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Table 1: Comparison of VLM-focused TTT methods.

Method External Module Text Template TTT Iterations Trainable Parameter Test Instances
ZERO None No restriction 0 None 1
TDA Key-value Cache No restriction 0 None 1
CLIPArTT None No restriction 10 (default) Layer Normalization 128 (Multiple required)
WATT None Diverse set of templates Multiple required Layer Normalization 128 (default)
TPT None single template 1 Text Prompt 1
LoRA-TTT None No restriction 1 LoRA 1

A. Broader Impact
Test-Time Training (TTT) for Vision-Language Models (VLMs) is crucial for enhancing their generalization ability and
broadening their applicability to real-world AI applications. This study introduces a novel method that achieves strong
zero-shot generalization across diverse categories. Our approach enables the development of systems that can adapt to
various environments, ranging from memory-constrained edge devices to high-stakes applications, thereby making VLMs
more versatile and practical in real-world scenarios. We hope that Parameter-Efficient Fine-Tuning (e.g., LoRA) will play a
pivotal role in TTT, inspiring future research aimed at improving the performance of foundation models.

B. Limitations
Our method has limitations that should be addressed in future work. The MEM loss is primarily designed for image
classification, making its adaptation to other tasks, such as object detection or segmentation, challenging. In contrast, the
MAE loss is task-agnostic, and extending it to such tasks is a promising direction. Additionally, LoRA hyperparameters
(e.g., r and ω) require careful tuning as their optimal values depend on the target domain. Developing a mechanism to
dynamically adjust these parameters based on domain characteristics could improve adaptability and performance.

C. Related Work
Test-Time Training (TTT) allows models to adapt to distribution shifts between training and test data during inference
through dynamic parameter updates (Liang et al., 2024; Wang et al., 2024; Chen et al., 2022). The challenges in this area
lie in designing an effective test-time objective without labels and developing an efficient system suitable for real-world
deployment. For example, TENT (Wang et al., 2020) tunes batch normalization statistics at test time using entropy loss;
however, this approach requires batch processing rather than instance-level processing, making it challenging to handle
sequential data in real-time. In contrast, MEMO (Zhang et al., 2022) computes test loss from a single instance, a strategy we
extend to VLMs. Sun et al. (Sun et al., 2020) and Gandelsman et al. (Gandelsman et al., 2022) update the image encoder
by introducing auxiliary tasks and applying self-supervision; however, these methods require fine-tuning the model with
auxiliary tasks beforehand for TTT. Our approach eliminates this need, allowing for direct adaptation of pre-trained VLMs
without additional pre-training steps. We demonstrate that our reconstruction loss enhances performance on foundation
models like CLIP, offering a simple yet effective alternative to prior methods.

TTT for VLMs. TPT (Shu et al., 2022) focuses on optimizing a text prompt at test time, valued for its simplicity and
effectiveness. It demonstrates that augmenting a single test instance and calculating marginal entropy minimization (Zhang
et al., 2022) serves as an effective loss for VLMs. DiffTPT (Feng et al., 2023) utilizes stable diffusion to enhance data
augmentation quality, while C-TPT (Yoon et al., 2024) is a technique that calibrates TPT to improve reliability. While text
prompt tuning remains the predominant approach in TTT for VLMs, some methods instead focus on adapting the image
encoder. RLCF (Zhao et al., 2023) tunes the image encoder and demonstrates that CLIP-ViT-B can achieve performance
comparable to CLIP-ViT-L but requires CLIP-ViT-L as a feedback source, which poses challenges in memory-constrained
environments. As shown in Table 1, WATT (Osowiechi et al., 2024) and CLIPArTT (Hakim et al., 2024) tune the layer
normalization parameters of the vision encoder; however, WATT relies on a diverse set of text templates, while CLIPArTT
requires multiple test instances, imposing significant constraints on real-world applicability. Moreover, both methods update
these parameters across all layers, leading to high computational costs and requiring multiple backpropagation steps. In
contrast, our method tunes only the two layers closest to the output, significantly improving computational efficiency and
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Table 2: The details of the datasets used in the experiments.

