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ADDG: An Adaptive Domain Generalization Framework
for Prostate Cross-Plane MRI Segmentation
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ABSTRACT
Multi-planar and multi-slice magnetic resonance imaging (MRI) can
provide more comprehensive 3D structural information for disease
diagnosis. However, compared to multi-source MRI, multi-planar
MRI uses almost the same scanning parameters but scans different
internal structures. This atypical domain difference may lead to
poor performance of traditional domain generalization methods
in handling multi-planar MRI, especially when MRI from different
planes also comes from different sources. In this paper, we introduce
ADDG, an Adaptive Domain Generalization Framework tailored
for accurate cross-plane MRI segmentation. ADDG significantly
mitigates the impact of information loss caused by slice spacing
by incorporating 3D shape constraints of the segmentation target,
and better clarifies the feature differences between different planes
of data through adaptive data partitioning strategy. Specifically,
we propose a mesh deformation-based organ segmentation net-
work to simultaneously delineate the 2D boundary and 3D mask
of the prostate, as well as to guide more accurate mesh deforma-
tion. We also develop an organ-specific mesh template and employ
Loop subdivision for unpooling new vertices to a triangular mesh
to guide the mesh deformation task, resulting in smoother organ
shapes. Furthermore, we design a flexible meta-learning paradigm
that adaptively partitions data domains based on invariant learn-
ing, which can learn domain invariant features from multi-source
training sets to further enhance the generalization ability of the
model. Experimental results show that our approach outperforms
several medical image segmentation, single-planar-based 3D shape
reconstruction, and domain generalization methods.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Image Segmentation, Multi-Planar MRI, Domain Generalization,
Meta-Learning, Mesh Deformation

1 INTRODUCTION
In recent years, magnetic resonance imaging (MRI) has played an
increasingly important role in medical diagnosis. However, single-
planar MRI is typically used in examinations, and the presence of
slice spacing can result in significant information loss, as shown in
Figure 1 (a). This can easily lead to inaccurate perception of organ
and lesion shapes, as well as occurrences such as missed detection
of small lesions [44]. Correspondingly, multi-planar MRI scans the
human body through three mutually perpendicular directions, e.g.,
the axial, coronal, and sagittal planes, as shown in Figure 1 (e). Using
multi-planar MRI can significantly reduce information loss caused
by slice spacing and effectively improve diagnostic accuracy[38].
But, it requires the radiologists to correlate images from multiple
directions, which demands higher expertise and experience, as

(b) PI-CAI (d) PROMISE12(c) I2CVB

Domain difference of Multi-site MRI

(f) Axial(Transverse) plane (g) Coronal plane (h) Sagittal plane
Domain difference of Multi-planar MRI

(e) Multi-planar MRI

(a) Multi-slice MRI(e) Multi-Slice MRI
sliceslice 0.333

Figure 1: (a) spatial arrangement of multi-slice MRI; (b-d)
MRI of a similar location from the different data sources; (e)
MRI’s multi-plane scanning mode; (f-h) coronal, sagittal, and
axial (transverse) plane MRI. In comparison, multi-source
MRI has a similar internal structure but different visual fea-
tures, while multi-planar MRI is the opposite.

well as more time. This implies that reviewing multi-planar MRI
is more prone to intra-observer and inter-observer errors[46]. In
the context of a severe shortage of experienced radiologists and
increasing hospital workload, the use of multi-planar MRI seems
like a double-edged sword for disease diagnosis.

Fortunately, deep learning has been increasingly applied in in-
telligent assisted diagnosis. For example, automatic segmentation
of organs and lesions from a large number of MRI data can signifi-
cantly alleviate the workload of radiologists. However, the training
of deep learning models often requires a large amount of data with
high-quality annotations[1]. Due to restrictions such as medical
ethics, medical imaging datasets are typically small in sample size
and even incomplete. Most of them also lack or have insufficient
(high-quality) annotations. Taking the prostate organ segmentation
task as an example, there have been several benchmark datasets
that can be used for model training, such as PROMISE12 [25] and
Decathlon [37]. But they both have some limitations in terms of
multi-plane aspects, i.e., either they contain data and annotations
from single-planar MRI or although they include data from multi-
planar MR images, annotations are provided only for single-planar
MRI. Meanwhile, due to annotating 3D medical image data is time-
consuming, collecting a set of annotated multi-planar MRI data is
usually impractical. This makes it difficult for researchers to train
high-performance models to segment multi-planar MRI.

To achieve accurate organ segmentation on multi-planar MRI
without having full-planar annotations, a potentially viable ap-
proach is domain generalization[12]. This involves training robust
models with annotated plane data and enabling precise organ seg-
mentation on unannotated planes. However, domain generalization
is generally used to handle multi-source MRI data, addressing do-
main shift issues caused by differences in data distribution between
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different sources. Those differences are typically manifest in con-
trast, the field of view (FOV), and other aspects, stemming from
scanning parameters, physician preferences, and variations in pa-
tient conditions (lesion textures are often more complex), as shown
in Figure 1 (b-d). It is worth noting that, for slices at similar locations
from different data sources, their internal (organ) structures exhibit
higher similarity. Different from multi-source MRI, multi-planar
MRI uses almost the same scanning parameters but scans different
internal structures, as shown in Figure 1 (f-h). The atypical domain
differences between multi-planar MRI almost exclude features like
image contrast that traditional deep learning models usually ex-
tract. This makes it challenging for domain generalizationmodels to
capture sufficient domain differences and correlations, thus failing
to meet the requirements of organ segmentation tasks on multi-
planar MRI data. To validate the above point, we conducted several
experiments using the PROSTATEX-Seg-HiRes dataset [8, 30, 36].
We separately train U-Net, MLDG-based U-Net on a single-planar
(axial plane) data, and Voxel2Mesh on multi-planar data. Then, we
test them on the sagittal plane data. The results (DSC) are 44.63%,
46.38%, and 52.59%, respectively. While the experiments may not
be 100% rigorous, we can still identify that domain-generalization
segmentation can alleviate the problem of cross-plane data to some
extent. However, compared to the 3D shape reconstruction method
based on single-planar images, there still exists a significant perfor-
mance gap. Unfortunately, the segmentation issues for multi-planar
MRI have not received widespread attention from researchers yet,
and there is currently a lack of in-depth research dedicated to ad-
dressing these issues.

