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Abstract
Modern machine learning usually involves predictors in the overparameterised setting (number of
trained parameters greater than dataset size), and their training yields not only good performance
on training data, but also good generalisation capacity. This phenomenon challenges many theo-
retical results, and remains an open problem. To reach a better understanding, we provide novel
generalisation bounds involving gradient terms. To do so, we combine the PAC-Bayes toolbox
with Poincaré and Log-Sobolev inequalities, avoiding an explicit dependency on the dimension of
the predictor space. Our results highlight the positive influence of flat minima (being minima with
a neighbourhood nearly minimising the learning problem as well) on generalisation performance,
involving directly the benefits of the optimisation phase.
Keywords: Generalisation Bounds, PAC-Bayes, Flat Minima, Poincaré, Log-Sobolev Inequalities

1. Introduction

Understanding generalisation in modern machine learning problems has been a major challenge
in learning theory. The goal here is to upper-bound the so-called generalisation error, which is
the gap between the population and empirical risks, RD(h) − R̂Sm(h). Here, h ∈ Rd represents
the parameters of a predictor, RD(h) := Ez∼D[ℓ(h, z)] denotes the population risk, D is an un-
known data distribution, ℓ is a loss function, R̂Sm(h) :=

1
m

∑m
i=1 ℓ(h, zi) is the empirical risk, and

Sm := {z1, . . . , zm} is a dataset in which each zi is independent and identically distributed (i.i.d.)
with respect to D.

Dating back to Hochreiter and Schmidhuber (1997), it has been hypothesised that the notion of
‘flatness’ (or sometimes equivalently referred to as ‘sharpness’) is closely linked to the generalisa-
tion error: among the minima found by the learning algorithm, the flatter the minimum, the lower
the generalisation error. While the initial concept of flatness was (vaguely) defined through low Kol-
mogorov complexity, there is no globally accepted definition of flatness. Therefore, several notions
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of flatness have been considered, typically based on the second-order derivatives of the empirical
risk around the local minimum found by the learning algorithm, such as trace(∇2

hR̂Sm(h)) (see e.g.
Jastrzebski et al., 2017; Wen et al., 2023).

While there have been several attempts to link some form of flatness to generalisation in a
mathematically rigorous manner (Neyshabur et al., 2017; Petzka et al., 2021; Yue et al., 2023;
Andriushchenko et al., 2023), mainly with the framework of ‘sharpness aware minimisation’ (Foret
et al., 2021), it has been shown recently that flat minima do not always imply good generalisation. In
fact, there are scenarios such that the flattest minima result in the worst generalisation performance
compared to non-flat ones (Wen et al., 2023).

In this study, we aim to develop novel links between flatness and generalisation error from
a PAC-Bayesian perspective (Shawe-Taylor and Williamson, 1997; McAllester, 1999); see also
(Guedj, 2019; Hellström et al., 2023; Alquier, 2024) for an introduction. While existing work in-
volving PAC-Bayes and flatness either uses PAC-Bayes bounds as complexity measures (Neyshabur
et al., 2017; Jiang et al., 2020; Dziugaite et al., 2020; Viallard et al., 2024a) or derives bounds for
specific algorithms (Negrea et al., 2019; Neu, 2021), our aim is to derive general PAC-Bayes bounds
involving flatness through gradient norm. Denoting by Q, the probability distribution of the algo-
rithm’s output h, we identify sufficient conditions on Q such that flatness always implies good
generalisation. More precisely, we make the following contributions:

• We show that, when Q satisfies the Poincaré inequality and a technical condition that we
identify, we can obtain a ‘time-uniform estimation’ PAC-Bayes bound that mainly contains
two terms:

(i) The flatness term: either Ez∼D Eh∼Q[∥∇hℓ(h, z)∥2] or Eh∼Q[
1
m

∑m
i=1 ∥∇hℓ(h, zi)∥2].

The latter is directly linked to the Hessian of the loss ℓ, due to the connection between
the Fisher information and the Hessian of the loss (Bickel and Doksum, 2015). For
instance, under certain conditions, it can be shown that the trace is linked to gradients
as trace(∇2

hR̂Sm(h)) =
2
m

∑m
i=1 ∥∇hℓ(h, zi)∥2 (Wen et al., 2023, Lemma 4.1).

(ii) The classical PAC-Bayesian complexity term KL(Q,P), where KL denotes the Kullback-
Leibler divergence and P is data-independent ‘prior’ distribution.

• We further analyse the term KL(Q,P). We show that when Q is a Gibbs distribution, i.e.
dQ(h) ∝ exp(−γR̂Sm(h))dP(h) for some γ > 0 and P satisfies a log-Sobolev inequality, the
generalisation error can be controlled solely by the term: γ2cLS(P)Eh∼Q[∥∇hR̂Sm(h)∥2],
where cLS(P) denotes the log-Sobolev constant of the prior P.

