weight matrices

W1 = U1S
1
L
i Ṽ T

i

Wℓ = UℓS
1
L
i UT

ℓ−1

WL = ŨiS
1
L
i UT

L−1.

We have (1) Aθi = Ai, (2) θi → θ̂, (3) ∥θi∥2 = L ∥Ai∥
2/L
2/L and therefore Cλ(Ai) = Lλ(θi).

(1a) If θ̂ is not a local minimum, there is a sequence θi → θ̂ with Lλ(θi) < Lλ(θ̂), thus the sequence
Ai = Aθi converges to Aθ̂ and Cλ(Ai) ≤ Lλ(θi) < Lλ(θ̂) = Cλ(Aθ̂), implying that Aθ̂ is not a
local minimum.

(1b) If Aθ̂ is not a local minimum, there is a sequence Ai → Aθ̂ with Cλ(Ai) < Cλ(Aθ̂), by point
(0), we construct a sequence θi → θ̂ such that Lλ(θi) = Cλ(Ai) < Cλ(Aθ̂) = Lλ(θ̂), proving that θ̂
is not a local minimum.
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(2a) θ̂ is a strict saddle/maximum if there is a sequence θi → θ̂ such that

lim
i→∞

Lλ(θi)− Lλ(θ̂)

∥θi − θ̂∥2
< 0.

Our goal is now to show that the sequence Aθi that converges to Aθ̂ satisfies the same property. First
note that

lim
i→∞

Cλ(Aθi)− Cλ(Aθ̂)∥∥Aθi −Aθ̂

∥∥2
F

≤ lim
i→∞

Lλ(θi)− Lλ(θ̂)

∥θi − θ̂∥2F

∥θi − θ̂∥2F∥∥Aθi −Aθ̂

∥∥2
F

,

since Cλ(Aθi) ≤ Lλ(θi) and Cλ(Aθ̂) = Lλ(θ̂).

Since Aθ is twice differentiable w.r.t. θ, we know that
∥∥Aθi −Aθ̂

∥∥
F
≤ c∥θi − θ̂∥+O

(
∥θi − θ̂∥2

)
and thus

∥θi − θ̂∥2

∥Aθi −Aθ̂∥2F
≥ ∥θi − θ̂∥2(

c∥θi − θ̂∥+O
(
∥θi − θ̂∥2

))2 =
1(

c+O
(
∥θi − θ̂∥

))2 ≥ 1

4c2
,

for large enough i. This implies that

lim
i→∞

Cλ(Aθi)− Cλ(Aθ̂)∥∥Aθi −Aθ̂

∥∥2
F

≤ lim
i→∞

Lλ(θi)− Lλ(θ̂)

∥θi − θ̂∥2F

1

c2
< 0,

where we used the fact that for i large enough Lλ(θi)−Lλ(θ̂)

∥θi−θ̂∥2
F

is negative.

This implies that Aθ̂ is a strict saddle/maximum.

(2b) Aθ̂ is a strict saddle if there is a sequence Ai → Aθ̂ with

lim
i→∞

Cλ(Ai)− Cλ(Aθ̂)∥∥Ai −Aθ̂

∥∥2
F

< 0.

For L > 2 we may assume that Ai has the same rank as Aθ̂ for large enough i: a matrix cannot be
approached with matrices of strictly lower rank (the best rank k approximation matches the k largest
singular values leading to an error larger than the k+ 1 largest singular value), and if it is approached
with a strictly larger rank the regularization term ∥Ai∥

2/L
2/L would be strictly larger.

We now construct a sequence θi → θ̂ as in (0). Consider the map ϕ that maps matrices A = ŨSṼ T

in the neighborhood of Aθ̂ with the same rank to the parameters

W1 = U1S
1
L Ṽ T

Wℓ = UℓS
1
LUT

ℓ−1

WL = ŨS
1
LUT

L−1.

We have ϕ(Ai) = θi and ϕ(Aθ̂) = θ̂. And since ϕ is differentiable at Aθ̂ along directions that do not
change the rank (37), we have

lim
i→∞

Lλ(θi)− Lλ(θ̂)∥∥∥θi − θ̂
∥∥∥2 = lim

i→∞

Cλ(Ai)− Cλ(Aθ̂)∥∥Ai −Aθ̂

∥∥2
F

∥∥Ai −Aθ̂

∥∥2
F∥∥ϕ (Ai)− ϕ

(
Aθ̂

)∥∥2 < 0.

Finally we prove the existence of a minimum with the minimal rank required to fit the data:

Proposition A.3. Consider a matrix completion problem with true matrix A∗ and observed entries I .
For all λ, there is a rank r∗ local minima θ(λ) of Lλ(θ) such that limλ↘0 C(Aθ(λ)) = 0.
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Proof. For all λ, take the matrix A(λ) to minimize the cost Cλ(A) amongst the set of matrices of
rank r∗ or less. The regularization ensures that the infinimum infA:RankA≤r∗ Cλ(A) is attained at a
finite matrix A.

The matrix A(λ) is also a (possibly non-global) minimum of the non-restricted loss: it is locally
optimal amongst matrices of the same rank, and for any matrix A′ of rank r > r∗, define A′

≤r∗ to be
the closest rank r∗ matrix (which is obtained by setting all but the r∗-th largest singular values of A′

to zero), we have

Cλ(A
′) = Cλ(A

′
≤r∗) + λL∥A′ −A′

≤r∗∥
2/L
2/L + [C(A′)− C(A′

≤r∗)].

We have that Cλ(A
′
≤r∗) ≥ Cλ(A(λ)) and in a small enough neighborhood of A(λ), one can

guarantee that the second term dominates the third one since C is differentiable (if sr∗+1 > 0 is the
r∗ + 1-th largest singular value of A′, then the second term is at least λLs

2/L
r∗+1, while the second one

is at most c(RankA′ − r∗)sr∗+1 where c < ∞ bounds the Lipschitzness of C in the neighborhood).

By Proposition A.2 there are corresponding local minima θ(λ) of Lλ(θ) such that A(λ) = Aθ(λ).
By the definition of the minimal rank r∗, we know that infA:RankA≤r∗ Cλ(A) = 0 and thus
limλ↘0 C(Aθ(λ)) = 0.

A.1 AVOIDING RANK-UNDERESTIMATING CRITICAL POINTS

With a small enough ridge λ and learning rate η, one can guarantee that GD will avoid all rank-
underestimating local minima:

Proposition A.4 (Proposition 3.2 in the main). Given an initialization θ0 such that unregularized
(λ = 0) gradient descent converges to a global minimum, there is a constant c > 0 such that for all
small enough ridge λ and learning rate η, regularized GD θt for all t ≥ t0 the r∗-th largest singular
value of the matrix is non-zero: sr∗ (Aθt) ≥ c.

Proof. Since unregularized GD converges to a global minimum with zero loss, there is a time t0 such
that L(θt0,λ=0) ≤ 1

4 infA:RankA<r∗ C(A).

We know that L2-regularized GD θλ(t) converges to unregularized GD θ(t) as λ ↘ 0 for any fixed
time t. Then for all sufficiently small λ we have Lλ(θt0,λ) ≤ 1

2 infA:RankA<r∗ C(A).

Lemma A.5 also tells us that GD is non-increasing for a small enough η, so that for all t ≥ t0 we also
have

Lλ(θt,λ,η) ≤
1

2
inf

A:RankA<r∗
C(A).