Based on the analysis above, we first introduce a novel domain
generalization problem for the task of prostate MRI segmentation:
given only the images and annotations from one plane, how can we
achieve prostate segmentation in the other two planes? To achieve
the objectives above, we propose ADDG, an adaptive domain gen-
eralization framework for accurate cross-plane MRI segmentation.
Unlike any previous prostate segmentation method or domain gen-
eralization approach, ADDG is based on the shape reconstruction
method for 3D objects from single-planar images, so that it can
estimate the 3D shapes of the prostate from single-planar MRI,
enabling it to segment the prostate on unseen plane MR images
better. Further, we propose a gradient meta-learning training strat-
egy with adaptive data partitioning. Specifically, ADDG consists
of a cross-plane segmentation model based on mesh deformation
and a meta-learning training strategy with adaptive data partition-
ing criterion. For better cross-plane segmentation, we propose a
mesh deformation based organ Segmentation network that simul-
taneously learns the spatial relationships between slices of the 3D
image and the 2D image details within each slice. Additionally, we
also design a task-specific initialization mesh template and intro-
duce a vertex augmentation method based on Loop subdivision
to ensure smoother mesh deformation of the prostate. The meta-
learning training strategy with adaptive data partitioning is used
to capture more domain shift data partitions from training sets
composed of multiple sources (institutions), enabling the model
to learn more domain-invariant features and further enhance the
generalization ability of the cross-plane segmentation model based
on mesh deformation.

Our contributions are as follows:

• We identify a domain generalization problem crucial for
prostate three-dimensional modeling, yet previously un-
explored, regarding cross-plane MRI segmentation. Then
we propose a tailored cross-plane segmentation framework
for this problem, which utilizes a 3D object reconstruction
model from single-planar images as the backbone.

• We devise a novel meta-learning strategy with adaptive
data partitioning for model training. This approach can
fully exploit the heterogeneity of multi-domain data, and
enable more comprehensive learning of domain-invariant
features compared to traditional meta-learning methods.

• We further incorporate a mixed encoding scheme of 2D
and 3D features, a 2D slice learning branch, a strong prior
prostate mesh template, and Loop subdivision method to
enhance the model for achieving more precise prostate
segmentation across different planes data.

2 RELATEDWORK
2.1 Shape Estimation from Single Plane Image
3D reconstruction of the object from a fixed viewpoint allows the
surface/shape of the object to exhibit good continuity and smooth-
ness in any viewpoint. Mesh is a 3D representation commonly used
to model the shape of an object in three dimensions, it consists of
polygons, which are essentially discrete representations of a contin-
uous surface. The combinatorial nature of polygons makes it possi-
ble to take derivatives in the space of possible meshes for any given
surface. As a result, mesh processing and optimization techniques
have difficulty utilizing the modular gradient descent component
of modern optimization frameworks. To circumvent this problem,
Deformation-based Mesh Generation (DEMG) methods[19] has at-
tracted more attention. A salient feature of DEMG methods is the
need for an initial mesh such as a spherical or elliptical template
mesh. Due to the presence of an initial mesh, this type of approach
reduces the difficulty of mesh generation to some extent. The neural
network only needs to predict the positions of the vertices because
the connection relationship between the vertices already exists.

Wang[41] first proposed a deep learning based approach to ex-
tract 3D triangularmeshes of object from singe RGB image,Wen[42]
et al. introduced RGB images with different viewpoints to make
the generated 3D shapes more accurate, considering that DEMG
methods can only generate meshes with topology similar to the
initial mesh. For this reason, Ben[2] introduced a faceted pruning
mechanism, which iteratively adjusts the topology of the mesh
through faceted pruning operations while maintaining the main
attributes of the template, i.e., visually appealing and uniform mesh
connections. Admittedly, the faceted pruning mechanism allows
the method to be adapted to mesh generation with more complex
topologies.

In the context of medical imaging, DEMG methods has been
widely noticed and used in the reconstruction of 3D organs in
question, taking into account this property of the sphere-like shape
of the organs. Wickramasinghe[43] firstly proposed an end-to-end
trainable deep learning based architecture that takes an image
volume as input and outputs a 3D surface mesh, Kong[17, 18] based
on Voxel2Mesh, realized 3D shape modeling of heart from multi-
plane cine MRI and 3D modeling of cardiac process from movie
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Figure 2: Illustration of mesh deformation method (2-2), meta-learning-based DG (2-3), image segmentation (2-1) methods, and
our ADDG framework (3) respectively.

cine MRI, respectively; Bongratz[5] modified Voxel2Mesh, realized
the 3D shape modeling of complex brain structures (i.e. cerebral
cortex and sulcal gyrus).