• We go beyond KL divergence to link flat minima to deterministic predictors (i.e. when Q
is a Dirac distribution) through a novel Wasserstein-based generalisation bound for gradient
Lipschitz loss functions.

We provide a numerical assessment of the technical condition underlying our main result, suggest-
ing that it is suitable for neural networks on classification tasks, confirming the relevance of our
bounds to better understand the generalisation ability of such models. Our results further shed light
on the impact of the flatness of minima on generalisation error: when the learning algorithm en-
sures a sufficiently regular distribution over the parameters, the generalisation error can be directly
controlled by the flatness of the region found by the algorithm.
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2. Preliminaries

Framework. We consider a predictor set H ⊆ Rd equipped with a norm ∥·∥, a data space Z and the
space of distributions M(H) over H. We also consider a loss function ℓ : H×Z → R. We assume
that we have an i.i.d. dataset S = (zi)i≥1 ∈ ZN with associated unknown data distribution D. For
each m ≥ 1, we define Sm := {z1, . . . , zm}. In PAC-Bayes learning, we construct a data-driven
posterior distribution Q ∈ M(H) with respect to a prior distribution P . To assess the generalisa-
tion ability of a predictor h ∈ H, we define the population risk to be RD(h) := Ez∼D[ℓ(h, z)] and
for each m, its empirical counterpart as R̂Sm(h) :=

1
m

∑m
i=1 ℓ(h, zi). We also define the expected

and empirical risks for Q ∈ M(H) as RD(Q) := Eh∼Q[RD(h)] and R̂Sm(Q) := Eh∼Q[R̂Sm(h)].
PAC-Bayes bounds usually aim to control the expected generalisation error for each dataset sizem,
i.e. RD(Q)− R̂Sm(Q).

Background on Poincaré and log-Sobolev inequalities. In this work, we exploit Poincaré and
log-Sobolev inequalities in the PAC-Bayes framework. We first recall their definitions: for a fixed
distribution Q ∈ M(H), we define the Sobolev space of order 1 on Rd as follows:

H1(Q) :=
{
f ∈ L2(Q) ∩D1(Rd) | ∥∇f∥ ∈ L2(Q)

}
,

where D1(Rd) denotes the set of derivable functions f : Rd → R and L2(Q) is the space of square-
integrable function. In other words, H1(Q) is the set of functions that are square-integrable, with
their gradient’s norm also being square-integrable.

Definition 1 (Poincaré inequality) A distribution Q satisfies a Poincaré inequality with constant
cP (Q) if for all function f ∈ H1(Q) we have

Var
h∼Q

(f(h)) ≤ cP (Q) E
h∼Q

[
∥∇hf(h)∥2

]
,

where Varh∼Q(f(h)) = Eh∼Q[f(h)−Eh∼Q[f(h)]]
2 is the variance of f with respect to Q. We then

say that Q is Poincaré with constant cP (Q), or that Q is Poinc(cP ).

Definition 2 (Log-Sobolev inequality) A distribution Q satisfies a log-Sobolev inequality with
constant cLS(Q) if for all function f ∈ H1(Q) we have

Ent
h∼Q

(f2(h)) := E
h∼Q

[
f2(h) log

(
f2(h)

Eh∼Q [f2(h)]

)]
≤ cLS(Q) E

h∼Q

[
∥∇hf(h)∥2

]
,

where the term Enth∼Q(f
2(h)) is the entropy of f2. We then say that Q is log-Sobolev with constant

cLS(Q), or that Q is L-Sob(cLS).

The class of Gaussian distributions is an important particular case of distributions satisfying both
Poincaré and log-Sobolev inequalities; this is the subject of Proposition 3.

Proposition 3 (Gross (1975); Brascamp and Lieb (1976); Beckner (1989)) Given a distribution
Q = N (µ,Σ), where µ is the mean and Σ is the covariance matrix in Rd. Then, for any f ∈ H1(Q):

Ent
h∼Q

(f2(h)) ≤ 2 E
h∼Q

[⟨Σ∇hf(h),∇hf(h)⟩] , and Var
h∼Q

(f(h)) ≤ E
h∼Q

[⟨Σ∇hf(h),∇hf(h)⟩] .