Let us now show that there is a constant c > 0 such that the r∗-th largest singular value sr∗(Aθt,λ,η
)

of Aθt,λ,η
is lower bounded by c.

Assume by contradiction that this is not the case, then for all ϵ, there is a matrix Aϵ with sr(Aϵ) ≤ ϵ
for all r ≥ r∗ and with Cλ(Aϵ) ≤ 1

2 infA:RankA<r∗ C(A).

We know that the matrices Aϵ are bounded for all ϵ since ∥Aϵ∥2/L2/L ≤ 1
λCλ(Aϵ) ≤

1
2λ infA:RankA<r∗ C(A) < ∞. There is thus a convergent sequence Aϵ1 , Aϵ2 , . . . with ϵn → 0

as n → ∞, whose limit Â = limn→∞ Aϵn is finite, has rank strictly less than r∗ and satis-
fies C(Â) ≤ Cλ(Â) ≤ 1

2 infA:RankA<r∗ C(A) which yields a contradiction with the fact that
infA:RankA<r∗ C(A) > 0.

Here are a few Lemmas required for the previous proof:

Lemma A.1. The loss gradient ∇Lλ(θ) in the ball B(0, D) is Lipschitz with constant H =
2L
√

(L−1)

N (2D2L−2 + cDL−2 + 2λ).

Proof. For all parameters θ with ∥θ∥ ≤ D, we have ∥Wℓ∥F ≤ D and thus ∥Aθ∥F ≤ DL. Further-
more for any two parameters θ = (W1, . . . ,WL) and ϕ = (V1, . . . , VL) with ∥θ∥ , ∥ϕ∥ ≤ D, we
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have

∥Aθ −Aϕ∥F ≤ ∥WL · · ·W2(W1 − V1)∥F + · · ·+ ∥(WL − VL)VL−1 · · ·V1∥F

≤ DL−1
L∑

ℓ=1

∥Wℓ − Vℓ∥F

≤
√
LDL−1 ∥θ − ϕ∥ .

Now since ∇C(Aθ) =
2
NM ⊙ (Aθ −A∗), this implies that

∥∇C(Aθ)∥F ≤ 2

N
∥Aθ∥F +

2

N
∥A∗∥F ≤ 2

N
DL + c

and
∥∇C(Aθ)−∇C(Aϕ)∥F ≤ 2

N
∥Aθ −Aϕ∥F ≤ 2

N

√
LDL−1 ∥θ − ϕ∥ .

Now using these facts, we get that the difference ∥∇Lλ(θ)−∇Lλ(ϕ)∥2 is upper bounded by
L∑

ℓ=1

∥∥WT
ℓ+1 · · ·WT

L ∇C(Aθ)W
T
1 · · ·WT

ℓ−1 − V T
ℓ+1 · · ·V T

L ∇C(Aϕ)V
T
1 · · ·V T

ℓ−1 + 2λWℓ − 2λVℓ

∥∥2
≤

L∑
ℓ=1

∑
k ̸=ℓ

(
DL−2 ∥Wk − Vk∥F ∥∇C(Aθ)∥+DL−1 ∥∇C(Aθ)−∇C(Aϕ)∥+ 2λ ∥Wℓ − Vℓ∥F

)2
≤

L∑
ℓ=1

∑
k ̸=ℓ

(
2

N
(D2L−2 + cDL−2) ∥Wk − Vk∥F +

2

N

√
LD2L−2 ∥θ − ϕ∥+ 2λ ∥Wℓ − Vℓ∥F

)2

≤
L∑

ℓ=1

∑
k ̸=ℓ

(
2

N

√
L(2D2L−2 + cDL−2 + 2λ) ∥θ − ϕ∥

)2

=
4L2(L− 1)

N2
(2D2L−2 + cDL−2 + 2λ)2 ∥θ − ϕ∥2 .

and thus

∥∇Lλ(θ)−∇Lλ(ϕ)∥ ≤
2L
√
(L− 1)

N
(2D2L−2 + cDL−2 + 2λ) ∥θ − ϕ∥ .

Proposition A.5. Given initial parameters θ0, we have that GD with ridge λ and learning rate

η < 2
H for D =

√
Lλ(θ0)

λ and H =
2L
√

(L−1)

N (2D2L−2 + cDL−2 + 2λ) remains inside the ball
B(0, D) and has a non-increasing regularized loss.

Proof. Given the parameters at any time step θt in the ball B(0, D) the loss along the gradient
θt − η∇Lλ(θt) (for any η small enough so that this next step remains inside the ball B(0, D))
satisfies

Lλ(θt − η∇Lλ(θt))− Lλ(θt) =

∫ η

0

∇Lλ(θt)
T∇Lλ(θt − p∇Lλ(θt))dp

≤ −η ∥∇Lλ(θt)∥2 + η

∫ η

0

∥∇Lλ(θt)∥ ∥∇Lλ(θt)−∇Lλ(θt − p∇Lλ(θt))∥ dp

≤ −η ∥∇Lλ(θt)∥2 +
η2

2
H ∥∇Lλ(θt)∥2

for H =
2L
√

(L−1)

N (2D2L−2 + cDL−2 + 2λ). Thus for any η ≤ 2
H , the loss is non-increasing:

Lλ(θt − η∇Lλ(θt))− Lλ(θt) ≤ 0.
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Choosing D =
√

Lλ(θ0)
λ , we know that θ0 ∈ B(0, D) since ∥θ0∥2 ≤ Lλ(θ0)

λ and all subsequent steps
θt with a learning rate η < 2

H will remain inside the ball, since Lλ(θ0) is non-increasing along the
continuous path made up of the concatenation of the segments [θt, θt+1] it can never leave the ball
since ∥θt∥2 ≤ Lλ(θt)

λ ≤ Lλ(θ0)
λ (where t is a real value that can lie on any segment).

A.1.1 DIFFERENT NOTION OF OPTIMAL RANK

In settings where the infimum infA:RankA≤r∗ C(A) is not attained, we can define another notion of
smallest rank r̃∗ > r∗ to be the smallest integer where this infimum is attained. One could wonder
under which conditions one can avoid minima with rank < r̃∗. A similar result can be proven, though
we require an additional assumption (and for simplicity, it is proven for GF instead of GD):

Proposition A.6. Given an initialization θ0 such that unregularized (λ = 0) gradient flow (GF)
converges to a global minimum θ∞ such that the loss is β-PL in a neighborhood of θ∞, then for λ
small enough, regularized GF converges to a minimum rank no smaller than r̃∗.

Proof. If we let the ridge λ go to zero we have that GF trained with λ-weight decay θt,λ converges
to GF without weight decay: θt,λ → θt as λ ↘ 0. We can therefore choose a time t0 large enough

and small enough λ0 such that for all λ ≤ λ0, the ball B(θt0,λ, R) for R =
√

Lλ(θt0,λ)

β lies in the
neighborhood of θ∞ where the loss is β-PL. We can apply Lemma A.2 to obtain that at time Tλ the
loss will be below λk0 and one can easily check that k0 is bounded as λ ↘ 0 (since θt0,λ converges
to the unregularized GF θt0,λ=0 as λ ↘ 0). Since the loss will only decrease after that, we know that
GF will converge to a local minimum with O(λ) loss.

