
Non-Deterministic Planning for Hyperproperty Verification

Primary Keywords: None

Abstract

Non-deterministic planning aims to find a policy that achieves
a given objective in an environment where actions have uncer-
tain effects, and the agent – potentially – only observes parts
of the current state. Hyperproperties are properties that relate
multiple paths of a system and can, e.g., capture security and
information-flow policies. Popular logics for expressing hy-
perproperties – such as HyperLTL – extend LTL by offering
selective quantification over executions of a system. In this
paper, we show that planning offers a powerful intermediate
language for the automated verification of hyperproperties.
Concretely, we present an algorithm that, given a HyperLTL
verification problem, constructs a non-deterministic multi-
agent planning instance (in the form of a QDec-POMDP)
that, when admitting a plan, implies the satisfaction of the
verification problem. We show that for large fragments of
HyperLTL, the resulting planning instance corresponds to a
classical, FOND, or POND planning problem. We implement
our encoding in a prototype verification tool and report on
encouraging experimental results using off-the-shelf FOND
planners.

1 Introduction
AI planning is the task of finding a policy (aka. plan) that
ensures that a specified goal is reached. In this paper, we
present an exciting new application of planning: the auto-
mated verification of hyperproperties.

Hyperproperties and HyperLTL. Hyperproperties gen-
eralize traditional trace properties by relating multiple exe-
cutions of a system (Clarkson and Schneider 2008). A trace
property – specified, e.g., in LTL – reasons about individ-
ual executions in isolation, which falls short in many appli-
cations. For example, assume we want to specify that the
output of a system (modeled via atomic proposition o) only
depends on some low-security input l and does not leak in-
formation about a secret input h. We cannot specify this as a
trace property in LTL; we need to relate multiple executions
to observe how different inputs impact the output. Hyper-
LTL extends LTL with explicit quantification over execu-
tions (Clarkson et al. 2014), and allows for the specification
of such a property. For example, we can express observa-
tional determinism (Zdancewic and Myers 2003) as follows:

∀π.∀π′. (lπ ↔ lπ′) → G(oπ ↔ oπ′) (OD)

This formula states that on any pair of traces π, π′ with iden-
tical low-security input, the output is (globally) the same. In
other words, the system is deterministic in the low-security
inputs. For non-deterministic systems, (OD) is often too
strict, as any given low-security input might lead to multi-
ple outputs. A relaxed notation – called non-inference (NI)
(McLean 1994) – can be expressed in HyperLTL as follows:

∀π.∃π′.G
(
(oπ ↔ oπ′) ∧ (lπ ↔ lπ′) ∧ ¬hπ′

)
(NI)

That is, for any execution π, there exists another execution
π′ that has the same low-security behavior (via propositions
o, l), but yet has a fixed “dummy” high-security input (in our
case, we require that h is always false, i.e., never holds on
π′). If NI holds, a low-security attacker can not distinguish
any high-security input from the dummy input.

HyperLTL Verification as Planning. Our goal is to au-
tomatically verify that a finite-state system T satisfies a
HyperLTL formula φ. We introduce a novel verification
approach that leverages the advanced methods developed
within the planning community. Concretely, we present a re-
duction that soundly converts a HyperLTL verification prob-
lem into a planning problem. Depending on the HyperLTL
formula, our encoding uses several advanced features sup-
ported by modern planning frameworks, such as uncertain
action effects (non-determinism) (Cimatti et al. 2003), par-
tial observations (Bertoli et al. 2006), and multiple agents.
We show that – by carefully combining these features –
we obtain a planning problem that is sound w.r.t. the Hy-
perLTL semantics: every plan can be translated back into a
validity witness for the original verification problem. As a
consequence, our encoding allows us to utilize mature plan-
ning tools for the verification of complex HyperLTL proper-
ties. We implement our encoding as a prototype and demon-
strate that existing off-the-shelf planners outperform previ-
ous game-based verification methods for HyperLTL.

2 High-Level Overview
Before proceeding with a formal construction, we provide
some high-level intuition of our encoding. In HyperLTL, we
can quantify over the executions of a system (as seen infor-
mally in OD and NI). The overarching idea in our encoding
is to let the planning agent control all existentially quantified
executions, such that any valid plan directly corresponds to
a witness for the existentially quantified executions.

Verification as Planning. As an example, assume we
want to verify that (OD) does not hold on a given system
T , i.e., we want to find concrete executions π, π′ that violate
the body of (OD). We can interpret this as a classical (single-
agent) planning problem: each planning state maintains two
locations in T , one for π and one for π′, and, in each step, the
actions update the locations for π, π′ by moving along the
transitions in T . The planning objective is to construct exe-
cutions for π, π′ that violate (lπ ↔ lπ′) → G(oπ ↔ oπ′).
Any successful plan (i.e., sequence of transitions) then di-
rectly corresponds to concrete paths π, π′ disproving (OD).

Verification as Non-deterministic Planning. Verification
becomes more interesting when the HyperLTL formula con-
tains alternations, as in (NI). Following the above intuition, a
plan should provide a concrete witness for (the existentially
quantified) π′, but – this time – we need to consider all ex-
ecutions for (the universally quantified) π. Our idea is that
we can approximate this behavior by viewing it as a fully-
observable non-deterministic (FOND) planning problem; in-
tuitively, a plan controls the behavior of π′ while the behav-
ior of π is non-deterministic. That is, each action determines
a successor location for π′ but also non-deterministically up-
dates the location of π. The agent’s object is to ensure that
π, π′ satisfy G

(
(oπ ↔ oπ′) ∧ (lπ ↔ lπ′) ∧ ¬hπ′

)
(the

body of NI). Any plan (which is now conditional on the non-
deterministic outcomes) thus defines a concrete execution
for π′, depending on the concrete execution for π.