Thus, the distribution Q is L-Sob(cLS) with constant cLS(Q) = 2∥Σ∥op and is also Poinc(cLS)
with constant cLS(Q) = ∥Σ∥op, where ∥ · ∥op denotes the operator norm.
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In Proposition 3, the first inequality can be derived from the classical log-Sobolev inequality for
N (0, Id) stated in Gross (1975), with a change of variable. Similarly, the Poincaré inequality can
be obtained through a change of variable from the Poincaré inequality for N (0, Id) which is a
particular case of the Brascamp-Lieb inequality for log-concave probability measures (Brascamp
and Lieb, 1976) and is stated explicitly in Beckner (1989, Theorem 1).
We now focus on specific posterior distributions called Gibbs posteriors, or Gibbs distributions.
Given a fixed loss ℓ : H× Z → R, a prior P ∈ M(H) and a dataset Sm, the Gibbs posterior Qγ

Sm

is defined such that dQγ
Sm

(h) ∝ exp(−γR̂Sm(h))dP (h), where γ > 0 is an inverse temperature.
Gibbs posteriors are a class of closed-form solutions for relaxation of Catoni (2007, Theorem 1.2.6)
stated, for instance, in Alquier et al. (2016, Theorem 4.1). Proposition 4 shows that when the prior
and the loss satisfy a few properties, then the associated Gibbs posterior is L-Sob(cLS).

Proposition 4 Assume that P is a probability measure on H such that dP (h) ∝ exp(−V (h))
with V : H → R a smooth function such that Hess(V ) ⪰ 2

cLS(P)
Id.1 Assume that ℓ(h, z) =

ℓ1(h, z) + ℓ2(h, z) with ℓ1 convex, twice differentiable and ℓ2 bounded. Then for any γ > 0, the
Gibbs posterior Qγ

Sm
is L-Sob(cLS) with constant cLS(Q

γ
Sm

) = cLS(P) exp (4∥ℓ2∥∞).

Proposition 4 applies, e.g. when P is a Gaussian prior P = N (µP,ΣP). Notice that in this case
cLS(P) = 2∥ΣP∥op. This property is a straightforward application of Chafaı̈ (2004, Corollary 2.1)
with Guionnet and Zegarlinksi (2003, Property 2.6) and is stated in Appendix A for completeness.
Finally, notice that satisfying a log-Sobolev inequality is stronger than satisfying a Poincaré one.
This is stated for instance in Ledoux (2006, Proposition 2.1) and properly recalled in Appendix A.

3. Reaching a flat minimum allows Poincaré posteriors to generalise well

In this section, we consider posterior distributions Q that are Poinc(cP). This assumption covers
the important case of Gaussian measures (Proposition 3) as well as all measures satisfying a log-
Sobolev inequality (Proposition 15).

3.1. Time-uniform estimation PAC-Bayes bounds for heavy-tailed losses

We now focus on time-uniform estimation PAC-Bayes bounds, i.e. bounds such that there exists C ⊆
M(H), and α > 0 with probability at least 1− δ, for all Q ∈ C, and m > 0, there exists εm > 0 s.t.

RD(Q) ≤ α

m
[KL(Q,P) + log(1/δ)] + εm.

Here, ’time-uniform’ means that the bound holds with probability 1− δ for all m, and ’estimation’
means that we directly control RD instead of the generalisation gap RD − R̂Sm . In particular, if
supm≥m0

εm ≤ ε for some small ε > 0, we interpret a time-uniform estimation bound as a transi-
tory fast rate, i.e. a bound decaying for all m ≥ m0 below 2ε at speed 1/m. Such a property is of
interest to understand why deep neural networks rapidly acquire a good generalisation ability. An-
other fundamental difference between time-uniform PAC-Bayes bounds (which recently appeared
in Haddouche and Guedj, 2023a; Chugg et al., 2023) is that they are linked to almost surely conver-
gence while classical PAC-Bayes results are related to in-probability convergence. We elaborate on

1. The notation A ⪰ B means that A−B is a semi-definite positive matrix.
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this fundamental difference in Appendix A.3.
To obtain time-uniform estimation bounds, we exploit the notion of flat minima, i.e. a minimum
whose neighbourhood almost minimises the loss, and this property can be attained in an overpa-
rameterised setting such as neural networks once the optimisation phase has been performed. We
exploit this flatness property through the gradient norm ∥∇hℓ(h, z)∥ of the loss w.r.t. the predictor h
for any z. To our knowledge, this is the first attempt to do so, as Gat et al. (2022) focus on gradients
with respect to the data ∇zℓ(h, z).

We first state in Assumption 5 a key assumption of our work, which intricates the data distribu-
tion D with the posterior of interest Q.

Assumption 5 We then say that Q ∈ M(H) is quadratically self-bounded w.r.t. the loss function
ℓ : H×Z → R and the constant C > 0 (namely QSB(ℓ, C)) if

E
z∼D

[(
E
h∼Q

[ℓ(h, z)]

)2
]
≤ CRD(Q) = C E

z∼D

[
E
h∼Q

[ℓ(h, z)]

]
.

