
Supplementary Materials

A Complexity Analysis
Our proposed method significantly reduces communication overhead in federated learning. However,
this reduction in communication comes at the cost of an increase in computation and memory usage
on the client side. In this section, we provide a comprehensive analysis of these complexity trade-offs
and discuss potential strategies to alleviate the added burdens. Specifically, we present an analysis of
the computational, memory, and communication complexities of our proposed model and provide a
comparative assessment against existing baselines.

In this analysis, E stands for the number of local epochs executed within a single communication
round, M indicates the total number of clients, N represents the population size per client, and
|θ| denotes the dimension of the model parameter vector. Table 1 presents the order of time and
memory complexities for each method where we do not employ parallelization for ES and EvoFed
computation. Here, clients generate perturbations one by one and reuse the memory after the fitness
measurement of a perturbed sample. As shown in Table 1, EvoFed without parallelization has a
similar order of memory complexity in clients to conventional FL, i.e., FedAvg, and reduced memory
complexity in the server. However, in this scenario, the time complexity for EvoFed grows linearly
with the number of perturbations as compared to FedAvg.

Table 1: Comparison of time and memory complexities for ES, EvoFed, and FedAvg, without parallel
processing of N individual perturbed models.

Method Client Time Client Memory Server Time Server Memory
ES O(N |θ|) O(|θ|) O(N(|θ|+M)) O(|θ|+MN)
EvoFed O(N |θ|+ E|θ|) O(|θ|) O(N(|θ|+M)) O(|θ|+MN)
FedAvg O(E|θ|) O(|θ|) O(M |θ|) O(M |θ|)

To mitigate the time complexity in EvoFed, one approach is to generate and evaluate a batch of T
perturbations in parallel. This method poses a trade-off between time and memory complexity.

Partitioning (as discussed in the main text) is an alternative strategy that enables computing a higher
number of fitness values for each perturbation by dividing it into K partitions. Consequently, the
algorithm requires a fewer perturbations N ′ to obtain sufficient fitness values for gradient encoding,
resulting in a reduction in memory complexity. This necessitates the transmission of N ′K fitness
values to the server. While partitioning does not introduce additional time complexity, having a
small number of perturbations restricts the algorithm’s exploration capabilities in parameter space, as
discussed in Section D.3. Therefore, in practice, we choose the population size to be N

K ≤ N ′ ≤ N ,
trading memory complexity with communication cost.

Table 2 provides a comparative analysis of the time and memory complexities for EvoFed and
FedAvg when both T individual perturbed models are processed in parallel, and each perturbed model
sample is divided into K partitions. In scenarios with enough memory, it is feasible to execute all
perturbations in a parallel setting T = N and without partitioning K = 1 and N = N ′.

Table 2: Comparison of time and memory complexities for EvoFed and FedAvg, with parallel pro-
cessing of T individual perturbed models and where each perturbation is partitioned to K segments.

Method Client Time Client Memory Server Time Server Memory
EvoFed (Parallel) O(N

T
|θ|+ E|θ|) O(T |θ|) O(N

T
(|θ|+M)) O(N |θ|+MN)

EvoFed (Partitioned) O(N ′|θ|+ E|θ|) O(N ′|θ|) O(N ′(|θ|+M)) O(N ′|θ|+MKN ′)

EvoFed (Both) O(N
′

T
|θ|+ E|θ|) O(T |θ|) O(N

′

T
(|θ|+M)) O(N ′|θ|+MKN ′)

FedAvg O(E|θ|) O(|θ|) O(M |θ|) O(M |θ|)

As discussed before, the communication complexity of ES and EvoFed is limited to transferring fitness
values O(N ′K) while FedAvg is to the gradient signal O(|θ|). However we can apply additional
compression on each method to reduce this complexity as explored in D.1 and D.2.

B Model Architecture and Optimization Hyperparameters

We used a CNN model with 11k parameters for the MNIST and FMNIST datasets and a bigger
model with 2.3M parameters for CIFAR-10, with architectural details provided in Table 5 and Table

1

6 respectively. We also provide detailed information about the optimization hyperparameters e.g.
learning rate (lr), momentum and batch size, etc. for MNIST and FMNIST in Table 3 and for Cifar-10
in Table 4:

Table 3: Hyperparameters used in experiments on dataset MNIST & FMNIST

Model Methods Hyperparameters

batch size lr momentum optimizer lr_es momentum_es optimizer_es w_decay sigma eps β_1&β_2

