
Appendices
The whole appendix is organized as follows.

• In Appendix A, we introduce the basic notations that are used throughout the paper and the
appendix, and introduce the basic tools for analysis.

• In Appendix B, we describe the implementation details of our ConvNorm, including details for
dealing with 2D convolutions, strides, paddings, and the discuss about the differences between
different types of convolutions.

• In Appendix C, we describe the the experimental settings for Section 4 in detail.
• Finally, in Appendix D we conduct a more comprehensive ablation study on the influence of

different components of the proposed ConvNorm.

A Notations & basic tools

A.1 Notations

Throughout this paper, all vectors/matrices are written in bold font a/A; indexed values are written
as ai, Aij . For a matrix A ∈ Cm×n, we use A> and A∗ to denote the transpose and conjugate
transpose ofA, respectively. We let [m] = {1, 2, · · · ,m}. Let Fn ∈ Cn×n denote a unnormalized
n × n DFT matrix, with ‖Fn‖ =

√
n, and F−1n = n−1F ∗n . In many cases, we just use F to

denote the DFT matrix. For any vector v ∈ Cn, we use v̂ = Fv to denote its Fourier transform,
and v denotes the conjugate of v. We use ∗ to denote the circular convolution with modulo-n:
(v ∗ u)i =

∑m−1
j=0 vjui−j , and we use ~ to denote the cross-correlation v ~ u used in modern

ConvNets.

A.2 Circular convolution and circulant matrices.

For a vector v ∈ Rn, let s`[v] denote the cyclic shift of v with length `. Thus, we can introduce the
circulant matrix Cv ∈ Rn×n generated through v ∈ Rn, that is,

Cv =


v1 vn · · · v3 v2
v2 v1 vn v3
... v2 v1

. . .
...

vn−1
. vn

vn vn−1 · · · v2 v1

 = [s0 [v] s1 [v] · · · sn−1 [v]] .

Now the circular convolution can also be written in a simpler matrix-vector product form. For
instance, for any u, v ∈ Rn, we have

u ∗ v = Cu · v = Cv · u.

In addition, the cross-correlation between u and v can be also written in a similar form of convolution
operator which reverses one vector before convolution with ǔ ∗ v, where v̌ denote a cyclic reversal
of v ∈ Rm (i.e., v̌ = [v1, vm, vm−1, · · · , v2]

>).

A.3 Proof of Proposition 3.1

We restate Proposition 3.1 in Section 3 in the following.

Proposition A.1 The spectral norm ofQ introduced in (8) can be bounded by

‖Q‖ ≤

√√√√CO∑
k=1

‖Qk‖2,

that spectral norm ofQ is bounded by the spectral norms of all the weights {Qk}CO

k=1.

15

Proof Suppose we have a matrix of the formQ =

 Q1

...
QCO

, then by using the relationship between

singular values and eigenvalues,

σ2
1(Q) = λ1

(
Q>Q

)
= λ1

(
CO∑
i=1

Q>i Qi

)
≤

CO∑
i=1

λ1
(
Q>i Qi

)
=

CO∑
i=1

σ2
1(Qi).

Thus, we have

σ1(Q) ≤

√√√√CO∑
i=1

σ2
1(Qi),

as desired.

B Implementation details for Section 3

In the main paper, for the ease of presentation we only introduced and discussed the high-level idea
of the proposed ConvNorm, with few technical details missing. Here, we discuss the implementation
details of the ConvNorm for ConvNets in practice. More specifically, Appendix B.1 provides the
pseudocode of ConvNorm with circular convolutions, which is easy for presentation and analysis. It
should be noted that modern ConvNets often use cross-correlation instead of circular convolutions.
Hence in Appendix B.2 and Appendix B.3, we discuss in detail on how to deal with this difference in
practice. Additionally, in Appendix B.4 and Appendix B.5, we include other implementation details,
such as dealing with strides, and extensions from 1D to 2D convolutions.

B.1 Algorithms

First of all, in Algorithm 1 we provide detailed pseudocode of implementing the proposed ConvNorm
in ConvNets for 2D input data, where the convolution operations are based on circular convolutions.
From our discussion in Section 3 , we can see that all the operations can be efficiently implemented
in the frequency domain via 2D FFTs.11

It should be noted that modern ConvNets often use cross-correlation rather than the circular convo-
lution. Nonetheless, we discuss the differences and similarities between the two in the following.
Based on this, we show how to adapt Algorithm 1 to modern ConvNets (see Appendix B.2).