Let us now assume by contradiction that there is a sequence λ1 > λ2 > . . . with λn → 0 as n → ∞
such that the minimum θ∞,λn that GF with ridge λn converges to is rank-underestimating for all
n, i.e RankAθ∞,λn

< r̃∗. Since λn ∥θ∞,λn
∥ ≤ Lλ(θ∞,λn

) = O(λn), we know that the θ∞,λn
are

bounded, which implies the existence of a convergent subsequence that converges to parameters θ̃
which by continuity of θ 7→ Aθ and θ, λ 7→ Lλ(θ) satisfies RankAθ̃ < r̃∗ and L(θ̃) = 0, which is in
contradiction with the assumption that r∗ is the smallest fitting rank.

Lemma A.2. Let the loss L satisfy the β-PL inequality ( 12 ∥∇L(θ)∥2 ≥ βL(θ)) in a ball of radius

R =

√
Lλ(θ0)√

β
around initialization θ0 for some λ, then there is a time Tλ ≤ − log λ+log k0

β for

k0 = 2
β

(
2
√

2βL(θ0) (∥θ0∥+R) + β (∥θ0∥+R)
2
)

, where GF θTλ,λ on the L2-regularized loss

Lλ satisfies Lλ(θTλ,λ) = λk0.

Proof. Let TR,λ be the first time gradient flow θt,λ leaves the ball of radius R, we will describe the
dynamics before TR,λ and then show that TR,λ is larger than the time Tλ we are interested in.

Inside the ball, we have

∥∇Lλ(θ)∥2 ≥ (∥∇L(θ)∥ − 2λ ∥θ∥)2

≥
(√

2βL(θ)− 2λ ∥θ∥
)2

≥ 2βL(θ)− 2
√

2βL(θ)2λ ∥θ∥

≥ 2βLλ(θ)− 2λ
(
2
√
2βL(θ0) (∥θ0∥+R) + β (∥θ0∥+R)

2
)

≥ β (2Lλ(θ)− λk0) ,

for k0 = 2
β

(
2
√
2βL(θ0) (∥θ0∥+R) + β (∥θ0∥+R)

2
)

.

Let Tλ be the first time that Lλ(θt,λ) = λk0, , then for all t ≤ min {Tλ, TR,λ}

∂tLλ(θt,λ) = −∥∇Lλ(θt,λ)∥2

16



Published as a conference paper at ICLR 2024

≤ −2β

(
Lλ(θt,λ)−

λk0
2

)
≤ −βLλ(θt,λ),

which implies that Lλ(θt,λ) ≤ Lλ(θ0)e
−βt and thus that Tλ ≤ − log λ

β − log k0/2
β under the condition

that this is smaller than TR,λ.

Let us now show that TR,λ ≥ Tλ, by showing that ∥θTλ,λ − θ0∥ < R.

∥θTλ,λ − θ0∥ ≤
∫ Tλ

0

∥∇Lλ(θt,λ)∥ dt

=

∫ Lλ(θ0)−λ
k0
2

0

∥∥∇Lλ(θt(τ),λ)
∥∥−1

dτ

where we did a change of variable in time to t(τ) which is chosen so that Lλ(θt(τ),λ) = Lλ(θ0)− τ

which implies that ∂τ t(τ) =
∥∥∇Lλ(θt(τ),λ)

∥∥−2
(so that ∂τLλ(θt(τ),λ) = −

∥∥∇Lλ(θt(τ),λ)
∥∥2−2

=
−1 as needed). We can now further bound∫ Lλ(θ0)−λ

k0
2

0

∥∥∇Lλ(θt(τ),λ)
∥∥−1

dτ ≤
∫ Lλ(θ0)−λ

k0
2

0

1√
βLλ(θt,λ)

dτ

=
1√
β

∫ Lλ(θ0)−λ
k0
2

0

1√
Lλ(θ0)− τ

dτ

=
1√
β

(√
Lλ(θ0)−

√
λ
k0
2

)
.

≤
√
Lλ(θ0)√

β

= R.

While the PL inequality condition might be unexpected, it is actually satisfied at almost all global
minima:
Proposition A.7. Given global minimum θ of a network with widths wℓ ≥ din + dout for all
ℓ = 1, . . . , L − 1, then for all ϵ > 0 there is a closeby global minimum θ′, i.e. ∥θ − θ′∥ ≤ ϵ, such
that the loss satisfies the PL inequality in a neighborhood of θ′.

Proof. W.l.o.g., let us assume that din ≤ dout, then it is possible to change the parameters infinitesi-
mally to make WL−1 · · ·W1 full rank while keeping the outputs Aθ = WL · · ·W1 unchanged (by
only changing WL−1 · · ·W1 orthogonally to ImWT

L which is possible since wL−1 ≥ din + dout).

We now choose a neighborhood of θ′ such that the smallest singular value of WL−1 · · ·W1 is lower
bounded by some λ > 0. For any parameters θ in this neighborhood, the loss satisfies the β = 2λ2

N -PL
inequality:

∥∇L(θ)∥2 =
1

N2

∑
ℓ

∥∥WT
ℓ+1 · · ·WT

L [M ⊙ (A∗ −Aθ)]W
T
1 · · ·WT

ℓ−1

∥∥2
≥ 1

N2

∥∥[M ⊙ (A∗ −Aθ)]W
T
1 · · ·WT

L−1

∥∥2
≥ λ2

N2
∥M ⊙ (A∗ −Aθ)∥2

=
2λ2

N
L(θ).

17
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The PL-inequality is typically satisfied in the NTK regime (13; 24), but in the Saddle-to-Saddle
regime (23; 14) it seems that GF converges to the vicinity of a minima that does not satisfy the PL
inequality (minima that are balanced and low-rank typically do not satisfy it), so that the PL-inequality
might only be satisfied in a small neighborhood and with a small constant β. This suggests that in
settings where the two notions of minimal rank r∗ and r̃∗ do not agree, the question of which minima
GF converges to might be dependent on the regime of training we are in, with the NTK regime
leading to a rank no less than r̃∗ and the Saddle-to-Saddle regime leading to a rank no less than r∗ at
least for reasonable values of λ.

B LOW RANK BIAS

In Theorem 5, there are two statements: (1) if θt ∈ Br,ε1,ε2,C then θt+1 ∈ Br,ε1,ε2,C and (2) with a
positive probability such that there exists a time T such that θT ∈ Br,ε1,ε2,C . The following theorems
give the formal expression of the two statements.
Theorem B.1. For weight Wl, l = 1, . . . , L, L ≥ 3, let

BC,ε1 := {θ : ∥Wl∥2F ≤ C, ∥WlW
⊤
l −W⊤

l+1Wl+1∥2 ≤ ε1, l = 1, . . . , L},

where C ≥ C1/2λ. Define Fα(x) =
∑d

i=1 fα(xi) for any x ∈ Rd, where fα is twice differentiable
function such that fα(0) = 0, fα(x) = 1 for x > α, 0 ≤ f ′

α(x) ≤ K
α for some constant K and

f ′′
α(x) ≤ 0. Denote

Br,ε2 := {θ : Fα ◦ σ(W⊤
l Wl) ≤ r + ε2, l = 1, . . . , L},

where σ maps a matrix to its singular values and α ≤
(

λ2

2(C1+CL)

) 1
L−2

. Then for any ε1, ε2 > 0

such that ε2 < 1/2 and
√
ε1 ≤ λαε2

64nKL(r+1)2C
L−1

2
√

2(C1+CL)
, if θ(t) ∈ B := BC,ε1 ∩ Br,ε2 , then

stochastic gradient descent iteration with learning rate

η ≤ min

{
C1

4(2(C1 + CL)CL−1 + λ2C)
,

2λε1
4(C1 + CL)CL−1 + λ2ε1

,

λαε2
64nK(r + 1)2(2(C1 + CL)CL−1 + λ2C)

,
2(r + 1)

λ

}
satisfies θ(t+ 1) ∈ B, where n is the maximal widths and heights of weight matrices.