Assumption 5 is a relaxation of boundedness, as if ℓ : H × Z → [0, C] then it is QSB(ℓ, C). It
is an alternative to the bounded expected variance assumption in anytime-valid PAC-Bayes bounds
(Haddouche and Guedj, 2023a; Chugg et al., 2023). A key issue with their boundedness assumption
is that it must hold for all posteriors, including those providing poor generalisation performance.
Our QSB assumption avoids this by intricately linking the properties of the distribution D, the loss
ℓ and the posterior Q. Such a design is in line with the conclusions of the recent work of Gastpar
et al. (2024), inviting to derive generalisation bounds valid for specific pairs (Q,D) (rather than
uniformly valid for all such pairs) to reach sharper results. Finally, we interpret C as a contraction
constant that attenuates, on average, the local expansion (governed by variances of Q and D) of the
loss around the mean of Q. To illustrate the applicability of QSB condition beyond bounded losses,
we give a concrete example of an unbounded loss satisfying it.

Example 1 Assume that for any z ∈ Z , the loss ℓ(·, z) is unbounded and L-Lipschitz, that we are
in the realisable case, i.e. there exists h∗ ∈ H such that ∀z ∈ Z , ℓ(h∗, z) = 0, and that Q is an ar-
bitrary distribution with mean mQ and standard deviation σQ both bounded by a certain K. Then,
since we have ℓ(h, z) = ℓ(h, z)− ℓ(h∗, z), and by Lipschitzness and Cauchy–Schwarz’s inequality,

for any z ∈ Z , we can deduce that we have Eh∼Q[ℓ(h, z)]
2 ≤

(
Eh∼Q[

√
L∥h− h∗∥ℓ(h, z)]

)2
≤

LEh∼Q[∥h − h∗∥]Eh∼Q[ℓ(h, z)]. Finally, note that by Jensen’s inequality and the bias-variance

decomposition, we have Eh∼Q[∥h − h∗∥] ≤
√
Eh∼Q[∥h− h∗∥2] =

√
σ2Q + ∥mQ − h∗∥2 ≤√

K2 + (K + ∥h∗∥)2. This ensures that the QSB condition holds in this case with constant C =
L
√
K2 + (K + ∥h∗∥)2.

We are now able to state the main result of this section.

Theorem 6 For anyC>0, for any λ such that 2
C>λ>0, for any data-free prior P ∈ M(H), for any

loss function ℓ : H×Z → R+, and for any δ ∈ (0, 1], we have, with probability at least 1− δ over
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the sample S, for allm ∈ N∗, for all Q being Poinc(cP), QSB(ℓ, C), and ℓ(·, z) ∈ H1(Q) for all z,

RD(Q) ≤ 1

1− λC
2

(
R̂Sm(Q) +

KL(Q,P) + log(1/δ)

λm

)
+

λ

2− λC
cP (Q) E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
.

Theorem 6 provides a time-uniform estimation bound with α = 2
λ(2−λC) and with the threshold

ε(Q,Sm) = 1
2−λC

(
2R̂Sm(Q) + λcP(Q)Ez∼D[Eh∼Q(∥∇hℓ(h, z)∥2)]

)
for any m ∈ N∗. Achiev-

ing a small εm (and thus approaching a fast convergence rate) requires two conditions: R̂Sm(Q) ≈ 0
and expected gradients to vanish. While the first condition is often satisfied by deep neural networks,
the second holds if a flat minimum has been reached through the optimisation process. Then, set-
ting λ = 1/C ensures a transitory fast-rate bound of 1/m for any m ∈ N∗. Otherwise, for a fixed m,
setting λ = m−α/C with α ∈ [0; 1/2] allows adapting the rate with respect to the behaviour of the
gradients. In the case of constant gradients, we recover a convergence rate of 1/

√
m, at the cost of

the time-uniform property, matching Alquier et al. (2016, Theorem 4.1).

On the role of flat minima in PAC-Bayes learning. We highlight that the gradient term in Theo-
rem 6 is derived with respect to a predictor h ∈ H and not z ∈ Z which is, to our knowledge, novel
in PAC-Bayes. This is particularly impacting, as ∇hℓ(h, z) is the gradient involved in learning pro-
cedures and, when averaged over Q, provides information about the nature of the minima reached
and its neighbourhood; we elaborate further in Appendix A.4. Theorem 6 suggests that, to attain
good generalisation ability, the mean of Q must be close to two minima: (i) on R̂Sm(Q) in order to
make R̂Sm(Q) small, and (ii) on Ez∼D[∥∇hℓ(h, z)∥2] to ensure the gradients are small. The vari-
ance of Q must fit the flatness of these minima to reduce the expected terms on the right-hand side
of Theorem 6. Finally, the KL term invites, for Gaussian distributions, considering high variances
and flat minima to maintain a small value for the bound.