B.2 Dealing with convolutions in ConvNets

Throughout the main body of the work, our description and analysis of ConvNorm are based on
circular convolutions for the simplicity of presentations. However, it should be noted that current
ConvNets typically use cross correlation in each convolutional layer, which can be viewed as a
variant of the classical linear convolution with flipped kernels. Hence, to adapt our analysis from
circular convolution to cross-correlation (i.e., the typical convolution used in ConvNets), we need to
build some sense of “equivalence”between them. Since linear convolution has a close connection
with both, we use linear convolution as a bridge to introduce the relationship and thus find the
“equivalence” between circular convolution and cross-correlation. Based on this, we show how to
adapt from circular convolution in Algorithm 1 to the convolution used in modern ConvNets by
simple modifications.

Relationship among all convolutions. In the following presentations, assume we have a signal
x ∈ Rn and a kernel vector a ∈ Rm with m ≤ n. We first discuss the connections between linear
convolution and the other two types of convolutions, and then establish the equivalence between
circular convolution and cross-correlation upon the observed connections. Figure 5 demonstrates a
simple example of the connections.

11During evaluation, we use the moving average of v̂k during training, the momentum of the moving average
is obtained by a cosine rampdown function 0.5

(
1 + cos

(
min(iter,40000)

40000
π
))

, where iter is the current iteration.

16

Algorithm 1 Pseudocode of the proposed ConvNorm in each layer of ConvNets with 2D inputs.

Require: zout ∈ RB×CO×W×H = convolution outputs with batchsize B, channels CO , width W , and height H
Require: a ∈ RCO×CI×k1×k2 = kernels for all output channels CO , input channels CI , and kernel size k1 × k2
Require: r ∈ RCO×k1×k2 = CO trainable kernels for affine transform with the same size of a
for k in [1, . . . , CO] . for each output channel
do
ẑk,out ← FFT(zk,out) . apply 2D Fast Fourier Transform (FFT) on convolution output
âk ← FFT(ak) . apply 2D FFT on kernels
âk ← stop_gradient(âk) . treating âk as constants during back-propagation

v̂k ←
(∑CI

i=1 |âki|�2
)�−1/2

. this is the 2D FFT of vk

z̃k,out ← IFFT (ẑk,out � v̂k) . circularly convolve zout,k with vk

z̄k,out ← rk ∗ z̃k,out . learnable affine transformation with rk

endfor
return z̄k,out . normalized convolution output

• Linear convolution & circular convolution. The (finite, discrete) linear and circular convolution
can both be written as

y (k) =

n−1∑
j=0

a (k − j)x (j) .

Despite the same written form, they differ in two ways: length and index. As illustrated in Figure 5
(i), linear convolution doesn’t have constraints on the input length and the result always has length
n+m−1. In comparison, circular convolution requires both the kernel a and the signal x to share
the same length. Therefore, as in Figure 5 (iii) and (iv), we always reduce linear convolution to
circular convolution by zero padding both the kernel and the signal to the same length n+m−1, as
shown in the example in Figure 5 (iv). It should be noted that the reason for such length difference
is also rooted in their different indexing methods. In the case of linear convolution, when indices
fall outside the defined regions, the associated entries are 0, e.g., a (−1) = 0 and x (3) = 0 as
shown Figure 5 (i). On the other hand, circular convolution uses the periodic indexing method, i.e.,
a (−j) = a (m− j). For example, in Figure 5 (iii), a (−2) = a (3− 2) = 4.

• Linear convolution & cross-correlation. As shown in Figure 5 (i) and (ii), both linear convolution
and cross-correlation operations apply the so-called sliding window of the kernel a to the signal
x, where the sliding window moves to the right one step at a time when the stride equals one.
However, notice that cross-correlation uses a flipped kernel compared with linear convolution.
Another difference is in the length of the output, where the output of a linear convolution is of
length n + m − 1, while the output of cross-correlation is of length n −m + 1. This is due to
the fact that the cross-correlation operation does not calculate outputs for out-of-region indices
(see the difference between Figure 5 (i) and (ii) for an example). To sum up, a cross-correlation is
equivalent to a kernel-flipped and truncated linear convolution. Moreover, the amount of truncation
is controlled by the amount of zero-padding on the signal x in cross-correlation. For example, in
Figure 5 (ii), there is no zero-padding and hence the result is equivalent to truncate the first and last
elements from the result in Figure 5 (i); but consider if we zero-pad the signal x by 1 element on
both sides in Figure 5 (ii), then the result would be identical with Figure 5 (i). In general, we found
that if we zero-pad the signal x by m− 1 elements on both sides, a cross-correlation is equivalent
to a kernel-flipped linear convolution without any truncation. We will discuss more about dealing
with zero-padding in Appendix B.3.