Theorem B.2. For any initialization θ0, denote C0 := max1≤l≤L ∥Wl∥2F , if

η ≤ min

{
C1

4(2(C1 + CL
0 )C

L−1
0 + λ2C0)

,
λε1

4(C1 + CL)CL−1 + 2λ2C

}
and C ≥ C1

λ , then for any time T = T0 + T1 satisfying T0 ≥ log(2C0/ε1)
ηλ and T1 ≥

log((4(n−r)C)/(αε2))
2ηλ , we have

P(θT ∈ Br,ε1,ε2,C) ≥
(

r

min{din, dout}

)T1

.

C PRELIMINARIES OF PROOFS

C.1 FACTS IN LINEAR ALGEBRA

Fact C.1. ∥AB∥∗ ≤ ∥A∥∗∥B∥∗, where ∥ · ∥∗ represents Frobenius norm or 2 norm.

Fact C.2. For matrices A,B satisfy AB is square, we have |Tr(AB)| ≤ ∥A∥F ∥B∥F .

Let σ1 ≥ σ2 ≥ · · · ≥ σr be the singular values of a matrix A ∈ Rm×n, where r = min{m,n}. We
have following facts.
Fact C.3. σi(AB) ≤ σ1(A)σi(B) and σi(AB) ≤ σi(A)σ1(B) for any i.
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Fact C.4 (Theorem 3.3.13 in (31)). For a square matrix A ∈ Rn×n, let λ1 ≥ · · · ≥ λn be the
eigenvalues. Then we have

k∑
i=1

|λp
i (A)| ≤

k∑
i=1

σp
i (A)

for k = 1, 2, . . . , n and p > 0.

C.2 SPECTRAL FUNCTION

For a function f : Rn 7→ R that preserves permutation, we consider the function f ◦ λ, where λ(A)
represents all eigenvalues of symmetric matrix A ∈ Rn×n. We define Diagµ be the diagonal matrix
with its entries equal to µ and diagA = (A11, . . . , Ann). The following lemmas gives the first and
second order derivatives of f ◦ λ.

Lemma C.1 (Lemma 3.1 from (21)). f is differentiable at point λ(A) if and only if f ◦ λ is
differentiable at A. Moreover, we have

∇(f ◦ λ)(A) = U(Diag∇f(λ(A)))U⊤,

where U is a orthogonal matrix satisfying A = U(Diagλ(A)U⊤.

For a decreasing sequence µ ∈ Rn, where

µ1 = · · · = µk1
> µk1+1 = · · · = µk2

> µk2+1 · · ·µkr
,

denote Il = {kl−1 + 1, . . . , kl} for l = 1, . . . , r. For a twice differentiable function f , we define
vector b(µ) as

bi(µ) =

{
f ′′
ii(µ) if |Il| = 1,

f ′′
pp(µ)− f ′′

pq(µ) for any p ̸= q ∈ Il
(1)

and matrix A(µ) as

Aij(µ) =


0 if i = j,

bi(µ) if i ̸= j but i, j ∈ Il,
f ′
i(µ)−f ′

j(µ)

µi−µj
otherwise.

Lemma C.2 (Theorem 3.3 from (21)). f is twice differentiable at point λ(A) if and only if f ◦ λ is
twice differentiable at A. Moreover, we have

∇2(f ◦ λ)(A)[H] = ∇2f(λ(A))[diagH̃, diagH̃] + ⟨A(λ(A), H̃ ◦ H̃)⟩,

where A = WDiagλ(A)W⊤ and H̃ = W⊤HW .

D PROOF OF THEOREM B.1

For stochastic gradient descent, the parameter updates as

θt+1 = (1− ηλ)θt −
η

2
∇θ(A

∗
itjt −Aθt,itjt)

2. (2)

Then for each l, l-th layer’s weight Wl updates as

Wl(t+ 1) = Wl(t)− η
(
Wl+1(t)

⊤ · · ·WL(t)
⊤Gθt,itjtW1(t)

⊤ · · ·Wl−1(t)
⊤ + λWl(t)

)
, (3)

where Gθ,ij is a matrix where the (i, j)-th entry is Aθ,ij − A∗
ij and other entries are 0. In the

proofs below, we will omit the iteration t for convenience (for example Wl = Wl(t)). We denote
Tl = W⊤

l+1 · · ·W⊤
L Gθ,ijW

⊤
1 · · ·W⊤

l−1.
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D.1 APPROXIMATE BALANCE

First we give a lemma that bounds ∥Gθ,ij∥F .

Lemma D.1. For any C, if ∥Wl(t)∥2F ≤ C for any l = 1, . . . , L, then ∥Gθ,ij∥2F ≤ 2(C1 + CL).

Proof. By Fact C.1, we have ∥Aθ∥2F ≤
∏L

l=1 ∥Wl∥2F ≤ CL. Then

∥Gθ,ij∥2F = (Aθ,ij −A∗
ij)

2 ≤ 2
(
A2

θ,ij + (A∗
ij)

2
)

≤ 2
(
∥Aθ∥2F + C1

)
≤ 2(CL + C1).

(4)

Proposition D.2. For any C ≥ C1

2λ , if ∥Wl(t)∥2F ≤ C for any l = 1, . . . , L, then stochastic gradient
descent iteration with learning rate η ≤ C1

4(2(C1+CL)CL+λ2C)
satisfies ∥Wl(t + 1)∥2F ≤ C for

l = 1, . . . , L.

Proof. If ∥Wl∥2F ≤ C, we have

∥Wl(t+ 1)∥2F = ∥Wl∥2F − 2η
(
λ∥Wl∥2F +Tr(W⊤

l Tl)
)
+ η2 ∥Tl + λWl∥2F . (5)

We estimate each part in the equation separately. We have

Tr(W⊤
l Tl) = Tr(W⊤

1 · · ·W⊤
L Gθ,ij)

= Tr(A⊤
θ Gθ,ij) = Aθ,ij(Aθ,ij −A∗

ij)

≥ −1

4
(A∗

ij)
2 ≥ −1

4
C1.

By Lemma D.1, we have

∥Tl + λWl∥2F ≤ 2

∥Gθ,ij∥2F
∏
k ̸=l

∥Wk∥2F + λ2∥Wl∥2F


≤ 2

(
2(C1 + CL)CL−1 + λ2C

)
.

Then we have

∥Wl(t+ 1)∥2F ≤ (1− 2ηλ)∥Wl∥2F +
1

2
ηC1 + 2η2(2(C1 + CL)CL−1 + λ2C).

When η ≤ C1

4(2(C1+CL)CL−1+λ2C)
and C ≥ C1

2λ ,

∥Wl(t+ 1)∥2F ≤ (1− 2ηλ)∥Wl∥2F + ηC1 ≤ C.