Dataset # Classes Test set size
ImageNet (Deng et al., 2009) 1,000 50,000
ImageNet-A (Hendrycks et al., 2021b) 200 7,500
ImageNetV2 (Recht et al., 2019) 1,000 10,000
ImageNet-R (Hendrycks et al., 2021a) 200 30,000
ImageNet-Sketch (Wang et al., 2019) 1,000 50,889

Flowers102 (Nilsback & Zisserman, 2008) 102 2,463
DTD (Cimpoi et al., 2014) 47 1,692
OxfordPets (Parkhi et al., 2012) 37 3,669
StanfordCars (Krause et al., 2013) 196 8,041
UCF101 (Soomro et al., 2012) 101 3,783
Caltech101 (Li et al., 2022) 100 2,465
Food101 (Bossard et al., 2014) 101 30,300
SUN397 (Xiao et al., 2010) 397 19,850
FGVCAircraft (Maji et al., 2013) 100 3,333
EuroSAT (Helber et al., 2019) 10 8,100

enabling faster backpropagation. Additionally, lightweight, backpropagation-free methods such as ZERO (Farina et al.,
2024) and TDA (Karmanov et al., 2024) have also been proposed. ZERO offers low computational overhead but struggles
with generalization performance compared to TPT. While TDA is efficient, it relies on a key-value cache. In contrast, our
method adapts to a single test instance in one step, without relying on external modules. This ensures feasibility even in
closed, memory-constrained environments such as edge devices, where external resources and cached data are unavailable.

Application of Low-rank adaptation (LoRA) aims to achieve efficient fine-tuning of large models with vast numbers
of parameters in memory-constrained environments by introducing trainable low-rank matrices into each layer of the
Transformer architecture, allowing the pre-trained parameters to remain frozen (Hu et al., 2021; Han et al., 2024; Xin et al.,
2024). MeLo (Zhu et al., 2024) demonstrates that applying LoRA to vision transformers (ViT) for downstream medical
image diagnosis achieves comparable performance to fully fine-tuned ViT models while significantly reducing memory
consumption. CLIP-LoRA (Zanella & Ben Ayed, 2024a) demonstrate significant performance improvements in few-shot
learning by applying LoRA to the vision encoder of CLIP. However, CLIP-LoRA requires a few labeled samples from the
target downstream task.

D. Experiments Details
D.1. Datasets

The evaluation includes out-of-distribution testing on ImageNet and its four variants, as well as fine-grained classification
assessments across categories derived from 10 different datasets. The details of the datasets are provided in Table 2.

D.2. Detailed Implementation Settings

Backbone and Optimization. We adopt the pre-trained CLIP-ViT-B/16 as the common backbone architecture. LoRA
parameters are optimized in a single step using the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of
0.001 and weight decay of 0.2. All experiments are conducted on a single NVIDIA RTX 3090 GPU with 24GB of memory.

LoRA Configuration. LoRA is applied exclusively to the transformer architecture in layers 11 and 12 of the image
encoder with a rank of 16, targeting the key, query, value, and output projection matrices. The scale factor ω is set to 12 for
the OOD benchmark and 2 for the fine-grained benchmark. Matrix A is initialized using Kaiming-uniform (He et al., 2015),
while matrix B is initialized to zero.
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Table 3: The 80 hand-crafted text prompts.