A focus onC. Taking λ = 1/C in Theorem 6 reduces the influence of the prior distribution P while
amplifying the gradient term. Therefore, a small C is desirable when working with flat minima to
mitigate the effects of a poorly chosen prior. Having a small C is reachable in practice: we show in
Section 6, for a classification task on MNIST, that the QSB assumption holds with C strictly smaller
than 1 when considering neural networks.

Proof of Theorem 6 We start from Chugg et al. (2023, Corollary 17) instantiated with a single λ, an
i.i.d. dataset and a prior P. With probability at least 1− δ, for all Q ∈ M(H) and m ∈ N∗, we have

RD(Q) ≤ R̂Sm(Q) +
KL(Q,P) + log(1/δ)

λm
+
λ

2

(
E
h∼Q

[
E

z∼D
[ℓ(h, z)2]

])
,

where z ∼ D is independent from S . We study the term Eh∼Q[Ez∼D[ℓ(h, z)
2]] on the right-hand

side. We first apply Fubini’s theorem to obtain

E
h∼Q

[
E

z∼D
[ℓ(h, z)2]

]
= E

z∼D

[
E
h∼Q

[ℓ(h, z)2]

]
= E

z∼D

[
Var
h∼Q

(ℓ(h, z)) +

(
E
h∼Q

[ℓ(h, z)]

)2
]
.
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As for any z ∈ Z , we have ℓ(·, z) ∈ H1(Q), we apply Poincaré inequality to obtain

E
h∼Q

[
E

z∼D
[ℓ(h, z)2]

]
≤ E

z∼D

[
cP (Q) E

h∼Q

(
∥∇hℓ(h, z)∥2

)
+

(
E
h∼Q

[ℓ(h, z)]

)2
]
.

Using that Q is QSB(ℓ, C) and re-organising the terms gives

RD(Q) ≤ 1

1− λC
2

(
R̂Sm(Q) +

KL(Q,P) + log(1/δ)

λm

)
+

λ

2− λC
cP (Q) E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
.

When the QSB assumption is not verified, it is still possible to exploit the benefit of flat minima in
PAC-Bayes at the cost of an upper bound on RD(Q) and a supplementary Poincaré assumption on
the data distribution D.

Corollary 7 For any C>0, for any λ such that 2
C>λ>0, for any data-free prior P ∈ M(H), for

any loss function ℓ : H × Z → R+ such that ℓ(h, ·) is C1 almost everywhere on Z , any δ ∈ (0, 1],
if the data distribution D is Poinc(cP), with probability at least 1 − δ over the sample S , for
any m ∈ N∗, any posterior Q being Poinc(cP) with RD(Q) ≤ C and such that for any z ∈ Z ,
ℓ(·, z) ∈ H1(Q):

RD(Q) ≤ 1

1− λC
2

(
R̂Sm(Q) +

KL(Q,P) + log(1/δ)

λm

)
+

λ

2− λC

(
cP (Q) E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
+ cP (D) E

z∼D

(∥∥∥∥ E
h∼Q

[∇zℓ(h, z)]

∥∥∥∥2
))

.

The proof is deferred to Appendix C.1. Corollary 7 states that if Q reaches a flat minimum (meaning
∥∇hℓ(h, z)∥ is small) and this minimum is robust to the training dataset (meaning ∥∇zℓ(h, z)∥ is
small), then a time-uniform estimation bound is attainable with small εm, requiring only an upper
bound on RD(Q). The assumption of small ∥∇zℓ(h, z)∥ can be attained with algorithms such as
Sharpness-Aware Minimisation (Foret et al., 2021). Another lead would be to focus on specific
predictors where this gradient is directly controlled, as in Lipschitz neural networks training or in
adversarial robustness training (Madry et al., 2018; Li et al., 2019).
Corollary 7 holds when D is Poinc(cP), encompassing the case of Gaussian mixtures (Schlicht-
ing, 2019), which can approximate any smooth density (as recalled in Gat et al., 2022). However,
the Poincaré constant of a general mixture is unknown, and the upper bound of Schlichting (2019)
scales with the number of components, involving potentially high χ2 divergences.