Proposition D.3. For any ε, C > 0, if ∥Wl(t)Wl(t)
⊤ −Wl+1(t)

⊤Wl+1(t)∥2 ≤ ε and ∥Wl(t)∥2F ≤
C for all l, then stochastic gradient descent iteration with learning rate η ≤ 2λε1

4(C1+CL)CL−1+λ2ε1

satisfies ∥Wl(t+ 1)Wl(t+ 1)⊤ −Wl+1(t+ 1)⊤Wl+1(t+ 1)∥2 ≤ ϵ for l = 1, . . . , L.

Proof. We first compute the update of WlW
⊤
l :

Wl(t+ 1)Wl(t+ 1)⊤ = ((1− ηλ)Wl − ηTl) ((1− ηλ)Wl − ηTl)
⊤

= (1− ηλ)2WlW
⊤
l − (1− ηλ)η(WlT

⊤
l + TlW

⊤
l ) + η2TlT

⊤
l .

Similarly, we have

Wl+1(t+ 1)⊤Wl+1(t+ 1)

= (1− ηλ)2W⊤
l+1Wl+1 − (1− ηλ)η(Wl+1⊤Tl+1 + T⊤

l+1Wl+1) + η2T⊤
l+1Tl+1.

Since
TlW

⊤
l = W⊤

l+1 · · ·W⊤
L Gθ,ijW

⊤
1 · · ·W⊤

l = W⊤
l+1Tl+1
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and
WlT

⊤
l =

(
TlW

⊤
l

)⊤
=
(
W⊤

l+1Tl+1

)⊤
= T⊤

l+1Wl+1,

we have

Wl(t+ 1)Wl(t+ 1)⊤ −Wl+1(t+ 1)⊤Wl+1(t+ 1)

= (1− ηλ)2(WlW
⊤
l −W⊤

l+1Wl+1) + η2(TlT
⊤
l − T⊤

l+1Tl+1).

Then
∥Wl(t+ 1)Wl(t+ 1)⊤ −Wl+1(t+ 1)⊤Wl+1(t+ 1)∥2

≤ (1− ηλ)2
∥∥WlW

⊤
l −W⊤

l+1Wl+1

∥∥
2
+ η2

∥∥TlT
⊤
l − T⊤

l+1Tl+1

∥∥
2

≤ (1− ηλ)2ε+ η2∥Gθ,ij∥22

∏
k ̸=l

∥Wk∥22 +
∏

k ̸=l+1

∥Wk∥22


≤ ε− 2ηλε+ η2λ2ε+ 4η2(C1 + Cl)CL−1.

(6)

When η ≤ 2λε1
4(C1+CL)CL−1+λ2ε1

,

∥Wl(t+ 1)Wl(t+ 1)⊤ −Wl+1(t+ 1)⊤Wl+1(t+ 1)∥2 ≤ ε− 2ηλε+ 2ηλε = ε.

With Proposition D.2 and Proposition D.3, we have the following statement that θt+1 is approximate
balance and the weight of each layer is bounded.:
Theorem D.4. For any ε > 0 and C ≤ 1/2λ, if θ(t) ∈ BC,ε, then the stochastic gradient descent

iteration with learning rate η ≤ min
{

C1

4(2(C1+CL)CL−1+λ2C)
, 2λε1
4(C1+CL)CL−1+λ2ε1

}
satisfies θ(t+

1) ∈ BC,ε.

D.2 APPROXIMATE RANK-r

In this section, we prove the following theorem that the weight Wl(t+1) of each layer is approximately
rank-r.
Theorem D.5. For any ε1, ε2 > 0 such that ε2 < 1/2 and

√
ε1 ≤ λαε2

32nL(r+1)C
L−1

2
√

2(C1+CL)
, if

the number of layers L ≥ 3 and θ(t) ∈ B, then stochastic gradient descent iteration with learning

rate η ≤ min
{

λαε2
32n(r+1)(2(C1+CL)CL−1+λ2C)

, 2(r+1)
λ

}
satisfies θ(t + 1) ∈ Br,ε2 , where n is the

maximal widths and heights of weight matrices.

Proof. We denote by rl the minima of height and width of Wl and the singular value decomposition
Wl = Ũl

⊤
SlṼl, where Ũl and Ṽl are orthogonal matrices. Let fα and Fα be as defined in Theorem

B.1. By Taylor’s expansion, for any l we have

Fα ◦ σ
(
Wl(t+ 1)⊤Wl(t+ 1)

)
=Fα ◦ σ

(
W⊤

l Wl − ηW⊤
l Tl − ηT⊤

l Wl − 2ηλW⊤
l Wl + η2(Tl + λWl)

⊤(Tl + λWl)
)

=Fα ◦ σ(W⊤
l Wl)−

〈
∇(Fα ◦ σ)(W⊤

l Wl), η(W
⊤
l Tl + T⊤

l Wl)
〉

−
〈
∇(Fα ◦ σ(W⊤

l Wl), 2ηλW
⊤
l Wl

〉
+
〈
∇(Fα ◦ σ)(W⊤

l Wl), η
2(Tl + λWl)

⊤(Tl + λWl)
〉

+∇2(Fα ◦ σ)(W⊤
l Wl + γη∆)[η∆, η∆],

(7)

where γ ∈ (0, 1) and ∆ = −W⊤
l Tl − T⊤

l Wl − 2λW⊤
l Wl + η(Tl + λWl)

⊤(Tl + λWl). By Lemma
C.1, we have

∇(Fα ◦ σ)(W⊤
l Wl) = Ṽ ⊤

l diag{f ′
α(s

2
1), . . . , f

′
α(s

2
rl
)}Ṽl,

where s1, . . . , srl are the entries of diagonal matrix Sl. Denote diag{f ′
α(s

2
1), . . . , f

′
α(s

2
rl
)} = f ′

α(S
2).

Then

Fα ◦ σ
(
Wl(t+ 1)⊤Wl(t+ 1)

)
≤

rl∑
i=1

fα(s
2
i )− 2ηλf ′

α(s
2
i )s

2
i + 2η

∣∣∣Tr(Ṽlf
′
α(S

2)ṼlW
⊤
l Tl

)∣∣∣+ β,
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where β is the O(η2) term. Now we can estimate the trace term∣∣∣Tr(Ṽlf
′
α(S

2)ṼlW
⊤
l Tl

)∣∣∣
=
∣∣∣Tr(W⊤

1 · · ·W⊤
l−1Ṽlf

′
α(S

2)ṼlW
⊤
l · · ·W⊤

L Gθ,ij

)∣∣∣
≤
∥∥∥W⊤

1 · · ·W⊤
l−1Ṽlf

′
α(S

2)ṼlW
⊤
l · · ·W⊤

L

∥∥∥
F
∥Gθ,ij∥F

≤
√

2(C1 + CL)
∥∥∥W⊤

1 · · ·W⊤
l−1Ṽlf

′
α(S

2)ṼlW
⊤
l · · ·W⊤

L

∥∥∥
F

=
√
2(C1 + CL)

√
Tr
(
(W⊤

1 · · ·W⊤
l−1Ṽlf ′

α(S
2)ṼlW⊤

l · · ·W⊤
L )⊤W⊤

1 · · ·W⊤
l−1Ṽlf ′

α(S
2)ṼlW⊤

l · · ·W⊤
L

)
=
√
2(C1 + CL)

√
Tr
(
Wl−1 · · ·W1W⊤

1 · · ·W⊤
l−1Ṽlf ′

α(S
2)ṼlW⊤

l · · ·W⊤
L WL · · ·WlṼlf ′

α(S
2)Ṽl

)
,

(8)

where the first inequality is from Fact C.2.