2.2 Domain Generalization for Medical Image
The goal of domain generalization is to train a model using data
from a single or multiple related but distinct domains in such a way
that the model can generalize well to any out-of-distribution (OOD)
unseen test domains. The significance of domain generalization
is particularly high in medical image analysis, data are often non-
independently distributed (non-iid), which is also known as data
heterogeneity in the medical image analysis. Appearance variability
in medical imaging refers to differences and inconsistencies typi-
cally manifest during the data acquisition step[31], which is called
data heterogeneity. This variability may arise externally from using
different modalities, protocols, scanner types, and patient popula-
tions across multiple healthcare facilities, while internal variability
may also occur within a controlled setting (e.g., same scanner or
healthcare facility) due to factors such as hardware aging, software
parameter variations, and human error (e.g., human motion).

The domain generalization problem has been extensively studied
in the area of medical image analysis, Liu[27] proposed a meta-
learning-based domain generalization method for prostate segmen-
tation, which pays attention to the distribution shift problem in
cross-site pelvis axial plane MRI. Li[23] propose to learn an invari-
ant feature through variational encoding with linear-dependency
regularization term to equip the model with better generalization
capability, which is evaluated on skin lesion classification and cord
gray matter segmentation via cross-site dermoscopy images and
spinal MRI. Liu[26] designed a boundary-oriented episodic learn-
ing paradigm to adapt the distribution shift between data from
different sources and validated on multi-site retinal fundus images
and prostate axial plane MRI. Kang[16] proposed a method with
perturbs the training distribution by mixing the styles of training
images and a dual-branch invariant content Synergistic learning
strategy, which solving the domain generalization problem by con-
trolling the inductive bias and showed the effectiveness on multi-
site retinal fundus images and prostate axial plane MRI dataset.
Kamraoui[15]proposed a framework for Multiple Sclerosis lesion
segmentation from brain fMRI, which is designed for domain gen-
eralization problem.

3
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Figure 3: Architecture of the proposed MDOS-Net.

To the best of our knowledge, all of domain generalization meth-
ods [16, 23, 26, 27] for medical image analysis only focus on the
distribution shift problem due to differences in image scans, patient
demography, etc. under the same plane data, while neglecting the
fact that the data from different planes can also cause the distribu-
tion shift problem.

3 METHODS
3.1 Overview of the ADDG Framework
The proposed ADDG framework aims to segment the prostate
gland from unseen plane MRI, as shown in Figure 2. ADDG con-
sists of aMesh Deformation-based Organ Segmentation network
(MDOS-Net) and a Data-Partitioning-FreeMeta Learning (DPF-
ML) training strategy. Specifically, the MDOS-Net aims to make
a better estimation of the prostate shape from single-planar MRI,
and the DPF-ML training strategy aims to capture more domain
invariant representations by fully utilizing the axial plane MRI from
multiple institutions.

3.2 Mesh Deformation based Organ
Segmentation Network (MDOS-Net)

In order to better utilize 3D contextual information to guide cross-
plane segmentation, we first use axial plane MRI to produce a 3D
mesh model in the anatomical space coordinate, and then convert
the 3D mesh to voxel segmentation mask via the rasterization al-
gorithm. The basic idea is inspired by Voxel2Mesh [43], which
has a strong capability to produce reasonable shapes even from
single-planar MRI. However, Voxel2Mesh does not take into ac-
count the anisotropy presented in 3D MRI, i.e., the slice spacing is
usually much larger than the actual distance represented by a single
pixel within each slice. Anisotropic MRI could lead to the model

overfitting to inter-slice noise, resulting in a decrease in model per-
formance [10]. Thus, we propose MDOS-Net that can better utilize
the rich information in 3D MRI to achieve better cross-plane seg-
mentation. As shown in Figure 3, this backbone network consists of
three parts: 1) a Multi-Path 2.5D Segmentation Network to handle
data with varying degrees of anisotropy; 2) an Intra-Plane Prostate
Boundary Segmentation Network to leverage high-resolution 2D
image slices from anisotropic MRI to learn 2D edge information of
target organs; and 3) a 3D triangular mesh deformation branch to
produce the shape of target organ precisely.

3.2.1 Multi-Path 2.5D Segmentation Network. Considering
the continuity of organ appearance in 3D MRI, treating a 3D seg-
mentation task as a stack of consecutive 2D tasks may lead the
model to overlook contextual information of the segmentation tar-
gets, which can easily result in under- or over-segmentation [14].
This issue can be further exacerbated in cross-plane segmentation.
One the other hand, most current methods typically do not specifi-
cally address the issue of anisotropy in 3D medical images [10, 45],
and the inconsistent slice spacing between different scans makes it
difficult for anisotropic convolutional kernels to robustly handle
unpredictable data.

Our multi-path 2.5D segmentation network is inspired by MNet
[10], which simultaneously combines multiple representation pro-
cesses involving 2D, 3D, and combinations of two features adap-
tively. In particular, apart from the initial encoder that includes one
layer each of 2D and 3D convolutions, the remaining encoder and
decoder blocks incorporate skip connections [13], as illustrated in
Figure 3 (more details in supplementary materials ). Furthermore,
we incorporate channel attention [32] into the decoder, and employ
group normalization, which is better suited for small batch sizes
(due to limitations in GPU memory capacity, i.e., 24GB RAM per

4
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GPU, we set the batch size to 1). Unlike pre-selected feature maps,
we adopt multi-scale feature training strategy[5], which ensures
that the network learns rich multi-scale features during the train-
ing process. We also simultaneously feed multi-scale voxel and 2D
feature maps from both the encoder and decoder into the mesh
deformation branch, as shown in Figure 3.