Verification as Planning Under Partial Observations.
In (NI), π′ is quantified after π, so the action sequence that
defines the behavior of π′ can be based on the behavior of
π. This changes when quantifiers succeed existential quan-
tification, e.g., in a formula of the form ∃π.∀π′. For such
formulas, we follow the same idea as before but ensure that
the actions controlling π are independent of the current state
of π′, i.e., the agent must act under partial information.

This intuition generalizes to full HyperLTL by introduc-
ing one agent for each existential quantifier and carefully
designing the observations of each agent (cf. Section 6).

3 Related Work
Non-deterministic planning provides a powerful interme-
diate language that encompasses problems such as reac-
tive synthesis (Camacho et al. 2018), controller synthesis
in MDPs, epistemic planning (Engesser and Miller 2020),
and generalized planning (Hu and Giacomo 2011). Con-
sequently, many methods and tools have been developed
(Pereira et al. 2022; Messa and Pereira 2023; Camacho et al.
2017; Mokhtari et al. 2021; Geffner and Geffner 2018; Ro-
driguez et al. 2021; Muise, McIlraith, and Beck 2012; Kuter
et al. 2008), with some also supporting partial observations
(Bertoli et al. 2006; Cimatti et al. 2003; Bonet and Geffner
2011). In terms of HyperLTL verification, complete verifi-
cation is possible via expensive automata complementations
(Finkbeiner, Rabe, and Sánchez 2015), or cheaper (but in-
complete) bounded methods (Hsu, Sánchez, and Bonakdar-
pour 2021). For ∀∗∃∗ HyperLTL properties, our encoding
is related to the parity-game-based approach of Beutner

and Finkbeiner (2022), where one player controls existen-
tially quantified executions. Crucially, the size of their game
scales exponentially in the number of quantified executions,
making it impractical for larger instances. In contrast, the
planning-based approach in this paper can describe the prob-
lem compactly (locally) and let the planner determine how to
best explore the state space. Our experimental results show
that this leads to large performance gains in practice (cf. Sec-
tion 7). Moreover, our planning-based encoding is applica-
ble to arbitrary quantifier prefixes and thus provides a verifi-
cation method for the full logic, not only ∀∗∃∗ formulas.

4 Planning Preliminaries
As a basic planning model, we use Qualitative Dec-POMDP
(QDec-POMDP), a general model that encompasses mul-
tiple agents, non-deterministic effects, and partial observa-
tions (Brafman, Shani, and Zilberstein 2013).
Definition 1. A QDec-POMDP is a tuple G = (I, S, S0,
{Ai}, δ, {Ωi}, {ωi}, G), where I = {1, . . . ,m} is a finite
set of agents; S is a finite set of states; and S0 ⊆ S is a
set of initial states; For each i ∈ I , Ai is a finite set of ac-
tions and we define A⃗ = ⊗i∈IAi as the set of joint actions.
δ : S× A⃗→ 2S is a (non-deterministic) transition function;
For each i ∈ I , Ωi is a finite set of observations, and the ob-
servation function ωi : S → Ωi gives i’s local observation;
Lastly, G ⊆ S is a set of goal states.

We write {ai} ∈ A⃗ for the joint action where each agent
i ∈ I chooses action ai. A local policy for an agent i ∈ I , is
a conditional plan that picks an action based on the history
of observations, i.e., a function fi : Ω+

i → Ai (represented,
e.g., as a tree of degree |Ωi| where nodes are labeled with
elements from Ai). A joint policy {fi} assigns each agent
i ∈ I a local policy fi. A finite path p ∈ S+ is compatible
with {fi} if and only if (1) p(0) ∈ S0 (i.e., the path starts in
an initial state), and (2) for every 0 ≤ k < |p|, p(k + 1) ∈
δ(p(k), {ai}) where ai = fi(ωi(p(0)) · · ·ωi(p(k))). That
is, in every step, we compute the joint action {ai}, where
each ai is determined by policy fi based on the past ob-
servations made by i on the prefix p(0) · · · p(k). We write
Exec({fi}) ⊆ S+ for the set of all {fi}-compatible paths.

The objective of the agents is to reach a goal state in G.
Following Cimatti et al. (2003), we distinguish between dif-
ferent levels of reachability. A policy is a weak plan if some
p ∈ Exec({fi}) reaches a state in G, i.e., {fi} can reach the
goal provided the non-determinism is resolved favorably. A
policy is a strong plan if there exists a N ∈ N such that ev-
ery p ∈ Exec({fi}) with |p| ≥ N reaches G, i.e., the goal is
guaranteed to be reached, irrespective of non-deterministic
outcomes. Finally, a policy is a strong cyclic plan if, for ev-
ery p ∈ Exec({fi}), either p reaches G or there exists some
p′ ∈ Exec({fi}) that extends p (i.e., p is a prefix of p′) and
reaches G.1

1A strong cyclic plan is one that always preserves the possibil-
ity of reaching the goal, i.e., at every point, the non-determinism
can be resolved favorably such that the goal is reached. Our def-
inition expresses exactly this: either p already reaches G or some
extension of p can reach the goal. This definition is equivalent to
the one of Cimatti et al. (2003).