CNN ES 128 - - - 0.0148 0.9 sgd 0.0 0.27 1e-8 0.99 & 0.999

FedAvg 256 0.0111 0.8099 sgd - - - - - - -

Fed-quant 256 0.0111 0.8099 sgd - - - - - - -

Fed-sparse 256 0.0111 0.8099 sgd - - - - - - -

EvoFed (ours) 256 0.0873 0.9074 sgd 0.0427 0.9 sgd 0.0152 0.27 1e-8 0.99 & 0.999

Table 4: Hyperparameters used in experiments on dataset CIFAR-10

Model Methods Hyperparameters

batch size lr momentum optimizer lr_es momentum_es optimizer_es w_decay sigma eps β_1&β_2

CNN ES 32 - - - 0.04 0.4815 sgd 0.0 0.35 1e-8 0.99 & 0.999

FedAvg 128 0.0009 0.6132 sgd - - - - - - -

Fed-quant 128 0.0009 0.6132 sgd - - - - - - -

Fed-sparse 128 0.0009 0.6132 sgd - - - - - - -

EvoFed (ours) 64 0.0148 0.3011 sgd 0.0275 0.5239 sgd 0.0824 0.35 1e-8 0.99 & 0.999

Table 5: Detailed information of the CNN architecture used in MNIST & FMNIST experiments
Layer Parameter & Shape (cin, cout, kernal size) & hyper-parameters #

layer1 conv1: 1× 8× 5× 5, stride:(1, 1); padding:0 ×1
avgpool ×1

layer2 conv1: 8× 16× 5× 5, stride:(1, 1); padding:0 ×1

avgpool ×1
fc: 16× 10 ×1

Table 6: Detailed information of the CNN architecture used in CIFAR-10 experiments
Layer Parameter & Shape (cin, cout, kernal size) & hyper-parameters #

layer1 conv1: 3× 64× 5× 5, stride:(1, 1); padding:0 ×1
avgpool ×1

layer2 conv1: 64× 128× 5× 5, stride:(1, 1); padding:0 ×1

avgpool ×1
fc: 128× 256 ×1
fc: 256× 10 ×1

C Convergence Analysis

Assumption 1. For each j, Lj(v) is β-smooth, i.e., ∥∇Lj(u)−∇Lj(v)∥ ≤ β∥u− v∥ for any u, v.

Assumption 2. Variance of the gradient of Dj is bounded, E
[∥∥∥∇Lj(θ)− ∇̃Lj(θ)

∥∥∥2] ≤ B2.

Assumption 3. When perturbation ϵi is sampled from the population distribution pψ , a conditioned
mirrored sampling is applied such that 1

N

∑N
i=1 ϵ

i = 0, 1
M

∑N
i=1

(
ϵi
)2 ≤ G2, 1

N

∑N
i=1

(
ϵi
)3

= 0.

Theorem 1. Given a decreasing learning rate ηt <
1

4αβ , EvoFed has the convergence bound as:

1

HT

T−1∑
t=0

ηtE
[
∥∇L(θt)∥2

]
≤ E [L(θ0)]− L∗

αG2HT
+ 4αβB2

(
1

HT

T−1∑
t=0

η2t

)
where HT =

∑T−1
t=0 ηt, and L∗ represents the minimum value of L(θ).

2

By β-smoothness of L(θ) and taking expectation on both sides, we have

E [L(θt+1)− L(θt)] ≤ E [⟨∇L(θt), θt+1 − θt⟩] +
β

2
E
[
∥θt+1 − θt∥2

]
(1)

Proof. By utilizing the proof of Lemma 1 and recognizing ⟨·, ·⟩ as the inner product operation, we
rewrite the first term E [⟨∇L(θt), θt+1 − θt⟩] as follows:

E [⟨∇L(θt), θt+1 − θt⟩] =
(a)

E

〈∇L(θt),
1

M

M∑
j=1

α

Nσ

N∑
i=1

f(θt,j + σϵit)ϵ
i
t

〉
=
(b)

E

〈∇L(θt),
1

M

M∑
j=1

α

Nσ

N∑
i=1

∥(θt,j + σϵit)− (θ
′

t,j)
i∥2ϵit

〉
= −E

〈∇L(θt),
1

M

M∑
j=1

α

Nσ

N∑
i=1

∥(θt,j + σϵit)

− (θt,j − ηt∇̃Lj(θt,j))∥2ϵit

〉
= −E

〈∇L(θt),
1

M

M∑
j=1

α

Nσ

N∑
i=1

∥(σϵit) + ηt∇̃Lj(θt,j)∥2ϵit

〉
= −E

〈∇L(θt),
1

M

M∑
j=1

α

Nσ

N∑
i=1

(
σ2
(
ϵit
)3

+ 2σ
(
ϵit
)2

ηt∇̃Lj(θt)