“a bad photo of a { class }”, “a photo of many { class }”, “a sculpture of a { class }”, “a photo of the hard to see { class
}”, “a low resolution photo of the { class }”, “a rendering of a { class }”, “graffiti of a { class }”, “a bad photo of the {
class }”, “a cropped photo of the { class }”, “a tattoo of a { class }”, “the embroidered { class }”, “a photo of a hard to
see { class }”, “a bright photo of a { class }”, “a photo of a clean { class }”, “a photo of a dirty { class }”, “a dark photo
of the { class }”, “a drawing of a { class }”, “a photo of my { class }”, “the plastic { class }”, “a photo of the cool { class
}”, “a close-up photo of a { class }”, “a black and white photo of the { class }”, “a painting of the { class }”, “a painting
of a { class }”, “a pixelated photo of the { class }”, “a sculpture of the { class }”, “a bright photo of the { class }”, “a
cropped photo of a { class }”, “a plastic { class }”, “a photo of the dirty { class }”, “a jpeg corrupted photo of a { class
}”, “a blurry photo of the { class }”, “a photo of the { class }”, “a good photo of the { class }”, “a rendering of the {
class }”, “a { class } in a video game”, “a photo of one { class }”, “a doodle of a { class }”, “a close-up photo of the {
class }”, “a photo of a { class }”, “the origami { class }”, “the { class } in a video game”, “a sketch of a { class }”, “a
doodle of the { class }”, “a origami { class }”, “a low resolution photo of a { class }”, “the toy { class }”, “a rendition of
the { class }”, “a photo of the clean { class }”, “a photo of a large { class }”, “a rendition of a { class }”, “a photo of a
nice { class }”, “a photo of a weird { class }”, “a blurry photo of a { class }”, “a cartoon { class }”, “art of a { class }”,
“a sketch of the { class }”, “a embroidered { class }”, “a pixelated photo of a { class }”, “itap of the { class }”, “a jpeg
corrupted photo of the { class }”, “a good photo of a { class }”, “a plushie { class }”, “a photo of the nice { class }”, “a
photo of the small { class }”, “a photo of the weird { class }”, “the cartoon { class }”, “art of the { class }”, “a drawing
of the { class }”, “a photo of the large { class }”, “a black and white photo of a { class }”, “the plushie { class }”, “a dark
photo of a { class }”, “itap of a { class }”, “graffiti of the { class }”, “a toy { class }”, “itap of my { class }”, “a photo of
a cool { class }”, “a photo of a small { class }”, “a tattoo of the { class }”.

Baselines. For text prompt tuning baselines, we use 4 trainable text tokens initialized with the hard prompt “a photo of a”.
We prepare three versions of precomputed prompts: (1) the default hard prompt, (2) an ensemble of 80 hand-crafted prompts
(Radford et al., 2021), and (3) CoOp (Zhou et al., 2022b), which uses 4 tokens and is pre-trained on ImageNet with 16-shot
supervision. The 80 hand-crafted prompts are listed in Table 3.

Other Tuning Methods. For Image Encoder Tuning, we directly tune the key, query, value, and output matrices in layers
11 and 12 of the image encoder using the same optimizer and loss configuration as LoRA-TTT. For Layer Normalization
Tuning, we tune only the layer normalization parameters in the same layers with identical settings.

Test-time Augmentation. Following TPT (Shu et al., 2022), we expand a single test instance into a batch of 64 using
random resized crops (including the original instance). To suppress noise, we select the top 10% of high-confidence samples
from the batch for computing the test loss.

D.3. MAE loss variants

In this section, we provide details about the variants of the MAE loss. In addition to the MAE loss applied in LoRA-TTT, we
explore the following approaches, as illustrated in Figure 1. The loss Lvis, enc

MAE calculates the mean squared error of unmasked
visual tokens after image encoding. The loss Lcls, dec

MAE reconstructs class tokens following the decoding process. The loss
Lpix, dec

MAE rearranges the visual tokens obtained after decoding back into image pixels, enabling pixel-level reconstruction.
This method of calculating Lpix, dec

MAE is consistent with traditional TTT approaches based on MAE (Gandelsman et al., 2022;
Wang et al., 2023). These methodologies provide diverse perspectives on leveraging MAE loss for effective reconstruction.