5 Hyperproperties and HyperLTL
We assume that AP is a fixed set of atomic propositions.

Transition Systems. As the basic system model, we use
finite-state transition systems (TSs), which are tuples T =
(L, linit ,D, κ, ℓ) where L is a finite set of locations (we use
“locations” to distinguish them from the “states” in a plan-
ning domain), linit ∈ L is an initial location, D is a finite
set of directions, κ : L × D → L is the transition function,
and ℓ : L → 2AP labels each location with an evaluation
of the APs. We use explicit directions in order to uniquely
identify successor locations; we can easily model a tradi-
tional transition function κ : L → 2L \ {∅} using direc-
tions. A path in T is an infinite sequence p ∈ Lω such that
p(0) = linit , and for every k ∈ N, there exists some d ∈ D
s.t. p(k + 1) = κ(p(k), d). We define Paths(T) ⊆ Lω as
the set of all paths in T .

HyperLTL. As the basic specification language for hyper-
properties, we use HyperLTL, an extension of LTL with ex-
plicit quantification over (execution) paths (Clarkson et al.
2014). Let V = {π, π′, . . .} be a set of path variables. Hy-
perLTL formulas are generated by the following grammar

ψ := aπ | ψ ∧ ψ | ¬ψ | ψUψ | Xψ
φ := Qπ. φ | ψ

where a ∈ AP , π ∈ V , and Q ∈ {∀,∃}. We use the
usual derived boolean and temporal constants and operators
true, false,∨,→,↔,Fψ := true Uψ,Gψ := ¬F¬ψ.

Given a TS T = (L, linit ,D, κ, ℓ), we evaluate a Hyper-
LTL formula in the context of a path assignment Π : V ⇀
Lω (mapping path variables to paths) as follows:

Π, i |=T aπ iff a ∈ ℓ
(
Π(π)(i)

)
Π, i |=T ψ1 ∧ ψ2 iff Π, i |=T ψ1 and Π, i |=T ψ2

Π, i |=T ¬ψ iff Π, i ̸|=T ψ

Π, i |=T Xψ iff Π, i+ 1 |=T ψ

Π, i |=T ψ1 Uψ2 iff ∃j ≥ i.Π, j |=T ψ2 and
∀i ≤ k < j.Π, k |=T ψ1

Π, i |=T Qπ. φ iff Qp ∈ Paths(T).Π[π 7→ p], i |=T φ

The atomic formula aπ holds whenever a holds in the cur-
rent position i on the path bound to π (as given by ℓ).
Boolean and temporal operators are evaluated as expected
by updating the current evaluation position i, and quantifi-
cation adds paths to Π. We refer to Finkbeiner (2023) for
details. We say T satisfies φ, written T |= φ, if {}, 0 |=T φ,
where {} denotes the path assignment with empty domain.

6 Verification via Planning
We want to automatically verify that T |= φ. To this end, we
present a novel encoding into a planning problem, thus lever-
aging the extensive research and tool development within
the planning community. As already outlined in Section 2,
our main idea is to interpret existential quantification in φ as
being resolved by an agent that picks transitions in T to con-
struct a path. Throughout this section, we assume that T =
(L, linit ,D, κ, ℓ) is the fixed TS and φ = Q1π1 . . .Qnπn. ψ
the fixed HyperLTL formula over path variables π1, . . . , πn.

DFAs and Reachability Specifications. A deterministic
finite automaton (DFA) over some alphabet Σ is a tuple
A = (Q, q0, ϱ, F) where Q is a finite set of states, q0 ∈ Q is
an initial state, ϱ : Q × Σ → Q is a deterministic transition
function, and F ⊆ Q is a set of accepting states. An infinite
word u ∈ Σω is accepted by A if the unique run eventually
reaches some state in F . We say φ is a Reachability Hyper-
LTL formula if ψ (the LTL-like body of φ) is recognized by
a DFA, i.e., some DFA Aψ = (Qψ, q0,ψ, ϱψ, Fψ) over al-
phabet 2AP×{π1,...,πn} accepts exactly those infinite words
that satisfy ψ (recall that the atoms in the LTL-like formula
ψ have the form aπi

∈ AP × {π1, . . . , πn}).

6.1 Encoding as a Planning Problem
We write V∃ = {πi | Qi = ∃} for existentially quantified
path variables in φ, and V∀ for universally quantified ones.
Definition 2. Define Greach

T ,φ := (I, S, S0, {Ai}, δ, {Ωi},
{ωi}, G) where I := {i | πi ∈ V∃}; S := {⟨l1, . . . , ln, q⟩ |
q ∈ Qψ ∧ ∀j. lj ∈ L}; and S0 := {⟨linit , . . . , linit , q0,ψ⟩}.
For each i ∈ I , we set Ai := D and define the transitions by

δ(⟨l1, . . . , ln, q⟩, ({dj}πj∈V∃)) :={
⟨κ(l1, d1), . . . , κ(ln, dn), q′⟩ | ∀πj ∈ V∀. dj ∈ D ∧

q′ = ϱψ(q,
⋃n
j=1{(a, πj) | a ∈ ℓ(lj)}

}
,

Ωi := {⟨l1, . . . , li⟩ | ∀j ≤ i. lj ∈ L}; ωi(⟨l1, . . . , ln, q⟩) :=
⟨l1, . . . , li⟩; and G := {⟨l1, . . . , ln, q⟩ | q ∈ Fψ}.