3.2.2 Intra-Plane Prostate Boundary Segmentation. Due to
the anisotropy of 3D MRI is reflected in intra-slice with high res-
olution and inter-slice with low resolution, we introduce a 2D
boundary detection as an auxiliary task by designing an intra-plane
prostate boundary segmentation network as shown in 3, which
aims to enhance the details of intra-plane boundaries in multi-scale
feature maps within the backbone network, enriching the feature
representative ability.

This branch processes the 3D image in a slice-by-slice manner,
utilizing the first derivative operator in both horizontal and vertical
directions to extract the low-level boundary information while
filtering the trivial boundary irrelevant information in each intra-
slice. However, these low-level boundaries often contain excessive
noise unrelated to the 2D prostate region. To address this issue,
we adopt an attention mechanism [32] to filter out the noise and
aggregate image features from both the segmentation backbone
and the low-level boundaries. Since the 2D boundary within a slice
can be regarded as a 2D elongated tubular structure, we replace the
normal 2D convolution with a 2D dynamic snake convolution [35]
in the branch.

Specifically, we extract the 2D feature map 𝑓𝐸𝑖−2𝑑 from encode
stage 𝑖 of the multi-path 2.5D segmentation network, with all po-
tential edge maps 𝑓𝐵 extracted slice by slice from image by Canny
edge detector [6]. In the step where the Canny edge detector finds
the gradient size and direction, we use two 3 × 3 parameter fixed
convolutions (with stride 1). Then we fuse 𝑓𝐵 and 𝑓𝐸𝑖−2𝑑 through
the following manner: the edge map 𝑓𝐵𝑧

of each slice indexed by
the z-axis, we resize 𝑓𝐵𝑧

by bilinear interpolation for each slice 𝑗 to
get 𝑓 ′

𝐵 𝑗 (𝐸𝑖−2𝑑 ) , so that it matches the dimension of (W, H) of 𝑓𝐸𝑖−2𝑑 ;
then the channel dimension of 𝑓 ′

𝐵 𝑗 (𝐸𝑖−2𝑑 ) is matched to 𝑓𝐸𝑖−2𝑑 at
the current scale by 1 × 1 × 1 convolution, to obtain 𝑓 ′′

𝐵 𝑗 (𝐸𝑖−2𝑑 ) .
Then 𝑓𝐸𝑖−2𝑑 is subjected to aggregate by attention with 𝑓 ′′

𝐵 𝑗 (𝐸𝑖−2𝑑 ) ,
resulting potential contour detail feature map, 𝑓 ′′′

𝐵 𝑗 (𝐸𝑖−2𝑑 ) , is used
as the input to the 2D boundary encoder block 𝐸𝑏𝑑𝑘 based on the
2D dynamic snake convolution:

𝑓 ′′′
𝐵 𝑗 (𝐸𝑖−2𝑑 ) = 𝜎2

(
𝑊𝜑

(
𝜎1

(
𝑊𝑓 ′′

𝐵𝑗

· 𝑓 ′′𝐵 𝑗
+𝑊𝑓𝐸𝑖−2𝑑

· 𝑓𝐸𝑖−2𝑑

)))
· 𝑓𝐸𝑖−2𝑑 ,

(1)
where𝑊𝑓 ′′

𝐵𝑗

,𝑊𝑓𝐸𝑖−2𝑑
, and𝑊𝜑 denote the linear transform using

1 × 1 × 1 convolutions, 𝜎1 and 𝜎2 represent ReLU and Sigmoid
activation functions, respectively.

3.2.3 Organ-Specific Mesh Template. To further improve the
accuracy of mesh deformation, we create an organ-specific mesh
template for the deformation stage. Specifically, we utilize 3D seg-
mentation mask from PROSTATEx-Seg-HiRes [30, 36], which an-
notates the prostate for all three planars. Considering the gener-
alizable shape of the prostate would bring the appropriate mesh
initialization, we refer to the clinical TNM staging provided by the
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(a) Edge-based and Loop Subdivision-Based 3D Triangular Mesh Unpooling
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(b) Example Comparison of two graph unpooling methods on 3D Triangular Mesh
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dashed edges are added in the unpooling layer. The blue
curve represents the new vertex of a face. (b) The midpoint
based unpooling leads to unsmooth surface topology, while
the loop-based unpooling remains smoother.

PROSTATEx dataset [8, 11, 24] and select a relatively healthy case
with the lowest degree of staging as our template data. Following
Lewiner’s marching cubes algorithm [21], we first extract an ico
sphere and then apply Laplacian smoothing [39] with 50 iterations
to obtain a prostate mesh consisting of 51,268 vertices and 102,532
faces. Due to limitations in GPU memory capacity (24GB per card),
we adopt triangle mesh simplification while maximizing the reten-
tion of surface topography. As a result, we obtain a prostate mesh
with 388 vertices and 762 faces.

3.2.4 Loop Subdivision Based Vertex Unpooling. The current
methods for reconstructing 3D organs [5, 17, 18, 43] usually use
midpoint-based unpooling from Pixel2Mesh [41] to add the new
vertices for mesh. While the midpoint-based unpooling does not
increase the vertex degree, it adds a certain level of angularity to
the mesh shape. To achieve a smoother mesh, we adopt Loop sub-
division [29] for vertices unpooling. Unlike midpoint subdivision,
which only adds new vertices along each edge and its two exist-
ing vertices, Loop subdivision not only add new vertices by more
neighbor vertices, but also updates the position of the old vertices
by merging its position with those of its neighboring vertices. As
shown in Figure 5 the subdivided mesh by Loop subdivision appears
smoother compared to the subdivided mesh by midpoint.