Adapting circular convolution to cross-correlation in ConvNets. Thus, based on these connec-
tions discussed above, we could now establish the “equivalence” between circular convolution and
cross-correlation based on their connections to linear convolution, and hence adapt the proposed
ConvNorm in Algorithm 1 with cross-correlations in ConvNets via the following steps:

1. Zero pad both sides of zin by m− 1 elements to get żin.
2. Perform the cross-correlation between the kernel a and the input żin to obtain the output
zout.

17

2 4

(ii) Cross-correlation

Flip kernel

4 2 2 4 0

Padding kernel

= 10

= 22

1 3 5

4

4 0

1 3

12 10

2

6

5

4 2

0

(iii) Circular Convolution

1

2

= 22

1

= 10

= 22

3 5

4

2 0 20

3 5

4 2

4 6 0

1 3 5

4 2

0 12 10

0

0

0

Padding both
kernel and input

2 4 0 0

1 3 5 0

1

= 20

3 5

0 12 10

1 3 5

4 2

0 0 20

0

(iv) Circular Convolution
(Emulate Linear Convolution)

1

2

= 2

3 5

4

2 0 0

0

0

0

1

2

= 10

3 5

4

4 6 0

0

0

0

0

0

0

0 4 2 0

= 220

0

0

0

1

= 20

3 5

12 10

1 3 5

4 2

20

1

2

= 2

3 5

4

2 0

1

2

= 10

3 5

4

4 6

4 2

= 22

(i) Linear Convolution

00

0

0 0

00 0

1 3 5

Figure 5: A 1D example to illustrate relationships among different kinds of convolutions. (i),
(ii), and (iii) show the operations of linear convolution, cross-correlation (i.e., the “convolution”
used in ConvNets), and circular convolution, respectively. (iv) gives an example of emulating linear
convolution in a circular convolution manner. (i), (ii) indicates that cross-correlation is essentially a
linear convolution with a flipped-kernel and truncation. Hence from (i), (ii), (iv), we find equivalence
between cross-correlation and circular convolution.

3. Apply ConvNorm on the kernel a and the output zout as stated in Algorithm 1 to get result
z̃out.

4. Delete the first and last (m− 1)/2 elements of z̃out and return as the resulting output.

Here, Step 1 and Step 2 are to generate the output zout that is almost identical to what used
in ConvNets, with the exception of zero-padding in Step 1 so that it is equivalent to a circular
convolution with a flipped kernel ǎ. Then in Step 3, we perform ConvNorm on the output zout
and kernel a. Notice that there is no need to flip the kernel in the above steps since as described
in Algorithm 1, we only need to calculate the magnitude spectrum of a kernel and the magnitude
spectrum remains consistent with a kernel flipping, i.e., |Fa| = |F ǎ|. Finally, Step 4 is to obtain the
desired output with the correct spatial dimension.

B.3 Dealing with zero-paddings in ConvNets

Here, we provide more explanations about the zero-padding and truncation used in Appendix B.2.
Zero-padding is an operation of adding 0s to the data, which is widely used in modern ConvNets
primarily aimed for maintaining the spatial dimension of the outputs for each layer. For example, a
standard stride-1 convolution in ConvNets between a kernel a ∈ Rm and a signal zin ∈ Rn with
n > m produces a output vector zout of length n−m+ 1. To make the output zout the same length
as the input signal zin, a zero-padding of bm/2c is often used (e.g., common in various architectures
such as VGG [60], ResNet [5].12 To handle with such zero-padding in ConvNorm, based on the
relationship between cross-correlation and circular convolution established in Appendix B.2, we
truncate the output of ConvNorm to make its spatial dimension align with the dimension of the input
signal zin. More specifically, after Step 3 in Appendix B.2, the resulting z̃out has length n+m− 1,

12bmc is the floor operation which outputs the greatest integer less than or equal to m.

18

in Step 4 we then truncate the first and last (m− 1)/2 elements from it to make it has length n as the
input signal.