Let us step through this definition step-by-step. As al-
ready hinted in Section 2, we add one agent i for each ex-
istentially qualified path πi ∈ V∃. Each state has the form
⟨l1, . . . , ln, q⟩ and tracks a current location for each of the
paths (where lj ∈ L is the current location for path πj),
and q tracks the current state of Aψ . Intuitively, the plan-
ning problem simulates π1, . . . , πn by keeping track of their
current location (l1, . . . , ln), and letting the actions chosen
by the agents (for existentially quantified paths) or the non-
determinism (for universally quantified paths) fix the next
location. We start each πj in the initial location linit and
start the run of Aψ in the initial state q0,ψ . The actions of
each agent then directly correspond to directions in T . When
given a joint action {dj}πj∈V∃ (i.e., a direction for each ex-
istentially quantified path), the transition formula considers
all possible directions for universally quantified paths and
updates each location lj based on the direction dj . Existen-
tially quantified paths thus follow the direction selected by
the respective agent, and universally quantified ones follow
a non-deterministically chosen direction. In each step, we
also update the state of Aψ: For each 1 ≤ j ≤ n, we collect
all APs that hold in the current location ℓ(lj) and index them
with πj , thus obtaining a letter in 2AP×{π1,...,πn} which we
feed to the transition function of Aψ . As argued in Section 2,
each agent i controlling πi ∈ V∃ may only observe the traces
π1, . . . , πi quantified before πi, so the observation set Ωi of
agent i consist exactly of states of the form ⟨l1, . . . , li⟩ and
the observation function ωi projects each state to the observ-
able locations. Lastly, the goal consists of all states in which
the automaton has reached one of Aψ’s accepting states.

Theorem 1. Assume φ is a reachability HyperLTL formula.
If Greach

T ,φ admits a strong plan, then T |= φ.

Proof Sketch. We can use the policies in a strong plan for
Greach
T ,φ to construct Skolem functions for existentially quan-

tified paths in φ. The full proof is complex and provided in
Appendix A.

Factored Representation. In Definition 2, we used an
explicit-state (flat) representation of the problem with |L|n ∗
|Qψ| states. In practice, many planning formats (e.g.,
STRIPS, PDDL, SAS) allow for a factored description of
the state space, using roughly n · |L| + |Qψ| many fluents
that track the current location of each path individually. The
possibility of using a factored representation is a core mo-
tivation for using planning tools for HyperLTL verification.
In Section 7, we will show that this factored representation
also leads to performance improvements over the SOTA.

6.2 Encoding for Safety Properties
In the construction above, we assumed the φ denotes a
reachability property. We can also handle the case in which
φ denotes a safety HyperLTL formula, i.e., ψ expresses that
“something bad may never happen”. In the safety case, we
again model ψ as a DFA Aψ = (Qψ, q0,ψ, ϱψ, Fψ), but now
say that an infinite word is accepted if it never visits a state
in Fψ . As an example, (NI) is a safety HyperLTL formula.

Different from reachability properties, safety properties
reason about infinite executions (and not only finite pre-
fixes thereof), so phasing it as a planning problem requires
modifications. First, we add special sink states swin and
slose , and mark swin as the unique goal state. From any
state ⟨l1, . . . , ln, q⟩ where q ∈ Fψ , we then deterministically
move to slose . Conversely, from any state ⟨l1, . . . , ln, q⟩
where q ̸∈ Fψ , we extend the transitions in Definition 2
with an additional non-deterministic transition to swin . The
agents can thus never ensure a visit to swin , but a strong
cyclic plan guarantees that we never visit a state in Fψ . We
denote the resulting QDec-POMPD with Gsafe

T ,φ ; a full de-
scription can be found in Appendix B.
Theorem 2. Assume φ is a safety HyperLTL property. If
Gsafe
T ,φ admits a strong cyclic plan, then T |= φ.

Full HyperLTL. Our construction can also be extended
to handle full HyperLTL by reducing to planning problems
with temporal goals specified in LTL(f) (Patrizi et al. 2011;
Camacho et al. 2017; Camacho and McIlraith 2019). We re-
strict our constriction to the case of reachability and safety
properties as (1) this suffices for almost all properties of in-
terest, and (2) it allows us to employ automated planners that
yield strong (cyclic) plans for non-temporal objectives.