D.4. Evaluation metric

We use the Expected Calibration Error (ECE) (Naeini et al., 2015; Yoon et al., 2024) as a metric to evaluate the calibration
performance of the model in image classification. ECE is calculated on a given evaluation dataset by dividing the model’s
outputs into equally sized bins based on prediction confidence and measuring the discrepancy between the predicted
probabilities and the true probabilities within each bin. A well-calibrated model exhibits a smaller gap between predicted
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Figure 1: Variants of MAE Loss.

Table 4: Top1 accuracy of zero-shot image classification on the OOD benchmark when using the default hard prompt.
The results of CoCoOp are obtained from the TPT paper, while others are reproduced with our code. The best results under
zero-shot conditions are highlighted in bold. Performance improvements over the zero-shot CLIP-ViT-B/16 are indicated
with an upward blue arrow (→blue) and a downward red arrow (↑red).

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Avg.
CLIP-ViT-B/16 66.71 47.80 60.63 73.99 46.15 59.06 57.14

CoOp (Zhou et al., 2022b) 71.75 50.13 64.51 75.28 47.92 61.92 59.46
CoCoOp (Zhou et al., 2022a) 71.02 50.63 64.07 76.18 48.75 62.13 59.91

TPT (Shu et al., 2022) 69.02 54.73 63.70 77.15 47.99 62.52 60.89
C-TPT (Yoon et al., 2024) 68.50 51.60 62.70 76.00 47.90 61.34 59.55
MTA (Zanella & Ben Ayed, 2024b) 69.23 56.87 63.67 76.88 48.54 63.04 61.49

Image Encoder Tuning 64.26 56.31 59.70 75.89 47.65 60.76 59.89
Layer Normalization Tuning 66.93 48.24 60.94 74.31 46.31 59.35 57.45
LoRA-TTT-M (Ours) 69.21(→2.49) 60.57(→12.77) 64.28(→3.65) 77.53(→3.54) 48.73(→2.57) 64.06(→5.01) 62.78(→5.64)
LoRA-TTT-A (Ours) 66.27(↑0.45) 52.55(→4.75) 60.87(→0.24) 75.57(→1.58) 47.01(→0.85) 60.45(→1.39) 59.00(→1.86)
LoRA-TTT (Ours) 69.40(→2.68) 60.52(→12.72) 64.43(→3.80) 77.84(→3.85) 48.94(→2.79) 64.23(→5.17) 62.93(→5.79)

confidence and actual accuracy, resulting in a lower ECE value. The ECE is computed as follows:

ECE =
K∑

k=1

|Bk|
m

|acc(Bk)↓ conf(Bk)| , (1)

where K represents the number of bins, |Bk| denotes the number of samples in bin k, acc(Bk) is the average accuracy of
the samples in bin k, and conf(Bk) represents the average prediction confidence of the samples in bin k. In our experiments,
the number of bins is set to 20.

E. Additional Experiments
E.1. Zero-shot classification

Table 4 shows the results on all datasets in the OOD benchmark.
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Table 5: Error analysis of top-1 accuracy in zero-shot image classification on the OOD benchmark.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Avg.
CLIP-ViT-B/16 66.71 47.80 60.63 73.99 46.15 59.06 57.14

TPT (Shu et al., 2022) 69.02 (±.14) 54.73 (±.11) 63.70 (±.09) 77.15 (±.06) 47.99 (±.04) 62.52 (±.03) 60.89 (±.04)
LoRA-TTT-M (Ours) 69.21 (±.05) 60.57 (±.16) 64.28 (±.08) 77.53 (±.09) 48.73 (±.04) 64.06 (±.02) 62.78 (±.02)
LoRA-TTT-A (Ours) 66.27 (±.11) 52.55 (±.35) 60.87 (±.19) 75.57 (±.09) 47.01 (±.08) 60.45 (±.06) 59.00 (±.08)
LoRA-TTT (Ours) 69.40 (±.08) 60.52 (±.19) 64.43 (±.12) 77.84 (±.03) 48.94 (±.05) 64.23 (±.01) 62.93 (±.02)

Table 6: Error analysis of top-1 accuracy in zero-shot image classification on the fine-grained benchmark.