B.4 Dealing with stride-2

Stride nowadays becomes an essential component in modern ConvNets [5,76]. A stride-s convolution
is a convolution with the kernel moving s steps at a time instead of 1 step in a standard convolution
shown in Figure 5. Mathematically, for the kernel a and the input zin, the stride-s convolution can
be written as

zout = Ds [a~ zin] ,

where Ds[·] is a downsampling operator that selects every sth sample and discards the rest. Therefore,
the main purpose of stride is for downsampling the output in ConvNets, replacing classical pooling
methods. Hence for convolution with stride-s, the dimension of the output decreases by s times in
comparison to that of the standard stride-1 output. For example, if we do a stride-2 convolution on
Figure 5 (ii), we will get the result y = [10] where the result is sampled from the standard stride-1
convolution output and its size is halved.

When enforcing weight regularizations, recent work often cannot handle strided convolution [29].
This happens because it involves weight matrix inversion, and the stride and the downsampling
operator cause the weight matrix to be non-invertible. In contrast, since our method does not involve
computing full matrix inversion and it operates on the outputs instead of directly changing the
convolutional weights, we could first take a step back to perform an unstrided convolution, then
use ConvNorm to normalize the output and finally do the stride (downsampling) operation on the
normalized outputs.

B.5 Dealing with 2D kernels

Although in the main body of the work, we introduced the ConvNorm based on 1D convolution for
the simplicity of presentations, it should be noted that our approach can be easily extended to the 2D
case via 2D FFT. For an illustration, let us consider (6), we know that in 1D case the preconditioning
matrix for each channel can be written in the form of

Pk =

 CI∑
j=1

Cakj
C>akj

− 1
2

=

 CI∑
j=1

F ∗ diag(âkj)FF
∗ diag(âkj)F

− 1
2

= F ∗


 CI∑

j=1

|diag(âkj)|�2
�− 1

2

F ,
so that the output after ConvNorm can be rewritten as,

Pkzk = F ∗

 CI∑
j=1

|diag(âkj)|�2)�−
1
2

Fzk = F−1

 CI∑
j=1

|F (akj)|�2
�− 1

2

F (zk),

where F (·) and F−1(·) denote the 1D Fourier transform and the 1D inverse Fourier transform,
respectively. To extend our method to the 2D case, we can simply replace the 1D Fourier transform
in the above equation by the 2D Fourier transform. As summarized in Algorithm 1, to deal with 2D
input data, we replace every 1D Fourier transform with 2D Fourier transform, which can be efficiently
implemented via 2D FFT.

C Experimental details for Section 4

In this part of appendix, we provide detailed descriptions for the choices of hyperparameters of
baseline models, and introduce the settings for all experiments conducted in Section 4.

19

C.1 Computing resources, assets license

We use two datasets for the demonstration purpose of this paper: CIFAR dataset is made available
under the terms of the MIT license and ImageNet dataset is publicly available for free to researchers
for non-commercial use. We refer the code of some work during various stages of our implementation
for comparison and training purposes, we list them as follows: the implementation of ONI [39] is
made available under the BSD-2-Clause license; the implementation of OCNN [43] is made available
under the MIT license; the training procedure for Table 1 refers to the implementation of the work [62]
which is made available under the MIT license and the black-box attack SimBA [56] implementation
is made available under the MIT license. All experiments are conducted using RTX-8000 GPUs.

C.2 Choice of hyperparameters for baseline methods

In Section 4, we compare our method with three representative normalization methods, that we
describe the hyperparameter settings of each method below.

• OCNN. Since the best penalty constraint constant λ for OCNN is not specified in [43], we do
a hyperparameter tuning on the clean CIFAR-10 dataset for λ ∈ {0.001, 0.01, 0.05, 0.1, 1} and
picked λ = 0.01 from the best validation set accuracy.

• ONI. In the work [39], the authors utilize Newton’s iteration to approximate the inverse of the
covariance matrix for the reshaped weights. In our experiments, we adopt the implementation and
use the default setting from their Github page where the maximum iteration number of Newton’s
method is set to 5. We use a learning rate 0.01 for all ONI experiments, where we notice that a
large learning rate 0.1 makes the training loss explode to NaN.