6.3 Easier Planning Problems
In general, our encoding yields a planning problem that
combines multiple agents, non-determinism, and partial ob-
servations. In many situations, however, the resulting prob-
lem does not require all these features: (1) For ∃∗ prop-
erties, the planning problem is classical, i.e., consists of a
single agent, deterministic actions, and full information. (2)

∃∃ ∀∃

Model Size PG Size PDDL tPG tHyPlan tPG tHyPlan

BAKERY3 31016.4 16.0/8.0/75.7 11.9 1.21 13.2 0.96
BAKERY5 614.6 16.2/7.7/19.0 2.10 0.68 3.52 0.73
MUTATION 1807.5 16.7/78.5/9.8 4.26 0.72 6.75 0.43
NI C 1370.3 15.2/7.7/13.5 3.40 0.42 4.41 0.41
NI I 948.3 17.0/8.5/104.3 4.22 4.31 5.56 5.11
NRP C 1688.3 15.8/7.7/23.0 6.89 0.48 8.37 0.75
NRP I 1018.6 15.8/7.7/22.2 7.21 0.36 7.45 0.47
SNARK CON 105854.7 15.2/7.7/192.1 27.02 7.15 39.82 8.17
SNARK SEQ 17415.6 16.0/8.0/32.4 13.66 0.65 11.56 5.15

Table 1: We compare HyPlanwith a parity-game-based en-
coding on ∃∃ and ∀∃ properties. We list the time for both
tools in seconds (averaged over 10 random formulas). Addi-
tionally, we give the average size of the PG, and the number
of predicates/actions/objects in the PDDL encoding.

For ∀∗∃∗ properties (e.g., NI), the problem involves a single
agent acting under full information (FOND-planning). (3)
For ∀∗∃∗∀∗ properties, the problem involves a single agent
acting under partial observations (POND-planning).

7 Implementation and Experiments
We have implemented our encoding for ∀∗∃∗ HyperLTL for-
mulas in a prototype called HyPlan. Our tool produces
FOND planning instance in an extension of PDDL, featur-
ing (oneof p1 ... pn) expressions in action effects;
A format widely supported by many FOND planners.

We compare HyPlan against the parity-game (PG)
based encoding for ∀∗∃∗ properties (Beutner and Finkbeiner
2022). For our experiments, we collect the 10 NuSMV
models from Hsu, Sánchez, and Bonakdarpour (2021) and
generate random formulas of the form ∃π.∃π′.Fψ and
∀π.∃π′.Gψ where ψ is a temporal-operator-free formula.
As remarked in Section 6.3, for the ∃∃ properties HyPlan
produces classical planning problems (which we solve us-
ing Scorpion (Seipp and Helmert 2018)), whereas the ∀∃
properties yield FOND planning problems (which we solve
using the FOND planner MyND (Mattmüller et al. 2010)).
We report the average size of the PG and PDDL planning
problem, as well as the time taken for the ∃∃ and ∀∃ prop-
erties in Table 1. As remarked in Section 3, the size of the
PG is exponential, whereas the PDDL description is small
and leaves the exact exploration strategy to the planner. Con-
sequently, we observe that an existing (off-the-shelf) solver
easily outperforms the game-based approach.

8 Conclusion
We have presented a novel application of non-deterministic
planning: the verification of hyperproperties. Our encoding
is applicable to formulas with arbitrary quantifier prefixes
(beyond ∀∗∃∗) and often yields classical or FOND plan-
ning instances that can be handled by existing mature plan-
ners. Our preliminary experiments show that off-the-shelf
planners constitute an efficient verification method that out-
performs existing game-based approaches. Moreover, any
further progress into the development of non-deterministic
planners (for which our work provides even more incentive)
will directly improve our verification pipeline.

References
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong planning under partial observability. Artif. Intell.,
170(4-5).
Beutner, R.; and Finkbeiner, B. 2022. Prophecy Variables
for Hyperproperty Verification. In Computer Security Foun-
dations Symposium, CSF 2022.
Bonet, B.; and Geffner, H. 2011. Planning under Partial
Observability by Classical Replanning: Theory and Exper-
iments. In International Joint Conference on Artificial Intel-
ligence, IJCAI 2011.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Quali-
tative Planning under Partial Observability in Multi-Agent
Domains. In Conference on Artificial Intelligence, AAAI
2013.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A.
2018. Finite LTL Synthesis as Planning. In International
Conference on Automated Planning and Scheduling, ICAPS
2018.
Camacho, A.; and McIlraith, S. A. 2019. Strong Fully Ob-
servable Non-Deterministic Planning with LTL and LTLf
Goals. In International Joint Conference on Artificial In-
telligence, IJCAI 2019.
Camacho, A.; Triantafillou, E.; Muise, C. J.; Baier, J. A.;
and McIlraith, S. A. 2017. Non-Deterministic Planning with
Temporally Extended Goals: LTL over Finite and Infinite
Traces. In Conference on Artificial Intelligence, AAAI 2017.
Cimatti, A.; Clarke, E. M.; Giunchiglia, E.; Giunchiglia, F.;
Pistore, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A.
2002. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In International Conference on Computer Aided
Verification, CAV 2002.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artif. Intell., 147(1-2).
Clarkson, M. R.; Finkbeiner, B.; Koleini, M.; Micinski,
K. K.; Rabe, M. N.; and Sánchez, C. 2014. Temporal Logics
for Hyperproperties. In International Conference on Princi-
ples of Security and Trust, POST 2014.
Clarkson, M. R.; and Schneider, F. B. 2008. Hyperproper-
ties. In Computer Security Foundations Symposium, CSF
2008.
Engesser, T.; and Miller, T. 2020. Implicit Coordination
Using FOND Planning. In Conference on Artificial Intel-
ligence, AAAI 2020.
Finkbeiner, B. 2023. Logics and Algorithms for Hyperprop-
erties. ACM SIGLOG News, 10(2).
Finkbeiner, B.; Rabe, M. N.; and Sánchez, C. 2015. Algo-
rithms for Model Checking HyperLTL and HyperCTL∗. In
International Conference on Computer Aided Verification,
CAV 2015.
Geffner, T.; and Geffner, H. 2018. Compact Policies
for Fully Observable Non-Deterministic Planning as SAT.
In International Conference on Automated Planning and
Scheduling, ICAPS 2018.