As illustrated in Figure 5, 𝑝𝑘 is defined as an origin vertex, where
𝑘 is the subdivision steps. 𝑝0 is defined as the control vertex of
the mesh. Then we can obtain 𝑝∞ from 𝑝0 after∞ steps as 𝑝0 →
𝑝1 → · · · → 𝑝∞. Suppose 𝑝𝑘 has 𝑛 neighbor vertices and 𝑝𝑖

𝑘
,

𝑖 ∈ {0, 1, . . . , 𝑛 − 1}, then the valence of 𝑝𝑘 is 𝑛. For each edge
between 𝑝𝑘 and 𝑝𝑖

𝑘
, a new vertex 𝑝𝑘+1 was created.

𝑓

(
𝑝𝑘+1𝑖

)
=

3𝑓
(
𝑝𝑘

)
+ 3𝑓

(
𝑝𝑘
𝑖

)
+ 𝑓

(
𝑝𝑘
𝑖−1

)
+ 𝑓

(
𝑝𝑘
𝑖+1

)
8

. (2)

𝑓

(
𝑝𝑘+1

)
= (1 − 𝑛𝛽) 𝑓

(
𝑝𝑘

)
+ 𝛽

(
𝑓

(
𝑝𝑘0 + · · · + 𝑓

(
𝑝𝑘𝑛−1

)))
, (3)

where Eq. (2) updates the position of old vertex 𝑝𝑘 to 𝑝𝑘+1, Eq. (3)
creates the new vertex 𝑝𝑘+1 between 𝑝𝑘 and 𝑝𝑖

𝑘
, 𝛽 is a constant:
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− 3 + 2(cos 2𝜋/𝑛)2

64

)
. (4)

3.2.5 Loss Function. Since ADDG is a multi-task framework
(i.e. including 3D voxel segmentation, 2D intra-plane boundary
segmentation and 3D triangular mesh prediction), we define a com-
prehensive loss function to optimize these tasks jointly. The total
loss function consists of L𝑣𝑜𝑥𝑒𝑙 for the Voxel Segmentation part
and L𝑚𝑒𝑠ℎ for the mesh deformation part:

L𝑡𝑜𝑡𝑎𝑙 = L𝑣𝑜𝑥𝑒𝑙 + L𝑚𝑒𝑠ℎ . (5)

Voxel LossWe use the Sørensen–Dice Loss L𝐷𝑖𝑐𝑒 for the multi-
path 2.5D segmentation network:

LDice = 1 −
2
∑𝑁
𝑖=1 (𝑦𝑖 ∗ 𝑦𝑖 )∑𝑁
𝑖=1 (𝑦𝑖 + 𝑦𝑖 )

, (6)

where 𝑁 denotes the total number of voxels, 𝑦𝑖 and 𝑦𝑖 denote
the ground truth and the prediction for the voxel 𝑖 , respectively.
For intra-plane prostate boundary segmentation network, consid-
ering the class imbalance problem between the foreground and
background pixels in the boundary segmentation task, we use the
weighted binary cross-entropy loss LWBCE:

LWBCE = − 1
𝑁

𝑁∑︁
𝑖=1

(
𝑤 𝑓 𝑦𝑖 log (𝑦𝑖 ) +𝑤𝑏 (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )

)
, (7)

where𝑤 𝑓 and𝑤𝑏 denote the hyper-parameters of weighting factor
for foreground voxels and background voxels, respectively. The
overall voxel loss function L𝑣𝑜𝑥𝑒𝑙 ,

Lvoxel = 𝜆1L𝐷𝑖𝑐𝑒 + 𝜆2LWBCE, (8)

where 𝜆𝑖 denotes hyper-parameters that determine the relative
significance of each loss term.

Mesh Loss In the mesh deformation step, we use the loss term
from [43]: the chamfer distance loss L𝑐𝑑 to measure geometry
consistency; three geometry regularization loss, including Laplacian
smoothing of the displacement fields loss L𝑙𝑎𝑝 to prevent self-
intersection of faces, the intra-mesh normal consistency loss L𝑛
which measures the consistency of normals within the mesh, and
the edge length loss L𝑒𝑙 which penalizes vertices that are too far
apart and edges that are too long. The overall mesh loss L𝑚𝑒𝑠ℎ is:

Lmesh = 𝜆3L𝑐𝑑 + 𝜆4Ln + 𝜆5Lel + 𝜆6Llap, (9)

where 𝜆𝑖 denotes hyper-parameters that determine the relative
significance of each loss term.

3.3 Data-Partitioning-Free Meta-Learning
Due to the persistent issue of small sample sizes in public datasets
for prostate MRI segmentation, we aggregate multiple datasets into
a larger training set to improve the generalization performance of
the proposed model. While the datasets were collected from differ-
ent institutions, simply training with aggregated data will make the
model performance degradation [28]. Moreover, data heterogeneity
not only occurs within training sets containing multi-site data, but
also exists between the training and the test set, which makes the
trained model perform poorly on the test set. To this end, based
on MLDG [22], which has been widely used in domain generaliza-
tion of medical image segmentation tasks due to its plug-and-play

Algorithm 1: Pseudocode of DPF-ML
Input: Dataset S = {𝑥𝑖 , 𝑦𝑖 }, Loss ℓ = L𝐷𝑖𝑐𝑒 , Loss F = G = L𝑡𝑜𝑡𝑎𝑙 ,