+ ϵitη
2
t ∥∇̃Lj(θt)∥2

)〉
≤
(c)

−E

〈∇L(θt),
1

M

M∑
i=j

α

σ

(
2σG2ηt∇̃Lj(θt)

)〉
=
(d)

(−2αηtG
2) E

〈∇L(θt),
1

M

M∑
j=1

∇Lj(θt)

〉

=
(e)

(−αηtG
2)

E
[
∥∇L(θt)∥2

]
+ E

∥ 1

M

M∑
j=1

∇Lj(θt)∥2


−E

∥∇L(θt)−
1

M

M∑
j=1

∇Lj(θt)∥2


︸ ︷︷ ︸
=0



where (a) comes from the Lemma 1, (b) is due to f(θt) = −∥θt−θ
′

t∥2, (c) follows from Assumption
3, (d) is from taking expectation for the mini-batch, and (e) is due to the well-known equality
∥z1 − z2∥2 = ∥z1∥2 + ∥z2∥2 − 2 ⟨z1, z2⟩.

3

On the other hand, we can bound the second term E
[
∥θt+1 − θt∥2

]
as follows:

E
[
∥θt+1 − θt∥2

]
= E


∥∥∥∥∥∥ 1

M

M∑
j=1

α

Nσ

N∑
i=1

f(θt + σϵit)ϵ
i
t

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1

M

M∑
j=1

α

Nσ

N∑
i=1

∥(θt + σϵit)− θ
′

t∥2ϵit

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1

M

M∑
j=1

α

Nσ

N∑
i=1

∥(θt + σϵit)− (θt − ηt∇̃Lj(θt))∥2ϵit

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1

M

M∑
j=1

α

Nσ

N∑
i=1

(
σ2
(
ϵit
)3

+ 2σ
(
ϵit
)2

ηt∇̃Lj(θt) + ϵitη
2
t ∥∇̃Lj(θt)∥2

)∥∥∥∥∥∥
2


≤
(a)

E


∥∥∥∥∥∥ 1

M

M∑
j=1

α

σ

(
2σG2ηt∇̃Lj(θt)

)∥∥∥∥∥∥
2
 = E

(4α2G2η2t)

∥∥∥∥∥∥ 1

M

M∑
j=1

∇̃Lj(θt)

∥∥∥∥∥∥
2


≤
(b)

(8α2G2η2t)E


∥∥∥∥∥∥ 1

M

M∑
j=1

∇Lj(θt)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

M

M∑
j=1

∇Lj(θt)−
1

M

M∑
j=1

∇̃Lj(θt)

∥∥∥∥∥∥
2


≤
(c)

(8α2G2η2t)

E


∥∥∥∥∥∥ 1

M

M∑
j=1

∇Li(θt)

∥∥∥∥∥∥
2
+B2


where (a) comes from Assumption 3, (b) is due to ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, and (c) is by
Assumption 2.

By applying the aforementioned bounds of E [⟨∇L(θt), θt+1 − θt⟩] and E
[
∥θt+1 − θt∥2

]
to (1), we

obtain:

E [L(θt+1)− L(θt)] ≤ E [⟨∇L(θt), θt+1 − θt⟩] +
β

2
E
[
∥θt+1 − θt∥2

]
≤ E

(−αηtG
2)

∥∇L(θt)∥2 + ∥ 1

M

M∑
j=1

∇Lj(θt)∥2


+(4α2βG2η2t)


∥∥∥∥∥∥ 1

M

M∑
j=1

∇Lj(θt)

∥∥∥∥∥∥
2

+B2




= −αηtG
2E
[
∥∇L(θt)∥2

]
+ αηtG

2(4αβηt − 1)E


∥∥∥∥∥∥ 1

M

M∑
j=1

∇Lj(θt)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
≤0 if we choose ηt≤ 1

4αβ

+(4α2βG2η2t)B
2

≤ −αηtG
2E
[
∥∇L(θt)∥2

]
+ (4α2βG2η2t)B

2

4

Eventually, through the telescoping sum for t = 0, 1, ..., T − 1, we obtain

L∗ − E [L(θ0)] ≤
T−1∑
t=0

(−αηtG
2)E

[
∥∇L(θt)∥2

]
+

T−1∑
t=0

(4α2βG2η2t)B
2

where L∗ represents the minimum value of L(θ).