Hsu, T.; Sánchez, C.; and Bonakdarpour, B. 2021. Bounded
Model Checking for Hyperproperties. In International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2021.
Hu, Y.; and Giacomo, G. D. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
International Joint Conference on Artificial Intelligence, IJ-
CAI 2011.
Kuter, U.; Nau, D. S.; Reisner, E.; and Goldman, R. P. 2008.
Using Classical Planners to Solve Nondeterministic Plan-
ning Problems. In International Conference on Automated
Planning and Scheduling, ICAPS 2008.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern Database Heuristics for Fully Observable
Nondeterministic Planning. In International Conference on
Automated Planning and Scheduling, ICAPS 2010.
McLean, J. 1994. A general theory of composition for trace
sets closed under selective interleaving functions. In Sym-
posium on Research in Security and Privacy, SP 1994.
Messa, F.; and Pereira, A. G. 2023. A Best-First Search
Algorithm for FOND Planning and Heuristic Functions to
Optimize Decompressed Solution Size. In International
Conference on Automated Planning and Scheduling, ICAPS
2023.
Mokhtari, V.; Sathya, A. S.; Tsiogkas, N.; and Decré, W.
2021. Safe-Planner: A Single-Outcome Replanner for Com-
puting Strong Cyclic Policies in Fully Observable Non-
Deterministic Domains. In International Conference on Ad-
vanced Robotics, ICAR 2021.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved Non-Deterministic Planning by Exploiting State Rel-
evance. In International Conference on Automated Planning
and Scheduling, ICAPS 2012.
Patrizi, F.; Lipovetzky, N.; Giacomo, G. D.; and Geffner, H.
2011. Computing Infinite Plans for LTL Goals Using a Clas-
sical Planner. In International Joint Conference on Artificial
Intelligence, IJCAI 2011.
Pereira, R. F.; Pereira, A. G.; Messa, F.; and Giacomo, G. D.
2022. Iterative Depth-First Search for FOND Planning.
In International Conference on Automated Planning and
Scheduling, ICAPS 2022.
Rodriguez, I. D.; Bonet, B.; Sardiña, S.; and Geffner, H.
2021. Flexible FOND Planning with Explicit Fairness As-
sumptions. In International Conference on Automated Plan-
ning and Scheduling, ICAPS 2021.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning. J.
Artif. Intell. Res., 62: 535–577.
Shoenfield, J. R. 2018. Mathematical logic. CRC Press.
van Dijk, T. 2018. Oink: An Implementation and Evalua-
tion of Modern Parity Game Solvers. In International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2018.
Zdancewic, S.; and Myers, A. C. 2003. Observational De-
terminism for Concurrent Program Security. In Computer
Security Foundations Workshop, CSFW 2003.

Appendix Overview
We try to keep this appendix as small as possible and provide
as many details as possible in the main body. Concretely, we
give a detailed proof of Theorem 1 (in Appendix A); give
a formal definition of the planning instance highlighted in
Section 6.2 (in Appendix B); and give details on our experi-
mental setup (in Appendix C).

A Correctness Proof
Theorem 1. Assume φ is a reachability HyperLTL formula.
If Greach

T ,φ admits a strong plan, then T |= φ.

Proof. Assume that Greach
T ,φ admits a strong plan. We as-

sumed that

φ = Q1π1 . . .Qnπn. ψ

is the HyperLTL formula. For each 1 ≤ i ≤ n with Qi =
∃, we want to find a concrete path pi ∈ Paths(T) for πi.
This path may depend (in typical first-order semantics) on all
concrete paths chosen for π1, . . . , πi−1, i.e., those quantified
before πi.

Skolem Functions For HyperLTL. As usual in first-order
logic, we show the existence of such paths by giving a
Skolem function

ξi : Paths(T)i−1 → Paths(T)

that, given the i − 1 paths for earlier quantifiers
(for π1, . . . , πi−1), outputs a concrete choice for πi
(Shoenfield 2018). We are interested in a family of
Skolem functions {ξi}πi∈V∃ for each existentially quan-
tified path. Given {ξi}πi∈V∃ , we say a path combination
(p1, . . . , pn) ∈ Paths(T)n is permitted by {ξi}πi∈V∃ , iff
pi = ξi(p1, . . . , pi−1) whenever πi ∈ V∃. That is, for
all existentially quantified paths, we use the Skolem func-
tion but choose arbitrary paths for all universally quantified
ones. We say {ξi}πi∈V∃ is winning if, for all path combina-
tions (p1, . . . , pn) that are permitted by {ξi}πi∈V∃ , we have
[π1 7→ p1, . . . , πn 7→ pn], 0 |=T ψ, i.e., the body of φ is
satisfied when binding pi to πi for each 1 ≤ i ≤ n. Using
standard first-order techniques it is easy to see that if some
winning family of Skolem functions exists, then T |= φ
(Shoenfield 2018).