Let Ek =
∑k

i=1(W
⊤
k+1Wk+1)

i−1(WkW
⊤
k − W⊤

k+1Wk+1)(WkW
⊤
k )k−i for k < l and Ek =∑L

i=k(Wk−1W
⊤
k−1)

L−i(W⊤
k Wk −Wk+1W

⊤
k+1)(W

⊤
k Wk)

i−k for k > l. Then we have

(WkW
⊤
k )k = (W⊤

k+1Wk+1)
k + Ek

for k < l and
(W⊤

k Wk)
L−k+1 = (Wk−1W

⊤
k−1)

L−k+1 + Ek

for k > l. Thus,

Tr
(
Wl−1 · · ·W1W

⊤
1 · · ·W⊤

l−1Ṽ
⊤
l f ′

α(S
2)ṼlW

⊤
l · · ·W⊤

L WL · · ·WlṼ
⊤
l f ′

α(S
2)Ṽl

)
≤
∣∣∣Tr((W⊤

l Wl)
l−1Ṽ ⊤

l f ′
α(S

2)Ṽl(W
⊤
l Wl)

L−l+1Ṽ ⊤
l f ′

α(S
2)Ṽl

)∣∣∣+∑
k ̸=l

|Tr(Ek)|

=
∣∣∣Tr(Ṽ ⊤

l (f ′
α(S

2))2S2LṼl

)∣∣∣+∑
k ̸=l

|Tr(Ek)|,

(9)

where

Ek = Wl−1 · · ·Wk+1EkW
⊤
k+1 · · ·W⊤

l−1Ṽ
⊤
l f ′

α(S
2)ṼlW

⊤
l · · ·W⊤

L WL · · ·WlṼ
⊤
l f ′

α(S
2)Ṽl

for k < l and

Ek = (W⊤
l Wl)

l−1Ṽ ⊤
l f ′

α(S
2)ṼlW

⊤
l · · ·W⊤

k−1EkWk−1WlṼ
⊤
l f ′

α(S
2)Ṽl

for k > l.

Second term in (9). Denote Ek = CkṼ ⊤
l f ′

α(S
2)Ṽl. We define an operator S(A) equals to the sum

of all singular values of A. Then by Fact C.4, |Tr(Ek)| ≤ S(Ek). Since ∥Ws∥2 ≤ ∥Ws∥F ≤
√
C,

∥Ek∥2 ≤ kε1C
k−1 for k < l and ∥Ek∥2 ≤ (L − k + 1)ε1C

L−k for k > l by D.4. Since
∥Ṽl⊤f ′

α(S
2)∥2Ṽl ≤ Tr(f ′

α(S
2)), we have ∥Ck∥2 ≤ Tr(f ′

α(S
2))CL−1kε1 for k < l and ∥Ck∥2 ≤

Tr(f ′
α(S

2))CL−1(L− k + 1)ε1 for k > l. Thus, by Fact C.3,∑
k ̸=l

|Tr(Ek)| ≤ S(f ′
α(S

2))
∑
k ̸=l

∥Ck∥2

≤ S(f ′
α(S

2))Tr(f ′
α(S

2))CL−1ε1

(∑
k<l

k +
∑
k>l

(L− k + 1)

)

≤ CL−1L
2

2
ε1

(
rl∑
i=1

f ′
α(s

2
i )

)2

.

(10)
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First term in (9). By Fact C.4 and Fact C.3, we have∣∣∣Tr(Ṽ ⊤
l (f ′

α(S
2))2S2LṼl

)∣∣∣ ≤ S
(
Ṽ ⊤
l (f ′

α(S
2))2S2LṼl

)
≤

rl∑
i=1

(f ′
α(s

2
i ))

2s2Li ≤ (

rl∑
i=1

f ′
α(s

2
i )s

L
i )

2.

Then we have that√
Tr
(
Wl−1 · · ·W1W⊤

1 · · ·W⊤
l−1Ṽlf ′

α(S
2)ṼlW⊤

l · · ·W⊤
L WL · · ·WlṼlf ′

α(S
2)Ṽl

)
≤

√√√√(

rl∑
i=1

f ′
α(s

2
i )s

L
i )

2 + CL−1
L2

2
ε1(

rl∑
i=1

f ′
α(s

2
i ))

2

≤
rl∑
i=1

f ′
α(s

2
i )s

L
i + C

L−1
2 L

√
ε1

rl∑
i=1

f ′
α(s

2
i )

We denote δ :=
∑rl

i=1 λf
′
α(s

2
i )s

2
i −

√
2(C1 + CL)f ′

α(s
2
i )s

L
i and E :=√

2(C1 + CL)C
L−1

2 L
√
ε1
∑rl

i=1 f
′
α(s

2
i ). Then

Fα ◦ σ
(
Wl(t+ 1)⊤Wl(t+ 1)

)
≤

n∑
i=1

fα(s
2
i )− 2ηδ + 2ηE + β.

When
∑rl

i=1 fα(s
2
i ) > r + ε2/2, we have −2ηδ + 2ηE + β ≤ 0 by Lemma D.7 and when∑rl

i=1 fα(s
2
i ) ≤ r + ε2/2, we have −2ηδ + 2ηE + β ≤ ε2/2 by Lemma D.8. Then Fα ◦

σ
(
Wl(t+ 1)⊤Wl(t+ 1)

)
≤ r + ε2.

D.3 BOUNDS ON ERROR TERMS

Note that we have fα(x) ∈ [0, 1], f ′
α(x) ∈ [0, 2

α ] and f ′′
α(x) ≤ 0.

Lemma D.6. With same conditions and notations in Theorem D.5, the O(η2) term

β ≤ 2η2(2(C1 + CL)CL−1 + λ2C)

rl∑
i=1

f ′
α(s

2
i ).

Proof. As defined in Theorem D.5,

β =
〈
∇(Fα ◦ σ)(W⊤

l Wl), η
2(Tl + λWl)

⊤(Tl + λWl)
〉

+∇2(Fα ◦ σ)(W⊤
l Wl + γη∆)[η∆, η∆].

(11)

We bound the two terms in (11) separately.

First term in (11). By Fact C.3 and the proof of Proposition D.2, we have〈
∇(Fα ◦ σ)(W⊤

l Wl), η2(Tl + λWl)
⊤(Tl + λWl)

〉
≤η2Tr(f ′

α(S
2))∥Tl + λWl∥22

≤2η2(2(C1 + CL)CL−1 + λ2C)

rl∑
i=1

f ′
α(s

2
i )

(12)

Second term in (11). By Lemma C.2,

∇2(Fα ◦ σ)(W⊤
l Wl + γη∆)[η∆, η∆]

=η2
[
∇2Fα(σ(W

⊤
l Wl + γη∆))[diag∆̃,diag∆̃] + ⟨A(σ(W⊤

l Wl + γη∆)), ∆̃ ◦ ∆̃⟩
]

where ∆̃ = Ṽl∆Ṽ ⊤
l and

Aij(σ(W
⊤
l Wl + γη∆)) =


f ′′
α(s̃

2
i ) if i ̸= j but s̃2i = s̃2j ,

f ′
α(s̃2i )−f ′

α(s̃2j )

s̃2i−s̃2j
if s̃2i ̸= s̃2j ,

0 otherwise,
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where s̃1, . . . s̃rl are the eigenvalues of W⊤
l Wl + γη∆. Since ∇2Fα(σ(W

⊤
l Wl + θη∆)) =

diag{f ′′
α(s̃

2
1), . . . , f

′′
α(s̃

2
rl
)} with all entries non-positive, we have

∇2Fα(σ(W
⊤
l Wl + γη∆))[diag∆̃,diag∆̃] ≤ 0.