After performing division on both sides by HT =
∑T−1
t=0 ηt, and employing some manipulations, we

obtain
1

HT

T−1∑
t=0

ηtE
[
∥∇L(θt)∥2

]
≤ E [L(θ0)]− L∗

αG2HT
+ 4αβB2

(
1

HT

T−1∑
t=0

η2t

)
(2)

By utilizing a decreasing learning rate (e.g., ηt = η0
1+t), it can be seen that HT =

∑T−1
t=0 ηt → ∞ as

T increases, while
∑T−1
t=0 η2t < ∞. Consequently, the upper bound stated in Equation (2) approaches

0 as T grows, ensuring convergence towards a stationary point.

D Additional Experimental Result
In this section, we delve into the impacts of various parameters on both the training and commu-
nication rate. We first study the role of population size and the number of clients. Subsequently,
we investigate the effect of additional compression techniques, such as sparsification, ranking, and
quantization, on the model’s performance. Lastly, we assess the efficacy of partitioning on clients in
attaining better accuracy, and its relationship with the population size.

D.1 Fitness Vector Sparsification (Top-k Subset Selection)
In this section, we explore the effect of fitness sparsification i.e. selecting top-k fitness values from the
fitness vector of the whole population based on magnitude. We examined the effects of sparsification
on two distinct population sizes: 128 and 1024. Without any sparsification, both populations
demonstrated comparable performance. However, when we select the top-k most fit values, the denser
population (comprising 1024 members) could tolerate a higher degree of sparsification compared to
the less populous one (with 128 members).

To enable a fair and insightful comparison between the two population sizes, our focus was on
assessing performance based on the number of members remaining post-sparsification rather than
directly contrasting sparsification rates. We placed particular emphasis on the best and worst
performing members, as they exert the most significant influence on the model update process in ES.

Fig. 1(a) and (b) visualize the sparsification process for populations of 128 and 1024, respectively,
illustrating the performance decline that occurs as the number of remaining members diminishes.

Fig. 1(c) provides further insights into the performance improvements achieved by selecting top-8
or top-16 members from the initial set of 128 or 1024, as compared to optimizing with the whole
population of 8 or 16.

Our results underline the crucial role that population size plays in exploring optimal solutions,
overshadowing even the significance of compression rate. A larger population allows for broad
exploration that can later be compressed to a smaller number of members without a performance loss.
However, initiating the process with a smaller population cannot achieve equivalent performance due
to the restricted exploration. Therefore, population size is a critical factor affecting the efficacy of
exploration in evolutionary strategies.

0 200 400 600 800 1000
Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Effect of Sparsification (Pop 128)

S8
S16
S32
S64
S128

0 200 400 600 800 1000
Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Effect of Sparsification (Pop 1024)

S8
S16
S32
S64

S128
S256
S512
S1024

0 200 400 600 800 1000
Rounds

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Effect of Sparsification with different Population

S8
Pop=128

S16
Pop=128

S8
Pop=8

S16
Pop=16

(a) Sparse (pop=128) (b) Sparse (pop=1024) (c) Sparse vs Pop

Figure 1: Effect of sparsification on EvoFed

5

D.2 Ranking and Quantization
In this section, we examine the sensitivity of EvoFed to the precise value of fitness. We propose two
techniques to reduce the bits required to represent the fitness vector, thus enhancing compression
without compromising performance. For a clearer understanding of these methods’ impacts, we chose
a population size of 32, which is relatively less populated and has minimal redundancy, highlighting
the insensitivity of EvoFed to precise fitness values.

Fig. 2(a) depicts the effect of quantization with varying bit numbers. The legend represents the
number of bits used for quantization as a numeral followed by the letter Q, where Q32 indicates no
compression and Q1 signifies transmitting a single bit (either 0 or 1) in place of the fitness value.
The result exhibits a marginal performance loss even with Q2, illustrating EvoFed’s insensitivity to
precise fitness values and the potential for further compression gains through quantization.

Fig. 2(b) presents the performance when we transmit the member’s rank within the population instead
of the fitness value. In the legend, the number of samples assigned the same rank is denoted as
a numeral following the letter R; R32 indicates assigning 32 different ranks to all members, and
R1 implies assigning the same rank to every member. This ranking technique, a common practice
in the Evolutionary Strategies literature, is typically employed when fitness values derived from
the environment are noisy, and the quality of the solution can be improved by transmitting the
ranking instead. However, where we have high-quality fitness measures derived from L2 loss, this
technique only slightly improves the performance while reducing compression gains. By assigning the
same rank to neighbouring samples within the fitness ranking, we can further enhance compression
performance.