Method Flower102 DTD Pets Cars UCF101 Caltech Food101 SUN397 Aircraft EuroSAT FG Avg.
CLIP-ViT-B/16 67.40 44.39 88.25 65.51 65.24 93.31 83.64 62.56 23.91 42.22 63.64

TPT (Shu et al., 2022) 68.98 (±.18) 45.92 (±.33) 87.27 (±.20) 67.02 (±.14) 68.99 (±.15) 93.55 (±.22) 85.00 (±.06) 65.11 (±.08) 23.76 (±.36) 43.44 (±.08) 64.91 (±.04)
LoRA-TTT-M (Ours) 67.60 (±.33) 46.04 (±.25) 87.11 (±.19) 67.81 (±.16) 68.38 (±.07) 93.59 (±.13) 84.83 (±.13) 64.61 (±.09) 25.68 (±.12) 39.27 (±.23) 64.49 (±.08)
LoRA-TTT-A (Ours) 68.33 (±.02) 45.21 (±.07) 88.72 (±.13) 66.94 (±.02) 66.35 (±.34) 93.71 (±.02) 84.39 (±.05) 63.63 (±.12) 25.38 (±.20) 44.52 (±.15) 64.72 (±.04)
LoRA-TTT (Ours) 67.88 (±.22) 45.86 (±.12) 87.63 (±.06) 67.72 (±.03) 68.38 (±.12) 93.83 (±.16) 84.99 (±.05) 64.59 (±.11) 25.92 (±.39) 43.23 (±.33) 65.00 (±.06)

E.2. Error analysis

Table 5 and Table 6 present the standard deviation of three random runs with different seeds for zero-shot image classification
on the OOD and fine-grained benchmarks, respectively. The randomness of LoRA-TTT-M mainly stems from random data
augmentation and one-step optimization, similar to TPT. Additionally, LoRA-TTT-A introduces an additional source of
randomness through its masking strategy. Nevertheless, our method achieves an error magnitude comparable to that of TPT.

E.3. Expected Calibration Error

Table 7 presents the calibration results on the OOD benchmark, while Table 8 shows the results on the fine-grained
benchmark for each dataset. The comparison includes our method, TPT (Shu et al., 2022), and C-TPT (Yoon et al., 2024).
The results show that LoRA-TTT-A (i.e., MAE loss) achieves calibration performance comparable to or surpassing that of
C-TPT across a wide range of categories, highlighting the effective calibration properties of MAE loss.

E.4. Hyper-parameter tuning and sensitivity

Figure 2a shows that adding the MAE loss improves performance on fine-grained datasets without degrading performance
on OOD datasets. We chose ε1 = 1 and ε2 = 16 for their consistent strong results across datasets. In Figures 2b to 2d,
increasing the number of data augmentations tends to enhance performance; however, for efficiency, we chose 64, aligning
with TPT. As Np increases, performance tends to decrease, which is consistent with TPT’s results. Therefore, following
TPT, we select the top 10% (Np = 6). Additionally, AugMix proves to be effective for data augmentation.

We chose different LoRA scales for the two benchmarks because only ImageNet-A exhibited distinct behavior depending
on ω, as shown in Table 9. The relationship between this dataset and LoRA parameters requires further investigation. Our
method consistently achieves strong performance and outperforms TPT on both benchmarks with r = 16 and ω = 2, while
also using the same masking ratio and LoRA layer settings. Hyperparameter sensitivity is inherent in TTT methods. For
example, the optimal iteration count in WATT (Osowiechi et al., 2024) and CLIPArTT (Hakim et al., 2024) varies by domain.
Our approach generalizes well across multiple benchmarks, highlighting its stability with the fixed configuration.