Moreover, since fα(x) is concave, all entries of A(σ(W⊤
l Wl)) are non-positive. Thus,

⟨A(σ(W⊤
l Wl + γη∆)), ∆̃ ◦ ∆̃⟩ ≤ 0.

Overall, β ≤ 2η2(2(C1 + CL)CL−1 + λ2C)
∑rl

i=1 f
′
α(s

2
i )

Lemma D.7. With same conditions and notations in Theorem D.5, when r+ε2/2 <
∑rl

i=1 fα(s
2
i ) ≤

r + ε2, we have −2ηδ + 2ηE + β ≤ 0.

Proof. Define g(x) = f ′
α(x)

(
λx−

√
2(C1 + CL)xL/2

)
on x ≥ 0. Then since L ≥ 3, for

α ≤
(

λ2

2(C1+CL)

) 1
L−2

, f ′
α(x) = 0 when x > α and λx −

√
2(C1 + CL)xL/2 ≥ 0 when x ≤ α.

Thus, g(x) ≥ 0 for any x ≥ 0. Since δ =
∑rl

i=1 g(s
2
i ), we have δ ≥ 0.

Note that there are at most r si’s such that fα(s2i ) ≥ 2r+1
2(r+1) =: Mr. Otherwise,

rl∑
i=1

fα(s
2
i ) ≥ (r + 1)

2r + 1

2(r + 1)
= r + 1/2 > r + ε2.

Specifically, when
∑rl

i=1 fα(s
2
i ) ≥ r + ε2/2, we have∑

i:fα(s2i )<Mr

fα(s
2
i ) ≥

rl∑
i=1

fα(s
2
i )− r ≥ ε2

2
. (13)

Since fα(x)(α− x) ≥ 1− fα(x) by concavity, we have

f ′
α(x) ≥

1− fα(x)

α− x
≥ 1− fα(x)

α
. (14)

We also have fα(x) =
∫ x

0
f ′
α(s)ds ≤ Kx

α according to fα(x) ≤ K
α . Then we have

x ≥ fα(x)

K
α. (15)

Moreover, by L ≥ 3 and the concavity of fα(x), we have

1−
(x
α

)L−2
2 ≥ 1−

√
x

α
≥ 1−

√
fα(x) ≥

1− fα(x)

2
. (16)

By equation Eq. (14), (15) and (16), we have

g(x) = λf ′
α(x)x

(
1−

(x
α

)L−2
2

)
≥ λ

2K
fα(x)(1− fα(x))

2 ≥ λfα(x)

8K(r + 1)2
. (17)

Thus, we have

δ =

rl∑
i=1

g(s2i ) ≥
∑

i:fα(s2i )<Mr

g(sx− i2) >
∑

i:f(s2i )<Mr

fα(s
2
i )

λ

8K(r + 1)2
≥ λε2

16K(r + 1)2
, (18)

where the last inequality is by (13). Note that
∑rl

i=1 f
′
α(si) ≤ 2rl

α ≤ 2n
α . Then

since
√
ε1 ≤ λαε2

64nKL(r+1)2C
L−1

2
√

2(C1+CL)
, we have E ≤ λε2

32K(r+1)2 and since η ≤
λαε2

64nK(r+1)2(2(C1+CL)CL−1+λ2C)
, we have β ≤ η λε2

16K(r+1)2 . Thus,

−2ηδ + 2ηE + β ≤ η

(
− λε2
8K(r + 1)2

+
λε2

16K(r + 1)2
+

λε2
16K(r + 1)2

)
= 0. (19)
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Lemma D.8. With same conditions and notations in Theorem D.5, when
∑rl

i=1 fα(s
2
i ) ≤ r + ε2/2,

we have −2ηδ + 2ηE + β ≤ ε2/2.

Proof. Note that δ ≥ 0, E ≤ λε2
32K(r+1)2 and β ≤ η λε2

16K(r+1)2 . Since η ≤ 4K(r+1)2

λ , we have

−2ηδ + 2ηE + β ≤ η

(
λε2

16K(r + 1)2
+

λε2
16K(r + 1)2

)
≤ ε2

2
. (20)

E PROOF OF THEOREM B.2

In Theorem B.2, T = T0 + T1. The following statements explain the change of θt during first T0

iterations and last T1 iterations respectively.
Theorem E.1. For any initialization θ0, denote C0 := max1≤l≤L ∥Wl∥2F , if η ≤
min

{
C1

4(2(C1+CL
0 )CL−1

0 +λ2C0)
, λε1
4(C1+CL)CL−1+2λ2C

}
and C ≥ C1

λ , then for any time T ≥
log(2C0/ε1)

ηλ we have
θT ∈ BC,ε1

Proof. Similar to the proof of D.2, if η ≤ C1

4(2(C1+CL
0 )CL−1

0 +λ2C0)
and C ≥ C1

λ , we have

∥Wl(t+ 1)∥2F ≤ (1− 2ηλ)∥Wl(t)∥2F + ηC1.

If ∥Wl(t)∥2F ≥ C, then ∥Wl(t+1)∥2F ≤ (1− ηλ)∥WL(t)∥2F . Otherwise, ∥Wl(t+1)∥2F ≤ C. Thus,

there exists t ≤ T0 such that ∥Wl∥2F ≤ C for any l when T0 ≥ log(C0/C)
ηλ ≥ log

(
C
C0

)
/ log (1− ηλ).

After all weights satisfy ∥Wl∥2F ≤ C, ∥WlW
⊤
l −W⊤

l+1Wl+1∥2 ≤ 2C. Similar to the proof of D.3,
we have

∥Wl(t+ 1)Wl(t+ 1)⊤ −Wl+1(t+ 1)⊤Wl+1(t+ 1)∥2
≤ (1− ηλ)2∥WlW

⊤
l −W⊤

l+1Wl+1∥2 + 4η2(C1 + CL)CL−1

≤ (1− 2ηλ)∥WlW
⊤
l −W⊤

l+1Wl+1∥2 + 2η2λ2C + 4η2(C1 + CL)CL−1

(21)

When η ≤ λε1
4(C1+CL)CL−1+2λ2C

, we have ∥Wl(t + 1)Wl(t + 1)⊤ − Wl+1(t + 1)⊤Wl+1(t +

1)∥2 ≤ (1 − ηλ)max{∥WlW
⊤
l − W⊤

l+1Wl+1∥2, ε1} for any l. Then for T1 ≥ log(2C/ε1)
ηλ ≥

log
(

ε1
2C

)
/ log (1− ηλ), θT0+T1

∈ BC,ε1 .