Comparing ranking and quantization, it is observed that quantization delivers superior performance
with the same number of bits. Additionally, the number of bits used in quantization is independent of
the population size, making quantization a more appropriate approach for compressing fitness values.

0 200 400 600 800 1000

Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Effect of Quantization

Q32
Q16
Q12
Q8
Q4
Q3
Q2
Q1

0 200 400 600 800 1000

Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Effect of Rank on EvoFed

R1
R2
R4
R8
R16
R32

(a) Quantization (pop=32) (b) Rank (pop=32)

Figure 2: Effect of Quantization on EvoFed

D.3 Partitioning

The EvoFed’s partitioning technique, as described in the main text, features a unique attribute that
enhances performance. This technique maintains a fixed number of population samples at each client,
thereby addressing memory limitations on the clients but necessitating increased communication as a
trade-off. Although sparsification results underscore the importance of population size for exploration,
partitioning presents an additional approach that navigates the limitation posed by the compression
rate to improve performance.

Fig. 3 illustrates the impact of partitioning in four scenarios, each with a different population
size. The results emphasize that partitioning is most effective when the clients cannot manage a
sufficient number of samples to attain satisfactory performance. Partitioning enables us to gather
more information from the limited sample size.

Each sub-figure in Fig. 3 includes baselines without partitioning, allowing for the comparison of
improvements achievable either through an increased population size or the use of more partitions
while maintaining a consistent communication rate. The legend of each figure specifies the number
of partitions (the number following the letter k) and the population of the baselines (the number
following the letter p). The volume of information required to be communicated for one round is also
depicted for each method in the legend.

6

Fig. 3 clearly shows that using population sizes of 32 and 128 results in only a marginal improvement
in performance. However, when utilizing population sizes of 8 and 16, a significant and noticeable
improvement can be observed.

0 200 400 600 800 1000

Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)
Effect of Partitioning (Pop = 8)

Part (comm)
k128 (64kb)
k64 (32kb)
k32 (16kb)
k16 (8kb)
k8 (4kb)
k4 (2kb)
k2 (1kb)
k1 (0.5kb)
P32 (2kb)
P128 (8kb)

0 200 400 600 800 1000

Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Effect of Partitioning (Pop = 16)

Part (comm)
K16 (16kb)
K8 (8kb)
K4 (4kb)
K2 (2kb)
K1 (1kb)
P128,K1 (8kb)

(a) EvoFed with Population Size = 8 (b) EvoFed with Population Size = 16

0 200 400 600 800 1000

Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Effect of Partitioning (Pop = 32)

Part (comm)
k8 (16kb)
k4 (8kb)
k2 (4kb)
k1 (2kb)
P128,K1 (8kb)

0 200 400 600 800 1000

Rounds

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Effect of Partitioning (Pop = 128)

Part (comm)
K8 (64kb)
K4 (32kb)
K2 (16kb)
K1 (8kb)

(c) EvoFed with Population Size = 32 (d) EvoFed with Population Size = 128

Figure 3: Effect of partitioning on EvoFed

D.4 Larger Dataset and Model

Additionally, we investigate the efficacy of EvoFed in the context of a larger model and a bigger
dataset. Fig. 4(a) showcases the performance on CIFAR-100 dataset with the same model parameters
as those used in the CIFAR-10 experiment. The results show that EvoFed, although having a
slower convergence rate, achieves higher performance than FedAvg eventually, with a significant
compression rate. Fig. 4(b) illustrates the performance gain on CIFAR-10 dataset when the CNN
layers are doubled. As the experimental result shows, having a larger model generally leads to better
performance with slower convergence. EvoFed follows the same trend as BP in a centralized setting,
suggesting the compression has not been affected by model size. All experiments were conducted
with a population size of 32 and 50 partitions.

0 200 400 600 800 1000
Rounds

0

10

20

30

40

50

G
lo

ba
l A

cc
ur

ac
y(

%
)

CIFAR-100

BP
FedAvg
EvoFed

0 200 400 600 800 1000
Rounds

0

20

40

60

80

G
lo

ba
l A

cc
ur

ac
y(

%
)

CIFAR-10

BP(4-layer)
EvoFed(4-layer)
BP2(2-layer)
EvoFed2(2-layer)

(a) (b)
Figure 4: Larger dataset and Model: (a) shows performance on CIFAR-100, and (b) depicts the impact of
having a larger model on CIFAR-10.

7

	Complexity Analysis
	Model Architecture and Optimization Hyperparameters
	Convergence Analysis
	Additional Experimental Result
	Fitness Vector Sparsification (Top-k Subset Selection)
	Ranking and Quantization
	Partitioning
	Larger Dataset and Model