Comparison with Gat et al. (2022). We compare Corollary 7 with Gat et al. (2022, Theorems 3.5
and 3.6). First, our result holds under the assumption that the distribution D follows a Poincaré
inequality, which is strictly less restrictive than assuming a log-Sobolev inequality (Proposition 15).
Second, they assume a bounded loss and focus solely on classification tasks satisfying a technical
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assumption (see their Lemma 3.3) while ours holds for any learning problem at the sole assumption
of a bounded RD(Q), allowing the loss ℓ to be unbounded (and non-negative). To conclude their
proof, Gat et al. (2022) use a uniform bound on Ez∼D[∥∇zℓ(h, z)∥] in their Theorem 3.5 to have a
tractable bound, diminishing the benefits of gradient norm. While they address this limitation in Gat
et al. (2022, Theorem 3.6), the explicit influence of the gradient norm appears within an exponential
moment on the losses (attenuated by a logarithm), averaged w.r.t. the data-free prior P. Thus, the
associated gradients have no apparent reason to be small, and their result cannot be linked to flat
minima. In contrast, Corollary 7 involves expected gradients w.r.t. the posterior Q, which may reach
flat minima.

3.2. Towards fully empirical bound for gradient-Lipschitz functions

In this section, we assume that the gradient ∇hℓ(h, z) is G-Lipschitz for any z ∈ Z , which is a
classical assumption in optimisation, especially when considering non-convex objectives for SGD
(Ghadimi and Lan, 2013; Panageas and Piliouras, 2017; Garrigos and Gower, 2023). A large portion
of high-probability PAC-Bayes bounds are fully empirical, meaning that the right-hand side of the
bounds can be computed. This has numerous advantages, including in-training numerical evaluation
of the bound and the development of novel PAC-Bayesian algorithms that minimises such empiri-
cal bounds; see (Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021; Viallard et al., 2023b) among
others. However, Theorem 6 and Corollary 7 are not fully empirical, as they involve terms such as
Ez∼D[Eh∼Q[∥∇hℓ(h, z)∥2]] and Ez∼D[∥Eh∼Q[∇zℓ(h, z)]∥2], which involves an expectation over
z ∼ D and are thus not computable in practice. As a result, they lack the desirable properties of
fully empirical bounds; we address this issue in Theorem 8.

Theorem 8 For any C1, C2, c > 0, for any data-free prior P ∈ M(H), for any loss function
ℓ : H × Z → R+ being C2 and for any δ ∈ (0, 1], we have, with probability at least 1 − δ over
the sample S , for all m ∈ N∗, for all Q being Poinc(cP)=c, QSB(ℓ, C1), QSB

(
∥∇hℓ∥2, C2

)
, and

ℓ(·, z) ∈ H1(Q), and ∥∇hℓ(·, z)∥2 ∈ H1(Q) for all z,

RD(Q) ≤ 2R̂Sm(Q) +
2c

C1
E
h∼Q

[
1

m

m∑
i=1

∥∇hℓ(h, zi)∥2
]

+ 2

(
C1 + c

4cG2 + C2

C1

)
KL(Q,P) + log(2/δ)

m
.

The proof is deferred to Appendix C.2. We showed that to attain fast rates, the QSB assumption
must hold for both the loss and its gradient. We are then able to derive an empirical generalisation
bound, involving both empirical loss and gradients.

As Theorem 8 is fully empirical, it can be transformed into a generalisation metric, i.e. an em-
pirical function of the predictor whose increase or decrease is correlated to the increase or decrease
of the generalisation ability of the predictor. In the case of PAC-Bayes, the generalisation metric
comes from the generalisation bound. Such an idea has been exploited recently (Neyshabur et al.,
2017; Jiang et al., 2020; Dziugaite et al., 2020; Viallard et al., 2024a) to show that flatness of the
empirical risk was correlated to generalisation. In particular, from R̂S(Q), Neyshabur et al. (2017)
derived a notion of sharpness, stated in Equation (1), which gives information about the flatness of

8
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the reached minima for any Q = N (µQ, σ
2Id). This notion is defined by

E
ν∼N (0,σ2Id)

[
R̂Sm(µQ + ν)− R̂Sm(µQ)

]
. (1)

Sharpness is then the averaged risk of a predictor drawn under N (µQ, σ
2Id) w.r.t. its mean Q.

Theorem 8 enhance this notion of sharpness with empirical gradients when Q is QSB(ℓ, C1):

Sharp σ2

C1

(Q) := E
ν∼N (0,σ2Id)

[
2
[
R̂Sm(µQ+ν)−R̂Sm(µQ)

]
+
σ2

C1

[
ĜSm(µQ+ν)−ĜSm(µQ)

]]
, (2)

where ĜSm(h) =
1
m

∑m
i=1 ∥∇hℓ(h, zi)∥2. This gradient term can be seen as the norm of an empir-

ical Fisher information, linked to the second-order moment derivative. Thus, Equation (2) involves
a notion of flatness on both the loss and its gradient, unlike Equation (1). For the sake of clarity, we
specialise Theorem 8 in Corollary 9 to Gaussian distributions, introducing this notion of sharpness.