• SN. In [15], the authors use the power method to estimate the spectral norm of the reshaped weight
matrix and then utilize the spectral norm to rescale the weight tensors. For all SN experiments, we
directly use the official PyTorch implementation of SN with the default settings where the iteration
number is set to 1.13

C.3 Experimental details for Section 4.1

Robustness against adversarial attacks. For gradient-based attacks, we follow the training proce-
dure described in [62] to train models with our ConvNorm and other baseline methods.14 Then we
use Fast Gradient Sign Method (FGSM) [57] and Projected Gradient Method (PGD) [58] as metrics
to measure the robust performance of the trained models. We note that the FGSM attack is defined to
find adversarial examples in one iteration by:

xadv = x+ ε ∗ sign(∇x`(x,y,θ))

where θ represents the model; y is the target for data x and ε denotes the attack amount of this
iteration. PGD attack is an iterative version of FGSM with random noise perturbation as attack
initialization. In this paper, we use PGD-k to denote the total iterative steps (i.e., k steps) for the
attack methods. Adversarial attacks are always governed by a bound on the norm of the maximum
possible perturbation, i.e., ‖xadv − x‖p ≤ δp. We use `∞ norm to constrain the attacks throughout
this paper (i.e., p =∞). Specifically, we adopt the procedure in [62] by choosing m = 4 (the times
of repeating training for each minibatch) and FGSM step ε = 8

255 during training. And we set the
attack bound δ∞ = 8

255 .

For the black-box attack SimBA [56], we first train ResNet18 [5] models for ConvNorm and other
baseline methods without BatchNorm on the clean CIFAR-10 training images using the default
experimental setting mentioned in Section 4.15 Then we choose the best model for each method

13The authors of SN take advantage of the fact that the change of weights from each gradient update step is
small in the SGD case (and thus the change of the singular vector is small as well) and hence design the SN
algorithm so that the approximated singular vector from the previous step is reused as the initial vector in the
current step. They notice that 1 iteration is sufficient in the long run.

14For OCNN in the gradient-based attack experiment, we choose λ = 0.0001 since we found that this setting
yields the best OCNN robust performance.

15We choose to not adding BatchNorm in the SimBA experiment because we empirically observe that
removing BatchNorm improves the performance of every method.

20

https://github.com/huangleiBuaa/ONI/blob/master/ONI_PyTorch/extension/normalization/NormedConv.py
https://pytorch.org/docs/stable/generated/torch.nn.utils.spectral_norm.html

Train Test

0 5000 10000 15000
Iteration

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Tr
ai

n
Ac

cu
ra

cy
ConvNorm + BN
ConvNorm
Vanilla
BN

0 5000 10000 15000
Iteration

0.70
0.75
0.80
0.85
0.90
0.95

Te
st

 A
cc

ur
ac

y

ConvNorm + BN
ConvNorm
Vanilla
BN

Figure 6: Adding ConvNorm before BatchNorm accelerates convergence and improves perfor-
mance. Train and test accuracy of ResNet18 trained on CIFAR-10 with and without ConvNorm or
BatchNorm under default settings mentioned in Section 4. Error bars correspond to min/max over 3
runs.

according to the best validation set accuracy. Finally, we apply each of the selected models on the
held-out test set and randomly pick 1000 correctly classified test samples for running SimBA attack.
We compare the performances of the selected models with pixel attack using a step size ε = 0.4.
Since images in the dataset have spatial resolution 32× 32 and 3 color channels, the attack runs in a
total of 3× 32× 32 = 3072 iterations. We then report the average queries and attack success rate
after all 3072 iterations in Table 2.

Robustness against label noise. The label noise for CIFAR-10 is generated by randomly flipping
the original labels. Here we show the specific definition. We inject the symmetric label noise to
training and validation split of CIFAR-10 to simulate noisily labeled dataset. The symmetric label
noise is as follows:

y =

{
yGT with the probability of 1− r,
random one-hot vector with the probability of r,

where r ∈ [0, 1] is the noise level. The models (using ResNet18 as backbones) are trained on noisily
labeled training set (45000 examples) under the default experimental setting mentioned in Section 4.
Max test accuracy is then reported on the held-out test set.

Robustness against data scarcity We randomly sample [10%, 30%, 50%, 70%] of the training
data set CIFAR-10 dataset while keeping the amount of validation and test set amount unchanged.
The model is trained on sub-sampled training set using the default experimental setting mentioned in
Section 4. We report the accuracy on the held out test set by evaluating the best model selected on the
validation set (obtained by randomly sampling 10% of the original training set).