Skolem Function Construction. We construct the
Skolem functions {ξi}πi∈V∃ using the fact that Greach

T ,φ
admits a strong plan. Let {fi}πi∈V∃ be a joint policy that
is a strong plan. Here, each fi is a function fi : Ω+

i → D
where Ωi = {⟨l1, . . . , li⟩ | l1, . . . , li ∈ L} (cf. Definition 2).
Recall that being a strong plan means that there exists a
N ∈ N, such that all p ∈ Exec({fi}) with |p| ≥ N reaches
some state in G.

The intuition is to construct ξi from fi by querying it one
prefixes. The Skolem function ξi will see i − 1 complete
paths in T and outputs an entire path. In contrast, fi observes
the locations of the first i − 1 paths, i.e., has only seen a
prefix of the final paths, and needs to fix a direction. We
will use fi to construct ξi by iteratively querying it on those
prefixes. Given p1, . . . , pi−i ∈ Paths(T), we define the path

ξi(p1, . . . , pi−i) ∈ Paths(T) pointwise as follows: Initially,
we set

ξi(p1, . . . , pi−i)(0) = linit ,

i.e., the initial location of T . For each k ∈ N, we then define
ξi(p1, . . . , pi−i)(k + 1) as

κ
(
ξi(p1, . . . , pi−i)(k),

fi
(
⟨p1(0), . . . , pi−1(0), ξi(p1, . . . , pi−i)(0)⟩
⟨p1(1), . . . , pi−1(1), ξi(p1, . . . , pi−i)(1)⟩

· · ·

⟨p1(k), . . . , pi−1(k), ξi(p1, . . . , pi−i)(k)⟩
))

Let us unpack this definition: To define the k + 1th step
on ξi(p1, . . . , pi−i), we need to transition from the kth step
(ξi(p1, . . . , pi−i)(k)) along some direction. This direction
will be chosen by the local policy fi : Ω+

i → D, so we
need to construct the prefix in Ω+

i , where each element in
Ωi has the form ⟨l1, . . . , li⟩ (cf. Definition 2). The idea is
that this prefix consists exactly of the states ⟨l1, . . . , li⟩ that
ξi(p1, . . . , pi−i) – together with the fixed paths p1, . . . , pi−1

– has traversed so far. That is, even though we already know
the entire paths p1, . . . , pi−1, we acts as if we only knew the
prefix up to step k.

By following this construction, we obtain a path
ξi(p1, . . . , pi−i) ∈ Paths(T), and have thus defined ξi.

Skolem Functions Are Winning. It remains to argue
that {ξi}πi∈V∃ is winning. For this, let (p1, . . . , pn) ∈
Paths(T)n be a path combination that is permitted by
{ξi}πi∈V∃ . We need to argue that [π1 7→ p1, . . . , πn 7→
pn], 0 |=T ψ. Let q0q1 · · · ∈ Qωψ be the unique run of Aψ on
paths (p1, . . . , pn), which we can define by

q0 = q0,ψ

qk+1 = ϱψ
(
qk,

n⋃
j=1

{(a, πj) | a ∈ ℓ(pj(k))}
)
.

By construction of Aψ , [π1 7→ p1, . . . , πn 7→ pn], 0 |=T ψ
is now equivalent to the fact that the unique run q0q1 · · · is
accepted by Aψ , i.e., eventually visits a state in Fψ . To show
that this is indeed the case, we show that

⟨p1(0), . . . , pn(0), q0⟩⟨p1(1), . . . , pn(1), q1⟩ · · · ∈ Sω

is a (for simplicity, infinite) path in Greach
T ,φ that is allowed

by the joint policy {fi}πi∈V∃ , i.e., every prefix is contained
in Exec({fi}πi∈V∃). The idea here is that (p1, . . . , pn) are
permitted by our skolem functions {ξi}πi∈V∃ . For all ex-
istentially quantified paths πi ∈ V∃, pi (which was fixed
by ξi) now follows exactly the directions chose by fi. Like-
wise, Greach

T ,φ does not restrict the directions for universally
quantified paths πi ∈ V∀, as their direction is chosen non-
deterministically (cf. Definition 2). The automaton states
q0q1 · · · are defined exactly as in the transitions of Greach

T ,φ .
The paths permitted by Skolem functions, are thus also al-
lowed by the joint policy in Greach

T ,φ . As the above is a path

under policy {fi}πi∈V∃ and we assumed that {fi}πi∈V∃
is a strong plan, at some timepoint M ∈ N, we get that
⟨p1(M), . . . , pn(M), qM ⟩ ∈ G which, by definition of G
(cf. Definition 2), is equivalent to qM ∈ Fψ . This already
implies that q0q1 · · · is accepting (i.e., visits an accepting
state), which, in turn, implies that [π1 7→ p1, . . . , πn 7→
pn], 0 |=T ψ. As this holds for all (p1, . . . , πn) permitted
by {ξi}πi∈V∃ , we get that {ξi}πi∈V∃ is a winning family of
Skolem functions, and so T |= φ as required.

A.1 Completeness
Note that the reverse of Theorem 1 does, in general, not hold.
That is, the absence of a plan in Greach

T ,φ does not imply that
T ̸|= φ. Intuitively a plan in Greach

T ,φ can only decide on
actions based on the previous execution, whereas the Hy-
perLTL semantics allows existentially quantified paths to be
based on the entire (future) executions. This incompleteness
is unavoidable: any complete verification will suffer from
the non-elementary hardness of the HyperLTL model check-
ing problem (Clarkson et al. 2014). Instead, our method is
extremely useful for proving that a HyperLTL formula holds.