E.5. Scalability Analysis of Our Method

In this section, we evaluate the scalability of our proposed method by applying it to a larger baseline model. Table 10
and Table 11 show the results obtained using the pretrained CLIP-ViT-L/14 on the OOD and fine-grained benchmarks,
respectively. LoRA is applied exclusively to the transformer architecture in layers 23 and 24 of the image encoder, targeting
the key, query, value, and output matrices with a rank of 16, and the LoRA scale ω is set to 2. All other experimental
parameters are consistent with those in the main paper. The results demonstrate that LoRA-TTT consistently outperforms
the baseline CLIP-ViT-L/14 across both benchmarks and multiple categories while maintaining the zero-shot setting. It
also demonstrates performance improvements when combined with the ensemble text prompts, exhibiting generalization
properties to text prompts similar to those observed with CLIP-ViT-B/16. Performance improvements are observed with
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Table 7: Expected Calibration Error (ECE↑) of zero-shot image classification with TTT on the OOD benchmark. The
best results, except for the baseline, are highlighted in bold.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Avg.
CLIP-ViT-B/16 1.93 8.37 2.51 3.53 4.79 4.23 4.80

TPT (Shu et al., 2022) 10.61 15.35 11.85 4.97 16.14 11.78 12.08
C-TPT (Yoon et al., 2024) 3.11 6.40 4.64 2.80 7.69 4.93 5.38
LoRA-TTT-M (Ours) 20.32 25.47 22.66 12.65 30.25 22.27 22.76
LoRA-TTT-A (Ours) 2.97 9.60 4.13 1.35 7.28 5.07 5.59
LoRA-TTT (Ours) 14.04 19.27 16.19 8.08 22.45 16.00 16.49

Table 8: Expected Calibration Error (ECE↑) of zero-shot image classification with TTT on the fine-grained benchmark.
The best results, except for the baseline, are highlighted in bold.

Method Flower102 DTD Pets Cars UCF101 Caltech Food101 SUN397 Aircraft EuroSAT Average
CLIP-ViT-B/16 3.21 8.23 4.41 4.45 2.93 5.12 2.03 2.24 5.50 7.16 4.53

TPT (Shu et al., 2022) 13.57 23.45 6.18 5.92 11.65 3.60 4.49 11.94 17.81 18.48 11.71
C-TPT (Yoon et al., 2024) 5.24 13.77 1.56 1.56 2.30 3.27 3.31 5.02 4.41 12.47 5.29

LoRA-TTT-M (Ours) 24.27 34.64 10.97 16.96 18.91 4.61 11.96 20.80 25.45 28.70 19.73
LoRA-TTT-A (Ours) 4.10 12.27 3.08 2.20 3.52 4.09 1.83 3.01 6.51 7.34 4.80
LoRA-TTT (Ours) 19.54 26.05 6.68 7.73 11.30 2.31 7.94 13.15 16.76 16.02 12.75

both types of loss (i.e., LoRA-TTT-M and LoRA-TTT-A), highlighting the robustness of our method and its scalability to
larger baseline models.

F. Ablation Study
F.1. How to apply LoRA for TTT

In this section, we explore the utilization of LoRA for TTT. We investigate the key factors for effectively applying LoRA,
including: (1) determining the optimal layers and the extent of LoRA application within the transformer model, (2)
understanding the relationship between the appropriate rank and scale, and (3) selecting the attention matrices for tuning.

Which layers should we apply LoRA to? Table 12 presents the zero-shot classification performance when LoRA is
applied to specific layers of the image encoder in CLIP-ViT-B/16. Our results indicate that applying LoRA to deeper layers
is more effective than to shallower ones, aligning with trends observed in fine-tuning language models (Zhang et al., 2023).
Additionally, applying LoRA to more layers does not necessarily improve performance. Limiting its application to the
11th and 12th layers not only outperforms applying it across all layers in terms of performance but also reduces memory
consumption and runtime, making our approach more efficient for TTT.

LoRA rank and scale. As shown in Figure 3a, increasing the rank does not directly lead to performance gains. Each
rank has an optimal scale, and as the rank increases, the corresponding optimal scale tends to decrease. When the rank is
small (e.g., rank 4), performance remains stable across different scales, reducing the need for extensive hyperparameter
tuning.