C.4 Generalization experiment and experimental details for Section 4.2

Improved performances on supervised learning. Below we provide the generalization exper-
iment and more detailed experiment settings for fast training and generalization mentioned in
Section 4.2. We use the default training setting mentioned in the Setups of Dataset and Training of
Section 4 if not otherwise specified.

• Faster training. In order to isolate the effects of normalization techniques, we drop all regularization
techniques including: data augmentations, weight decay, and learning rate decay as we have
mentioned in the caption of Figure 4. For extra experiments on the same analysis when these
regularization techniques are included, please refer to Appendix D and the results in Figure 6.

• Better generalization. We use the default setting as we have mentioned in the Setups of Dataset
and Training of Section 4. All normalization methods are evaluated under this setting. We
demonstrate the test accuracy of our method on CIFAR and ImageNet under standard settings. As
shown in Table 4, although only using ConvNorm results in slightly worse test accuracy against
BatchNorm, adding ConvNorm before standard BatchNorm layers can boost the performance
while maintaining fast convergence (see Figure 6). Additionally, we investigate the influence of

21

Dataset Backbone vanilla BatchNorm(BN) ConvNorm ConvNorm + BN

CIFAR-10 ResNet18 91.58 ± 0.67 93.18 ± 0.16 92.12 ± 0.32 93.31 ± 0.17
CIFAR-100 ResNet18 66.59 ± 0.72 73.06 ± 0.13 68.20 ± 0.27 73.38 ± 0.24

ImageNet ResNet18 / 69.76 - 70.34

Table 4: Results on classification. Test accuracy on CIFAR-10, CIFAR-100, and ImageNet validation
sets. For each case, we compare different combinations of ConvNorm and BatchNorm. Results of
CIFAR-10 and CIFAR-100 are averaged over 4 random seeds, and "/" represents failed training.

Batch Norm

3 7

Affine Transform 3 93.31 ± 0.17 92.12 ± 0.32

7 93.18 ± 0.16 92.01 ± 0.21

Table 5: Ablation study. The influence of the affine transform and batch normalization for classifi-
cation on the CIFAR10 dataset is evaluated. The mean test accuracy and its standard deviation are
computed over three random seeds.

Label Noise Ratio

20% 40% 60% 80%

ConvNorm + BN 88.94 ± 0.36 85.88 ± 0.26 79.54 ± 0.73 69.26 ± 0.59
ConvNorm 87.75 ± 0.13 84.16 ± 0.71 77.48 ± 0.26 54.11 ± 2.65

BN 86.98 ± 0.12 81.88 ± 0.29 74.14 ± 0.56 53.82 ± 1.04
Vanilla 85.94 ± 0.25 82.11 ± 0.52 76.75 ± 0.20 57.20 ± 0.71

Table 6: Adding ConvNorm and BatchNorm together makes a network more robust to label
noise. The influence of BatchNorm and ConvNorm for label noise on the CIFAR-10 dataset is
evaluated. The mean test accuracy and its standard deviation are computed over three random seeds.

combining the affine transform and BatchNorm with ConvNorm. Table 5 shows the results of
our ablation study on the CIFAR-10 dataset. Both affine transform and batch norm provide an
independent performance boost.

Training details for GAN For GAN training, the parameter settings and model architectures for
our method follow strictly with that in [15] and its official implementation for the training settings.
More specifically, we use Adam (β1 = 0, β2 = 0.9) for the optimization with learning rate 0.0002.
We update the discriminator 5 times per update of the generator. The batchsize is set to 64. We adopt
two performance measures, Inception score and FID to evaluate the images produced by the trained
generators. The ConvNorm is added after every convolution layer in the discriminator of GAN.

D Additional experiments and ablation study

In this section, we perform a more comprehensive ablation study to evaluate the influences of each
additional component of ConvNorm on the tasks that we conducted in Section 4. More specifically,
we study the benefits of the extra convolutional affine transform that we introduced in Section 3.3, as
well as an inclusion of a BatchNorm layer right after the ConvNorm.

Fast training and better generalization. In Figure 4, we show that ConvNorm accelerates conver-
gence and achieve better generalization performance with or without BatchNorm when regularizations
such as data augmentation, weight decay, and learning rate decay are dropped during training. Figure 6
shows that when these standard regularization techniques are added, fast convergence of ConvNorm
can still be observed (see the blue curve with circles and the yellow curve with triangles).