The parity-game based encoding from Beutner and
Finkbeiner (2022) suffers from the same incompleteness. In
fact, it is easy to see that our encoding is “as complete” as
theirs, i.e., for any ∀∗∃∗ formula, Greach

T ,φ admits a plan iff the
parity game constructed in (Beutner and Finkbeiner 2022)
has a winning strategy. However, compared to (Beutner and
Finkbeiner 2022) our encoding comes with a number of big
advantages: First (and most importantly), our encoding is
applicable to arbitrary quantifier prefixes whereas (Beutner
and Finkbeiner 2022) can only tackle ∀∗∃∗ formulas. And
second, even on the ∀∗∃∗ formulas that can be handled by
both encoding, the factored representation in the planning
instance allows for much faster verification (cf. Section 7),
and thus paves the way towards verification of larger sys-
tems.

B Full Construction For Safety HyperLTL
In this section, we provide a formal construction for the
verification of safety HyperLTL formulas. We again as-
sume that T = (L, linit ,D, κ, ℓ) is a fixed TS and φ =
Q1π1 . . .Qnπn. ψ is a fixed safety HyperLTL formula over
paths π1, . . . , πn. We let Aψ = (Qψ, q0,ψ, ϱψ, Fψ) over
2AP×{π1,...,πn} be a DFA that accepts exactly the words
that safety ψ in a safety semantics. That is, a word u ∈
(2AP×{π1,...,πn})ω is satisfies ψ iff the unique run of Aψ on
u only visits states not inQψ \Fψ , i.e., never visits a state in
Fψ . Different from the reachability specifications, the safety
property refers to the entire infinite execution.

Definition 3. Define Gsafe
T ,φ := (I, S, S0, {Ai}, δ, {Ωi},

{ωi}, G) where

I := {i | πi ∈ V∃}
S := {⟨l1, . . . , ln, q⟩ | q ∈ Qψ ∧ ∀j. sj ∈ L} ∪ {swin , slose},
S0 := {⟨linit , . . . , linit , q0,ψ⟩}

For each i ∈ I , we set Ai = D and define the transitions by

case analysis as follows

δ(swin , ({dj}πj∈V∃)) := swin

δ(slose , ({dj}πj∈V∃)) := slose

δ(⟨l1, . . . , ln, q⟩, ({dj}πj∈V∃)) := slose when q ∈ Fψ

δ(⟨l1, . . . , ln, q⟩, ({dj}πj∈V∃)) :={
⟨κ(s1, d1), . . . , κ(sn, dn), q′⟩ | ∀πj ∈ V∀. dj ∈ D ∧

q′ = ϱψ(q,

n⋃
j=1

{(a, πj) | a ∈ ℓ(lj)}
}
∪

{swin} when q ̸∈ Fψ

Lastly, we define

Ωi := {⟨l1, . . . , li⟩ | ∀j. sj ∈ L}
ωi(⟨l1, . . . , ln, q⟩) := ⟨l1, . . . , li⟩

G := {swin}

as in Definition 2.

In large parts, the definition is similar to Definition 2 and
shares the same common idea. We only discuss the changes.
Firstly, we add two new states swin and slose . The objective
of the agents is to reach swin and avoid slose . For both of
these states, we add a self-loop, so once either of the two is
reached, it is never left.

In the transition from regular states ⟨l1, . . . , ln, q⟩ we then
distinguish if q ∈ Fψ . If q ∈ Fψ so the automaton has reach
a bad state and will reject by deterministically transitioning
to slose ; from this state the agents can never reach the target
state swin . On the other hand, if q ̸∈ Fψ , we progress similar
as in Definition 2. The only difference is that we add swin

as an additional non-deterministic outcome. As long as the
agent manage to stay within states where q ̸∈ Fψ , some non-
deterministic outcome will thus reach the winning state. A
strong cylic plan always ensures the possibility to win and
thus always stays within such good states.

Theorem 2. Assume φ is a safety HyperLTL property. If
Gsafe
T ,φ admits a strong cyclic plan, then T |= φ.

Proof. The proof is similar to Theorem 1. We use the same
construction for the skolem functions of each existentially
quantified path. Following the intuition behind Definition 3,
the resulting paths are such that, within the state-space of
Gsafe
T ,φ any path only visits states of the form ⟨l1, . . . , ln, q⟩

with q ̸∈ Fψ or swin ; if some path would reach a state
⟨l1, . . . , ln, q⟩ with q ̸∈ Fψ the policy would not be win-
ning. In particular, the automaton that tracks the acceptance
of π1, . . . , πn only remains in states outside of Fψ , show-
ing that the skolem functions indeed show that T |= φ as
required.

C Details on Experiments
HyPlan supports models written in the NuSMV specifica-
tion language (Cimatti et al. 2002). Internally, we translate
the symbolic representation to an explicit-state, and sub-
sequently construct a factored planning representation in

PDDL. Our experiments in Section 7 were conducted on
an MacBook Pro with M1 Pro CPU and 32GB of mem-
ory. To solve the parity game constructed using the approach
from Beutner and Finkbeiner (2022), we use oink (van
Dijk 2018), a modern SOTA parity game solver. The sup-
plementary materials contain the source code of HyPlan
and instructions on how to build it, run it, and reproduce the
experiments.

We will make HyPlan and all experiments publicly
available after the double-blind review process.