Training steps 𝑁steps for meta-train/meta-test split inference
Init : reference model Φ for EI objective, MDOS-Net with parameters Θ
Objective loss function of Invariant Risk Minimization (IRM):
def �̃�𝑒 (Φ, q)(𝑥 ):

return 1∑
𝑖′ q𝑖′ (𝑒 )

∑
𝑖 q𝑖 (𝑒 )ℓ (Φ (𝑥𝑖 ) , 𝑦𝑖 )

Randomly init. q ∈ [0, 1]𝑁 data split posterior (q𝑖 (𝑒 ) := 𝑞 (𝑒 | 𝑥𝑖 , 𝑦𝑖 ) )
for 𝑛 ∈ 1 . . . 𝑁steps do

Aggregate variances of Φ across soft domains:
SoftVari =

∑
𝑒∈{1,2}



∇�̄� �̃�𝑒 (�̄� ◦ Φ, q)




Maximize the EI objective by minimizing the Loss:
Loss = −1 · SoftVari

Update domain posterior q: q← OptimUpdate
(
q, ∇q Loss

)
end for
q̂ ∼ Bernoulli(q)
S ← {𝑥𝑖 , 𝑦𝑖 | q̂𝑖 = 1} , S̆ ← {𝑥𝑖 , 𝑦𝑖 | q̂𝑖 = 0}
return meta-train split S, meta-test split S̆
for 𝑒𝑝𝑜𝑐ℎ in Epochs do

for 𝑖𝑡𝑒𝑟𝑠 in𝑚𝑎𝑥𝑙𝑒𝑛(S, S̆) do
Sample: 𝑠 ∈ S, 𝑠 ∈ S̆
Meta-Train Step: Compute gradients ∇Θ = F′Θ (S;Θ)
Update parameters Θ′ = Θ − 𝛼∇Θ
Meta-Test Step: Compute loss G

(
S̆;Θ′

)
Meta-Optimization Step: Update Θ

Θ = Θ − 𝛾
𝜕

(
F(S;Θ)+𝛽G

(
S̆;Θ−𝛼∇Θ

))
𝜕Θ

end for
end for
end procedure

convenience, and attempts to solve the issue of model performance
degradation when training and test data were acquired from dif-
ferent sources, by utilizing the training data which aggregate from
different institutions.

The core idea of MLDG-based methods is to learn the domain
invariant representation by simulating the distribution shift from
the multi-source data. Although powerful, it requires a discrete set
of domain labels for partitioning the meta-train and meta-test set,
each corresponding to specific data distribution, during the training
stage. As a result, it seems not appropriate to directly apply this
method to the domain generalization problem where pre-defined
domain labels are unavailable, especially for medical images. Most
domain generalization methods try to allocate the domain labels
by simply treating a dataset from one source as a domain. This
partitioning criterion overlooks the diversity that exists within the
dataset. Taking the prostate MRI dataset for segmentation as an ex-
ample, these data may come from various medical institutions, with
different field strengths (1.5T, 3T), scanning equipment (Siemens,
GE, Phillips), scanning parameters (e.g., whether coils are placed
during scanning, and where they are placed), and variations in the
patient’s conditions. This makes it challenging to get an appropriate
data partition for meta-train and meta-test based on this compli-
cated information. Additionally, the atypical domain differences in
multi-plane MRI further exacerbate this issue.

Inspired by invariant learning method EIIL[9], we propose the
Data-Patitioning-Free Meta-Learning (DPF-ML), to break the
neglect of the diverse potential data distributions contained in
multi-institutional medical images due to the fixed data partition-
ing criterion (neither predefines different domains manually nor
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Table 1: Comparison of ADDG with related works

Method Coronal Plane MRI Sagittal Plane MRI

Dice (%, ↑) HD95 (mm, ↓) aRVD (%, ↓) ASSD (mm, ↓) Dice (%, ↑) HD95 (mm, ↓) aRVD (%, ↓) ASSD (mm, ↓)
3D U-Net 2016 [7] 59.73 ± 4.25 21.58 ± 6.72 23.45 ± 7.70 7.91 ± 2.56 48.51 ± 6.02 28.01 ± 6.53 29.71 ± 7.32 12.09 ± 2.49

SAM-Med3D 2023 [40] 60.61 ± 3.71 21.14 ± 6.62 21.72 ± 7.24 7.76 ± 2.81 49.92 ± 6.75 27.73 ± 7.07 29.53 ± 6.56 12.35 ± 2.88
SAML 2020 [27] 61.88 ± 3.95 19.60 ± 5.81 20.11 ± 6.86 6.92 ± 2.55 51.05 ± 6.23 26.81 ± 6.61 27.95 ± 6.75 12.11 ± 2.54

IB U-Nets 2022 [3] 62.35 ± 3.20 17.55 ± 5.75 18.12 ± 5.01 6.70 ± 2.19 51.42 ± 6.81 26.09 ± 6.95 26.82 ± 6.99 11.26 ± 2.75
nnUNet 2021 [14] 63.22 ± 3.03 16.97 ± 5.97 17.94 ± 6.05 6.48 ± 2.28 52.15 ± 6.60 25.96 ± 7.27 26.64 ± 6.81 10.78 ± 2.49
MNet 2022 [10] 63.95 ± 3.92 17.15 ± 6.01 17.79 ± 6.23 6.54 ± 2.35 51.93 ± 7.11 26.60 ± 6.92 27.05 ± 7.53 11.05 ± 2.64