22

Subset Percent

10% 30% 50% 70%

ConvNorm + BN 77.96 ± 0.11 87.66 ± 0.23 90.49 ± 0.17 90.71 ± 0.15
ConvNorm 69.23 ± 0.94 83.93 ± 0.34 87.83 ± 0.21 89.85 ± 0.10

BN 67.10 ± 2.59 84.24 ± 0.51 88.74 ± 0.73 90.41 ± 0.33
Vanilla 67.56 ± 0.50 81.98 ± 0.78 86.57 ± 0.35 87.61 ± 0.86

Table 7: Adding ConvNorm and BatchNorm together helps improve data efficiency The influ-
ence of BatchNorm and ConvNorm for data scarcity on the CIFAR-10 dataset is evaluated. The mean
test accuracy and its standard deviation are computed over three random seeds.

Vanilla ConvNorm Cayley transfrom

Training time (epoch) 21s 60s 182s

Table 8: Training time per epoch for different methods The average training time for one epoch of
different weight normalization methods is evaluated. Experiments are conducted CIFAR-10 dataset
with a ResNet18 backbone.

Robustness against label noise and data scarcity. In Figure 3, we show that adding a BatchNorm
layer after the ConvNorm can further boost the performance against label noise and data scarcity
compared with combining other baseline methods with BatchNorm.

Here, to better understand the influence of each component, we study the effects of ConvNorm and
BatchNorm separately. When we only use the ConvNorm without BatchNorm, from Table 6 and
Table 7 we observe that in comparison to vanilla settings ConvNorm improves the performance against
label noise and data scarcity for the most cases. In contrast, when only the BatchNorm is adopted,
the performance downgrades that it improves upon the vanilla setting in some cases. Additionally,
we notice that when we add 80% of label noise to the training data, combining ConvNorm and
BatchNorm together provides the best performance while using anyone alone would result in worse
performance.

Comparasion with Cayley Transfrom [29]. As mentioned in Section 1, a very recent work [29]
shares some common ideas with our work in terms of exploring convolutional structures in the
Fourier domain. We note that the major difference between [29] and our work lies in the trade-off
between the degree of orthogonality enforced and the associated computational burden. As shown
in Table 8, we empirically compare the run time for training one epoch of CIFAR-10 dataset on a
ResNet18 backbone using different methods. We observe that both our method and [29] requires
more time to train compared with the vanilla network. But since our ConvNorm explores channel-
wise orthogonalization instead of layer-wise as done in [29], ConvNorm achieves faster training
and [29] achieves more strict orthogonalization compared to each other. Also, we note that in terms
of scalability, our ConvNorm could be adapted in larger networks such as ResNet50 and ResNet152,
while the same experiments could not be carried on for [29] due to the limitation of our computational
resources. Another important factor for comparison is the adversarial robustness. Based on our
preliminary results, we found that ConvNorm has accuracy 46.12 under PGD-10 attack, which
outperforms the result of Cayley transform 38.35 under the same attack. But we note that since the
experiment settings in [29] are very different with ours, this comparison is not entirely fair as we
have not done a comprehensive tuning for the Cayley transform method. We conjecture that with
appropriate parameters and settings, the Cayley transform method could achieve on-par or even better
results than ConvNorm since the more strict orthogonality enforced.

Layer-wise condition number. In Figure 2, we have shown that ConvNorm could improve the
channel-wise condition number and layer-wise spectral norm. In this section, we empirically compare
the layer-wise condition number of different normalization methods. We note that we use the method
described in [51] to estimate the singular values and condition numbers of the actual convolution
operators from each layer, not the weight matrix. Here, we define a metric ρ to quantify the average

23

SN ONI OCNN ConvNorm

ρ 2.724 0.001 2.288 3.332

Table 9: Average layer-wise condition number ratio of vanilla method on top of other methods
The experiments are conducted on natural settings with the same set of hyperparameter of Table 1.

ratio of the condition number of the vanilla method and other methods

ρ :=
1

L

L∑
l=1

Condition number (Vanilla)
Condition number (Methodj

)

for characterizing the improvement upon the vanilla method (the larger, the better). From Table 9, we
observe that our ConvNorm shows the best result in terms of improvement of layer-wise condition
number as compared with other methods. We note that we did not compare with Cayley transform
[29] because it inherently enforces more strict orthogonality than our ConvNorm based on their
experiments, so we conjecture that Cayley transform could have better condition number than our
ConvNorm.

24