Corollary 9 For any C1, C2 > 0, for any data-free prior P = N (µP, σ
2Id) with fixed variance

σ2 > 0, for any loss function ℓ : H × Z → R+ being C2 for and any δ ∈ (0, 1], we have, with
probability at least 1 − δ over the sample S , for all m ∈ N∗, for all Q = N (µQ, σ

2Id) being
QSB(ℓ, C1), QSB

(
∥∇hℓ∥2, C2

)
and ℓ(·, z) ∈ H1(Q), and ∥∇hℓ(·, z)∥2 ∈ H1(Q) for all z,

RD(Q) ≤ 2R̂Sm(µQ) + ĜSm(µQ) + Sharp σ2

C1

(Q) +O
(
KL(Q,P) + log(2/δ)

m

)
.

4. Generalisation ability of Gibbs distributions with a log-Sobolev prior

A limitation of the results in Section 3 is that the KL divergence term remains generally uncon-
trolled, as its formulation depends on the nature of P and Q. While a closed form exists for Gaussian
distributions, a natural question is whether it is possible to explicitly control the KL term for another
class of distributions. Following the approach of Catoni (2007), we focus in this section on Gibbs
posteriors, which naturally arise in PAC-Bayes through the use of tools from statistical physics. We
show that log-Sobolev inequalities allow us to control the KL divergence of such distributions with
respect to their priors.

Controlling the KL divergence when Q is a Gibbs posterior. Lemma 10 exploits the fact that
the KL divergence can be expressed as an entropy with respect to the prior distribution P. It shows
that the KL divergence of the Gibbs posterior Qγ

Sm
is upper-bounded by gradient terms, provided

that the prior P satisfies a log-Sobolev inequality.

Lemma 10 For any γ > 0, for any m ∈ N∗, for any data-free prior P ∈ M(H) being
L-Sob(cLS), for any loss function ℓ : H×Z → R+ such that ℓ(·, z) ∈ H1(P) for any z, we have

KL
(
Qγ

Sm
,P
)
≤ γ2cLS(P)

4
E

h∼Qγ
Sm

[
∥∇hR̂Sm(h)∥2

]
.

The proof is deferred to Appendix C.3. The key message of this lemma is that for Gibbs posteriors,
the expansion of the KL divergence is controlled by an expected empirical gradient term. Note
in this case that, while the KL divergence has an explicit formulation, it requires calculating the
exponential moment Eh∼P[exp(−γR̂Sm(h))] which is costly in practice. In contrast, we only need
to estimate a second-order moment over Qγ

Sm
.

9
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Generalisation ability of Gibbs posteriors. When Gibbs posteriors are involved, the KL diver-
gence can be controlled by a gradient term. An ideal approach, as in Section 3, would be to involve
a Poincaré inequality. However, Gibbs posteriors do not necessarily satisfy a Poincaré inequality as
in Section 3, so we need to make supplementary assumptions about the loss.

Theorem 11 We first have C > 0, γ > 0, and a data-free prior P ∈ M(H) being L-Sob(cLS).
(i) For any loss function ℓ : H × Z → [0, 1] and for any δ ∈ (0, 1], with probability at least 1 − δ
over the sample S, for any m ∈ N∗, we have

RD(Q
γ
Sm

) ≤ 2

(
R̂Sm(Q

γ
Sm

) +
γ2cLS(P)

4m
E

h∼Qγ
Sm

[
∥∇hR̂Sm(h)∥2

]
+

log(1/δ)

m

)
.

(ii) For any loss function ℓ and prior P satisfying the conditions of Proposition 4. Then, for any
2
C > λ > 0, with probability at least 1 − δ over the sample S, for all m ∈ N∗, assuming ℓ(·, z) ∈
H1(Qγ

Sm
) and that Qγ

Sm
is QSB(C), we have

RD(Q
γ
Sm

) ≤ 1

1− λC
2

(
R̂Sm(Q

γ
Sm

) +
γ2cLS(P)

4λm
E

h∼Qγ
Sm

[
∥∇hR̂Sm(h)∥2

]
+

log(1/δ)

λm

)

+
λe4∥ℓ2∥∞cLS(P)

4− 2λC
E

z∼D

[
E

h∼Qγ
Sm

(
∥∇hℓ(h, z)∥2

)]
.

The proof is deferred to Appendix C.4. Note that we could have also derived a result analogous
to Corollary 7 at the cost of an additional Poincaré assumption on D. The influence of the inverse
temperature γ is quadratic: this is the price to pay to fit the dataset and reduce the influence of the
prior. This dependency is attenuated by a gradient term, which is small if a flat minimum on the
R̂Sm(h) has been reached. This suggests that in the case of Gibbs posteriors with a log-Sobolev
prior, reaching a flat minimum on R̂Sm(h) controls not only R̂Sm(Q), but also the KL divergence
and this last property is not reachable when considering Poincaré distributions. The other gradient
term comes from Section 3 and requires to be close to a flat minimum on RD(h) to attain fast rates.