LoRA rank and attention matrices. We investigate the optimal application of LoRA to different attention matrices
in CLIP-ViT-B/16. In Figure 3b, we observe that applying LoRA to Wv at the same rank achieves the best results among
the 4 matrices (Wo, Wv, Wq, and Wk). This trend aligns with previous research (Zhang et al., 2023; Zanella & Ben Ayed,
2024a), even in the context of TTT. Given the same total number of parameters, applying LoRA to Wkvqo shows little
difference in performance compared to applying it to Wvq or Wkq.
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Table 9: Top-1 accuracy of zero-shot image classification.

Method ImageNet ImageNet-A OOD Average FG Average
TPT 69.02 54.73 60.89 64.91
LoRA-TTT (r = 16, ω = 2) 69.31 55.43 61.21 65.00
LoRA-TTT (r = 16, ω = 12) 69.40 60.52 62.93 64.39

(a) ω1 = 1, ω2 Tuning (b) Number of views

(c) Np (d) Augmentations

Figure 2: Hyper-parameter tuning. Results may slightly vary due to trial randomness, even with the same parameters.

F.2. Masking strategy

In masked image modeling, the mask strategy plays a crucial role (Hondru et al., 2024; Gao et al., 2024). We examine the
effects of the masking ratio, the confidence selection cutoff, the use of an image decoder, and the impact of reconstruction
targets. We use a randomly initialized transformer-based decoder with 8 layers, 16 heads, and a 768 embedding size,
without prior fine-tuning to ensure a fair evaluation. This decoder allows us to incorporate the pixel-wise reconstruction loss
proposed in TTT methods based on MAE (Gandelsman et al., 2022; Wang et al., 2023).

As shown in Table 13, while the masking ratio does not significantly affect the overall performance, we choose a default
masking ratio of 50% as it strikes a good balance between performance and computational efficiency. As proposed in TPT,
selecting and masking the top 10% of augmented images with the lowest entropy yields better performance than masking all
64 images (i.e., applying a cutoff of 1), with an improvement of over 1% observed in the OOD average. The 10% cutoff not
only improves performance but also enhances the computational efficiency of TTT by calculating the loss on only one-tenth
of the images. Furthermore, reconstructing the class token is more effective than reconstructing masked visual tokens or
image pixels using the decoder. This supports the hypothesis that improving zero-shot image classification performance in
VLMs relies more on aligning high-level semantics than on capturing fine-grained features.

F.3. Initialization of LoRA weights

LoRA demonstrates high effectiveness and efficiency for TTT, even when initialized with random weights. In this section,
we explore the performance gains achieved by fine-tuning the LoRA weights before TTT. We prepare a third dataset, CC3M
(Sharma et al., 2018), for LoRA initialization and train only the LoRA weights using the same contrastive loss as in CLIP
pre-training (Radford et al., 2021) with image-text pairs. We employ Adam with a learning rate of 1e-6 and a weight decay
of 0.05 for optimization, performing one epoch of training with a batch size of 64.
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Table 10: Top-1 accuracy of zero-shot image classification on the OOD benchmark with the CLIP-ViT-L/14 baseline.
Performance improvements over the zero-shot CLIP-ViT-L/14 are indicated with an upward blue arrow (→blue) and a
downward red arrow (↑red).

