

(a) Gradient conflicts (*left*) and training loss (*right*) for uniform MTL on the 40 tasks of CelebA for different learning rates (colors; $lr \in [5e^{-4}, 5e^{-3}, 5e^{-2}]$) and model sizes (lines; depth $\in [3, 9]$, width $\in [0.5, 1]$).

(**b**) Proportion of gradient conflicts as a function of accuracy, averaged across CelebA's 40 tasks.

(c) Proportion of gradient conflicts as a function of accuracy, averaged across for DomainNet's 6 domains.

Figure 1: Additional measurements of the proportion of gradient conflicting pairs of tasks/domains, with increased number of tasks and varying model sizes and learning rates. Gradient conflict is measured following the definition of PCGrad (*Gradient Surgery*) as implemented in https://github.com/VICO-UoE/UniversalRepresentations

Table 1: Impact of the population size N in PBT on the result of the scalarization weights search (*left*) and on its computational cost, when compared to multi-task optimization methods (*right*).

	N=6	N=12	N=24	N=40
E-3 0-0 25	90.320	90 375	90.345	90.370
E=5, Q=0.25	90.315	90.355	90.330	90.380
average	90.317	90.365	90.337	90.375

(a) Average test accuracy (2 seeds) when training on all 40 CelebA tasks with the scalarization weights policy found by PBT for different N and E E. For reference, the corresponding uniform MTL baseline yields 90.303 accuracy, and the random loss weighing baseline (RLW) 90.327, both averaged across 4 random seeds.

Costs	# forward passes	# backward passes	additional computations	additional storage
Uniform MTL	1	1	0	1
Uncertainty	1	1	minor	1
PBT with N models	<i>N</i> + 1	N + 1	minor (checkpoint writing)	1
PCGrad	1	Т	T^2	T
RotoGrad	1	T	T	T
GradDrop	1	T	0	T

(b) Theoretical costs per training iteration relative to the vanilla uniform MTL baseline; expressed in terms of compute (number of forward passes, backward passes, and additional computations such as computing gradients conflicts) and memory (e.g. storing per-task gradients simultaneously), as a function of the number of tasks T.

Table 2: Comparing the outcome of PBT (E = 3, Q = 0.25) and grid search when training a MTL model on **three** tasks/attributes of CelebA with quantitative results on the *left* (results are averaged across 3 random seeds) and an illustration of the search space covered by PBT on the *right*