Voxel2Mesh 2020 [43] 65.10 ± 2.75 15.71 ± 4.92 16.05 ± 4.63 5.57 ± 1.91 55.52 ± 4.12 24.72 ± 3.75 25.15 ± 4.10 9.88 ± 1.43
Vox2Cortex 2022 [5] 66.95 ± 3.67 13.35 ± 5.23 13.07 ± 5.45 5.25 ± 1.99 56.15 ± 4.28 24.41 ± 4.63 25.19 ± 4.82 9.76 ± 1.79

ADDG (Ours) 70.03 ± 4.91 12.12 ± 4.75 12.58 ± 5.22 4.63 ± 1.85 57.91 ± 5.72 23.50 ± 4.38 24.07 ± 5.09 8.97 ± 1.67

Ground Truth ADDG Vox2Cortex Voxel2Mesh MNet nnU-Net

Figure 5: Visual test on the sagittal plane, where red mask
denotes true positive, greenmask in column 1-5 denotes false
positive, and purple mask denotes false negative.

randomly samples data from a multi-site training set to obtain data
partition for meta-train and meta-test split) in MLDG, then the
data partitioning process of the MLDG is turned into a learnable
process by modeling more potential data distribution drifts based
on invariant learning theory, which allows MLDG to learn a wider
range of domain-agnostic features.

As illustrated in Algorithm 1, the proposed DPF-ML includes
three stages: 1) reference model obtain; 2) domain inference via
invariant learning and 3) meta-learning. In step 1, we first train a
model Θ using Empirical Risk Minimization (ERM), which has the
same structure as the “Multi-Path 2.5D Segmentation Network”; In
step 2, our goal is to find partitions (data split) from the multi-site
training data that maximally violate the invariance principle. Note
that maximizing the invariance principle violation would be equiva-
lent to the worst-case scenario on which we would like to train our
model, which corresponds to maximizing the regularization term

1∑
𝑖′ q𝑖′ (𝑒 )

∑
𝑖 q𝑖 (𝑒)ℓ (Φ (𝑥𝑖 ) , 𝑦𝑖 ) in Algorithm 1. In each iteration of

step 2, we update the posterior probability q of the meta-train and
meta-test split, and after 𝑁𝑠𝑡𝑒𝑝𝑠 iterations, we obtain the meta-train
and meta-test sets. Finally, in step 3, we could use the data partition
obtained from the previous step.

4 EXPERIMENTS
4.1 Data and Experiment Settings
4.1.1 Dataset and Pre-processing. We utilize axial plane T2w
MR images with corresponding segmentationmasks (181 patients in

Ground Truth ADDG Vox2Cortex Voxel2Mesh MNet nnU-Net

Figure 6: Visual test on coronal plane, where red mask de-
notes true positive, green mask in column 1-5 denotes false
positive and purple mask denotes false negative.

total) from PROMISE12 [25], NCI-ISBI13 [4, 8], I2CVB [20] and De-
cathlon [37] for training and validation, and the coronal and sagittal
plane MR images (66 patients for each plane) from PROSTATEx-
Seg-HiRes [8, 30, 36] for test.

We first conduct the bias field correction and anisotropic dif-
fusion noise filter from [33]. For the training and validation data,
we first crop or pad them to the size of 176 × 176 × 64 and then
resize them to 128 × 128 × 128. For the test data, following [30], we
first resample the axial plane MRI (only for orthogonal plane align-
ment references), coronal plane MRI, and sagittal plane MRI into
a common coordinate system. Next, we crop the images to create
a volume that encompasses all three plane MR images. Then, we
further crop or resize the image volume in the size of 128×128×128.
We also crop the gray values to the 1st and 99th percentiles, then
normalize them to [0,1] using Z-score normalization.

4.1.2 Experiment Settings. To better evaluate the generalization
performance of our proposed model, we utilize Training-domain
validation set strategy [12], which has been widely used in domain
generalization problem. Specifically, the images from each dataset
are split into two parts for training and validation, respectively.
All training parts are combined for training while all validation
parts are combined for selecting the best model. All experiments
use five-fold cross-validation.

4.1.3 Evaluation Metrics. We present quantitative measures in
terms of the Dice Similarity (Dice), the 95-percentile Hausdorff
distance (95HD), the absolute relative volume difference (aRVD),
and the average symmetric surface distance (ASSD). Meanwhile, we
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Table 2: Ablation study results

Method Coronal Plane MRI Sagittal Plane MRI

V2M MLDG DPF-ML AnisoV1 AnisoV2 Ellip PC Loop Dice (%, ↑) HD95 (mm, ↓) aRVD (%, ↓) Dice (%, ↑) HD95 (mm, ↓) aRVD (%, ↓)
✓ 65.10 ± 2.75 15.71 ± 4.92 16.05 ± 4.63 55.52 ± 4.12 24.72 ± 3.75 25.15 ± 4.10

✓ ✓ 65.48 ± 4.11 16.15 ± 5.61 16.88 ± 5.50 55.76 ± 4.95 25.03 ± 4.52 25.56 ± 4.75
✓ ✓ 66.05 ± 3.85 15.72 ± 5.43 16.64 ± 5.65 56.15 ± 4.63 24.85 ± 4.49 25.37 ± 4.40
✓ ✓ 66.86 ± 4.23 15.50 ± 5.10 15.79 ± 4.91 56.91 ± 5.16 24.41 ± 4.23 24.97 ± 4.31
✓ ✓ 68.02 ± 4.61 15.03 ± 5.65 15.45 ± 5.11 57.42 ± 5.40 24.08 ± 4.59 24.54 ± 4.35
✓ ✓ 65.23 ± 2.78 15.64 ± 5.01 16.10 ± 4.48 55.60 ± 4.08 24.58 ± 3.81 25.13 ± 4.12
✓ ✓ 65.90 ± 2.91 15.21 ± 5.09 15.76 ± 4.92 55.96 ± 4.27 24.33 ± 3.90 24.94 ± 4.22
✓ ✓ 65.51 ± 3.15 15.09 ± 4.85 15.35 ± 5.01 56.04 ± 4.34 23.95 ± 3.65 24.69 ± 4.25