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Avg.
CLIP-ViT-L/14 73.45 68.77 67.75 85.41 57.82 70.64 69.94
CLIP-ViT-L/14 + Ensemble 75.53 70.75 69.70 87.85 59.60 72.69 71.97

LoRA-TTT-M (Ours) 75.20(→1.75) 73.73(→4.96) 69.74(→1.99) 87.69(→2.28) 59.76(→1.94) 73.22(→2.58) 72.73(→2.79)
LoRA-TTT-A (Ours) 73.88(→0.43) 69.91(→1.13) 67.98(→0.23) 85.99(→0.58) 58.30(→0.49) 71.21(→0.57) 70.55(→0.61)
LoRA-TTT (Ours) 75.07(→1.61) 72.56(→3.79) 69.24(→1.49) 87.27(→1.86) 59.48(→1.67) 72.72(→2.08) 72.14(→2.20)
LoRA-TTT + Ensemble (Ours) 77.03(→3.57) 75.63(→6.85) 71.86(→4.11) 89.73(→4.32) 61.41(→3.59) 75.13(→4.49) 74.66(→4.72)

Table 11: Top-1 accuracy of zero-shot image classification on the fine-grained benchmark with the CLIP-ViT-L/14
baseline. Performance improvements over the zero-shot CLIP-ViT-L/14 are indicated with an upward blue arrow (→blue)
and a downward red arrow (↑red).

Method Flower102 DTD Pets Cars UCF101 Caltech Food101 SUN397 Aircraft EuroSAT FG Avg.
CLIP-ViT-L/14 76.21 52.42 93.05 76.91 73.72 95.17 88.58 67.68 30.03 55.09 70.89
CLIP-ViT-L/14 + Ensemble 75.92 54.73 93.05 77.78 75.89 95.62 89.20 70.15 31.86 51.70 71.59

LoRA-TTT-M (Ours) 76.45(→0.24) 54.14(→1.71) 93.81(→0.76) 78.34(→1.43) 75.23(→1.51) 95.05(↑0.12) 89.32(→0.74) 68.97(→1.29) 33.30(→3.27) 52.32(↑2.77) 71.69(→0.81)
LoRA-TTT-A (Ours) 76.65(→0.45) 52.72(→0.30) 93.43(→0.38) 77.42(→0.51) 74.17(→0.45) 95.13(↑0.04) 88.90(→0.32) 67.81(→0.13) 30.42(→0.39) 55.01(↑0.07) 71.17(→0.28)
LoRA-TTT (Ours) 76.57(→0.37) 54.14(→1.71) 93.87(→0.82) 78.31(→1.41) 74.83(→1.11) 95.54(→0.37) 89.34(→0.77) 68.72(→1.04) 33.12(→3.09) 53.74(↑1.35) 71.82(→0.93)
LoRA-TTT + Ensemble (Ours) 75.92(↑0.28) 55.08(→2.66) 93.08(→0.03) 79.38(→2.47) 76.79(→3.07) 95.94(→0.77) 89.79(→1.21) 71.13(→3.45) 35.34(→5.32) 52.19(↑2.90) 72.46(→1.58)

As shown in Figure 4, LoRA initialization using 21k randomly sampled image-text pairs from CC3M (i.e., only 1% of
the total CC3M dataset) improves performance by more than 1% on the fine-grained benchmark and by 0.6% on the
OOD benchmark. Furthermore, TTT consistently improves performance on both the benchmarks, regardless of the LoRA
initialization. Our experiments demonstrate that fine-tuning LoRA with a small amount of data shows the potential to
enhance its performance. While adhering to the constraints of not leveraging domain-specific information or a teacher
model, LoRA fine-tuning delivers significant performance improvements in TTT, establishing it as an effective approach for
future applications of LoRA in TTT.

G. Qualitative Analysis
Table 14 shows the t-SNE visualization of image features after the image encoder for various evaluation datasets, comparing
the baseline CLIP-ViT-B/16 and our method. The results show that our approach achieves better class separation than the
baseline, indicating improved classification performance on the test data. Additionally, the visualizations highlight that the
type of test loss affects how class separation is achieved.
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Table 13: Masking strategy. The LoRA scale ω is set to 2 for both benchmarks. Performance differences from zero-shot
CLIP-ViT-B/16 are shown with a blue (→) or red (↑) arrow.
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Table 14: t-SNE visualizations. The plot colors indicate the category classes of each dataset.

CLIP-ViT-B/16 LoRA-TTT-M LoRA-TTT-A LoRA-TTT
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