Theorem E.2. For any parameter θt ∈ Bε1,C satisfying ε1 ≤ αε2
2K(n−r)(L−1) , then for any T ≥

log((2K(n−r)C)/(αε2))
2ηλ we have

P(θt+T ∈ Br,ε1,ε2,C |θt ∈ Bε1,C) ≥
(

r

min{din, dout}

)T

.

Proof. For the true matrix A∗, the number of columns is din and the number of rows is dout. Let
n = min{din, dout}. Without loss of generality we can assume that n = din, i.e. there are n columns.
We consider the r columns with most observed entries and denote the the set of these entries by J .
Then |J | ≥ r

n |I| and for each step s, the probability of sampling from J is P((is, js) ∈ J) ≥ r
n .

Then the event that all steps s from t to t+ T − 1, random entries (is, js) are all sampled from J has
probability at least

(
r
n

)T
. Under this event, we consider the weight of first layer W1. We have

W1(s+ 1) = (1− ηλ)W1(s)− ηW2(s)
⊤ · · ·WL(s)

⊤Gθs,isjs .

Then

W1(T ) = (1− ηλ)TW1(t) +

T∑
s=1

(1− ηλ)T−sW2(t+ s)⊤ · · ·WL(t+ s)⊤Gθt+s,it+sjt+s .

25



Published as a conference paper at ICLR 2024

Since (it+s, jt+s) ∈ J , the non-zero entry of Gθt+s,it+sjt+s
is located on the r columns supporting J ,

for any s = 1, . . . , T . Thus, W2(t+ s)⊤ · · ·WL(t+ s)⊤Gθt+s,it+sjt+s
only has non-zero entries on

those r columns. Then the r+1’s singular value of W1(t+T ) satisfies σi(W1(t+T )) ≤ (1−ηλ)T
√
C

for any i > r.

For l > 1, we have ∥Wl−1W
⊤
l−1 −W⊤

l Wl∥2 ≤ ε1. Then |σi(W
⊤
l Wl)− σi(Wl−1W

⊤
l−1)| ≤ ε1 for

any i, i.e. |σi(Wl)
2−σi(Wl−1)

2|. Then for any l, we have σi(Wl(T ))
2 ≤ (1−ηλ)2TC+(l−1)ε1.

When ε1 ≤ αε2
2K(n−r)(L−1) and T ≥ log((2K(n−r)C)/(αε2))

2ηλ ≥ log
(

αε2
2K(n−r)C

)
/2 log(1 − ηλ), we

have σi(Wl(T ))
2 ≤ αε2

K(n−r) for any i > r. Then for any i > r,

fα(σi(Wl(T )
2)) ≤ K

α
σi(Wl(T )

2) ≤ ε2
n− r

since f ′
α ≤ K/α. Thus,

Fα ◦ σ(Wl(T )
⊤Wl(T )) ≤ r +

n∑
i=r+1

fα(σi(Wl(T )
2)) ≤ r + ε2.

If n = dout, the proof is the same by selecting r rows with most observed entries.

F LOW RANK PROPERTY OF Aθ

In Proposition 4, we show that for any minimizer θ̂ in Br,ε1,ε2,C , it is approximate rank-r. In fact,
any general parameter θ ∈ Br,ε1,ε2,C is approximate rank-r or less:
Proposition F.1. For any parameter θ ∈ Br,ε1,ε2,C , we have

Rank Aθ∑
i=1

fα(si(A
⊤
θ Aθ)) ≤ r + ε2 +

KnL2

2α
CL−1ε1.

Moreover, if ε1 ≤ 2αε2
KnL2CL−1 , we have

Rank Aθ∑
i=1

fα(si(A
⊤
θ Aθ)) ≤ r + 2ε2.

Proof. Since (WkW
⊤
k )k = (W⊤

k+1Wk+1)
k + Ek and Ek =

∑k
i=1(W

⊤
k+1Wk+1)

i−1(WkW
⊤
k −

W⊤
k+1Wk+1)(WkW

⊤
k )k−i, we have

AθA
⊤
θ = WL · · ·W1W

⊤
1 · · ·W⊤

L = (WLW
⊤
L )L +

L−1∑
k=1

Ek,

where Ek = WL · · ·Wk+1EkW
⊤
k+1 · · ·W⊤

L . Then by Taylor’s expansion, we have
rL∑
i=1

fα(si(A
⊤
θ Aθ)) = Fα ◦ σ(AθA

⊤
θ )

= Fα ◦ σ(((WLW
⊤
L )L + E))

= Fα ◦ σ((WLW
⊤
L )L) +

〈
∇(Fα ◦ σ)((WLW

⊤
L )L), E

〉
+∇2(Fα ◦ σ)((WLW

⊤
L )L + γE)[E , E ],

(22)

where γ ∈ (0, 1) and E =
∑L−1

k=1 Ek. Note that the Rank Aθ ≤ rL, so we can let si(A⊤
θ Aθ) = 0 for

i > Rank Aθ.

First term in (22). Fα ◦ σ((WLW
⊤
L )L) =

∑rL
i=1 fα(s

2L
i ), where {s1, . . . , srL} are the singular

values of Wl. Then since fα is non-decreasing, fα(s2Li ) ≤ fα(s
2
i ) for si ≤ 1 and fα(s

2L
i ) =

fα(s
2
i ) = 1 for si > 1 > α. Thus, Fα ◦ σ((WLW

⊤
L )L) ≤ Fα ◦ σ(W⊤

L WL) ≤ r + ε2.

26



Published as a conference paper at ICLR 2024

Second term in (22). By Lemma C.1, ∇(Fα◦σ)((WLW
⊤
L )L) = ŨLdiag{f ′

α(s
2L
i ), . . . , f ′

α(s
2L
rl
)}.

Then by Fact C.3 and C.4, we have〈
∇(Fα ◦ σ)((WLW

⊤
L )L), E

〉
≤ S

(
∇(Fα ◦ σ)((WLW

⊤
L )L)

)
∥E∥2

≤ ∥E∥2
rL∑
i=1

f ′
α(s

2L
i )

≤ KrL
α

∥E∥2 ≤ Kn

α
∥E∥2

Since ∥Ek∥F ≤ kCk−1ε1, we have ∥Ek∥F ≤ kCL−1ε1. Then

∥E∥2 ≤ ∥E∥F ≤
L−1∑
k=1

∥Ek∥F ≤ CL−1ε1

L−1∑
k=1

k ≤ L2

2
CL−1ε1.

Thus,
〈
∇(Fα ◦ σ)((WLW

⊤
L )L), E

〉
≤ KnL2

2α CL−1ε1.

Third term in (22). By Lemma C.2,

∇2(Fα◦σ)((WLW
⊤
L )L + γE)[E , E ]

= ∇2Fα

(
σ((WLW

⊤
L )L + γE)

)
[diagẼ ,diagẼ ] + ⟨A(σ((WLW

⊤
L )L + γE)), Ẽ ◦ Ẽ⟩,

where Ẽ = ŨLEŨ⊤
L . Since the entries of ∇2Fα

(
σ((WLW

⊤
L )L + γE)

)
and A(σ((WLW

⊤
L )L+γE))

are all non-positive (follows the proof in D.6), we have

∇2(Fα ◦ σ)((WLW
⊤
L )L + γE)[E , E ] ≤ 0.

Therefore, we can add the three terms up and have

Rank Aθ∑
i=1

fα(si(A
⊤
θ Aθ)) ≤ r + ε2 +

KnL2

2α
CL−1ε1.
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