✓ ✓ ✓ 68.97 ± 4.79 14.11 ± 5.35 14.72 ± 5.29 56.98 ± 5.25 24.15 ± 4.72 24.50 ± 4.64
✓ ✓ ✓ ✓ 69.55 ± 4.83 13.33 ± 5.06 13.50 ± 5.41 57.53 ± 5.10 23.92 ± 4.66 24.31 ± 5.05

✓ ✓ ✓ ✓ ✓ 70.03 ± 4.91 12.12 ± 4.75 12.58 ± 5.22 57.91 ± 5.72 23.50 ± 4.38 24.07 ± 5.09

use the rasterization algorithm [34] to convert mesh to segmenta-
tion masks, then compute the metrics above with the ground-truth
volume masks to evaluate the segmentation performance.

4.2 Comparison with Related Works
We compare our approach with several related works for medical
image segmentation, domain generalization and organ reconstruc-
tion tasks, including 3D U-Net [7], IB U-Nets [3], nnUNet [14],
SAM-Med3D [40], SAML [27], Vox2Cortex [5], Voxel2Mesh [43]
and MNet [10]. For the best understanding of vision, we overlay the
rasterization results of mesh predictions on corresponding coronal
and sagittal plane T2w MRI in order to compare the surface recon-
struction methods with some other voxel semantic segmentation
methods and ground truth segmentation masks.

As presented in Table 1, compared to other methods, our ap-
proach achieves the best performance in all evaluation metrics, with
improvements of 3.08%-10.3% (dice, coronal plane) and 1.76%-9.4%
(dice, sagittal plane). It is worth noting that our approach achieves
a generalized segmentation accuracy of 70% (dice) for the first time
on the coronal plane. We visualize the segmentation results of the
best five methods on the coronal plane MRI and the sagittal plane
MRI, as shown in Figure 5 and Figure 6. We can observe that our
approach has smoother and more accurate segmentation results
compared to other methods. In addition, we found that the sagit-
tal plane is less effective than the coronal plane. Combined with
previous visualizations of multi-planar MRI scan data in Figure 1,
we argue that there is a more obvious difference between sagittal
plane MRI and the other two plane MR images.

4.3 Ablation Study
We analyze the contribution and effectiveness of individual design
choices in ADDG. We replace our key blocks and learning strategy
with the Voxel2Mesh (V2M) method as follows:MLDG: we incor-
porate the gradient-based meta-learning strategy to Voxel2Mesh,
which is expected to make a better adaptation to the domain gener-
alization problem. DPF-ML: an invariant learning-based approach
for data partitioning during model training. AnisoV1: in response
to the inherent anisotropy of prostate MRI, we have introduced a
multi-path 2.5D segmentation network based on MNet. Further-
more, inspired by Vox2Cortex, we intricately concatenated voxel

feature maps of varying scales stemming from both the encoder
and decoder and subsequently fed them into diverse stages of mesh
deformation, respectively. AnisoV2: based on “AnisoV1”, we de-
sign an intra-plane prostate boundary segmentation network that
enhances the feature learning of the segmentation model by learn-
ing the 2D prostate boundaries of the intra-plane. Ellip: start the
mesh deformation from an ellipsoidal template instead of the icosa-
hedron sphere template. We use an ellipsoidal template with the
same radius ratios of the x,y, and z axes as the voxel ratios of the
prostate. PC: start the mesh deformation from our organ-specific
mesh template instead of the icosahedron sphere template. Loop:
in the mesh deformation step, we replace edge-based unpooling
[41] in the intermediate step with Loop Subdivision [29] to add new
vertices to the triangular mesh before each deformation step. As
presented in Table 2, we can observe that each module has made
a contribution to the model, and the ADDG (V2M + DPF-ML +
AnisoV2 + PC + Loop) method achieves the best performance.

CONCLUSION
In this paper, we identify a domain generalization problem different
from that caused by previous MRI data heterogeneity and define
it as the generalization problem of the cross-plane MRI segmenta-
tion task. To this end, unlike previous voxel segmentation methods,
we introduce a 3D object surface reconstruction method based on
single-planar images, which provides a better estimation of the
3D organ shape and breaks the discontinuity of the segmentation
results due to the lower inter-slice resolution of the single-planar
MRI. Based on this, we design a multi-path 2.5D segmentation
branch to handle data with varying degrees of anisotropy, and an
intra-plane prostate boundary segmentation branch to leverage
high-resolution 2D image slices from anisotropic MRI to learn 2D
edge information of target organs. We also propose an adaptive
meta-learning strategy that makes the data partitioning process of
domain generalization learnable, enabling the model to learn more
domain-invariant features. We evaluate our proposed approach
using several benchmark datasets of multi-planar prostate MRI.
The results indicate that our approach achieves smoother and more
accurate prostate segmentation, outperforming other comparative
methods, including several image segmentation, domain general-
ization, and organ reconstruction techniques.
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