Comparison to literature. To our knowledge, existing bounds for Gibbs posteriors do not involve
the gradient norm of the posterior. For instance, Zhang (2006, Theorem 4.2) involves an exponential
moment with respect to the prior distribution, while Kuzborskij et al. (2019, Equation 8) consider
flatness through ellipsoids around a minimum, controlling it via an ’effective dimension’, which
is a function of the eigenvalue of the Hessian of the theoretical risk. Finally, Rivasplata et al.
(2020, Equation 6) propose a bound for bounded losses, removing the KL divergence when Gibbs
posteriors are considered, with a rate of O(1/

√
m+γ/m). Assuming the Gibbs posterior reaches a flat

minimum such that γ Eh∼Qγ
Sm

[∥∇hR̂Sm(h)∥2] ≤ 1, then Theorem 11 yields a bound of magnitude

O(R̂Sm(Q
γ
Sm

) + 1/m+ γ/m), representing a transitory fast rate with threshold R̂Sm(Q
γ
Sm

).

5. On the benefits of the gradient norm in Wasserstein PAC-Bayes learning

In Sections 3 and 4, we provided various generalisation bounds, benefiting from flat minima. How-
ever, our results involve a KL divergence, implying absolute continuity of Q with respect to P,
making them incompatible with deterministic predictors (obtained with Dirac distributions). Then

10
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the following question arises: can we benefit from the desirable properties of flat minima in a PAC-
Bayes bound valid for deterministic predictors? To address this issue, a recent line of work has
emerged, focusing on integral probability metrics, with particular attention to the 1-Wasserstein
distance (Amit et al., 2022; Haddouche and Guedj, 2023b; Viallard et al., 2023b, 2024b); see Def-
inition 16. The idea behind these works is to replace the change of measure inequality (Csiszár,
1975; Donsker and Varadhan, 1976) with the Kantorovich-Rubinstein duality (Villani, 2009), trad-
ing a KL divergence for a Wasserstein distance. This not only yields sound theoretical bounds
but also PAC-Bayes algorithms for deterministic predictors and Lipschitz neural networks (Viallard
et al., 2023b). We go further here by obtaining the first PAC-Bayesian bound directly involving a
2-Wasserstein distance, trading a Lipschitz assumption for a gradient-Lipschitz one, which is well-
suited for optimisation. To do so, we derive a novel change of measure inequality tailored for the
condition (⋆) described below, which is a relaxation of the gradient Lipschitz assumption.

f : H → R satisfies (⋆) ⇔ ∃G > 0, ∀(a, a′) ∈ H2, ⟨∇f(·), a− a′⟩ is G∥a− a′∥-Lipschitz.

Theorem 12 For any predictor set H with finite diameterD > 0, and for any function f : H → R
satisfying (⋆), we have for all distributions P ∈ M(H) and Q ∈ M(H)

E
h∼Q

[f(h)] ≤ G

2
W 2

2 (Q,P) + E
h∼P

[f(h)] +D E
h∼Q

[∥∇f(h)∥].

The proof is deferred to Appendix C.5. Theorem 12 shows that, when gradients are Lipschitz, it is
possible to obtain a duality formula involving the gradient of the considered function, at the cost of
a linear dependency on the diameter D of H. Theorem 12 is also linked to the change of measure
inequality (Csiszár, 1975; Donsker and Varadhan, 1976) when the prior distribution satisfies a log-
Sobolev inequality. This link is detailed in Corollary 13.

Corollary 13 For any distribution P being L-Sob(cLS) such that dP(h) ∝ exp(−V (h))dh, with
V being C2, for any R > 0, for any function f on the centred ball B(0, R) of radius R satisfying
the (⋆) assumption, and for any distribution Q ∈ M(H), we have:

E
h∼Q

[f (PR(h))] ≤
GcLS(P)

4
KL(Q,P) + E

h∼P
[f (PR(h))] + 2R E

h∼Q
[∥∇hf (PR(h))∥] ,

where PR denotes the Euclidean projection onto B(0, R).

The proof is deferred to Appendix C.6. Corollary 13 involves a KL divergence and an Euclidean
predictor space H = Rd. This comes at the cost of approximating Q and P by, respectively, PR#Q
and PR#P. Thus, the radius R is now a hyperparameter balancing the tradeoff between the quality
of our approximations and the looseness of the bound (if the gradient norm is large). A notable
strength is that the smoothness assumption is relaxed to apply only within the centred ball B(0, R).

From Theorem 12, we now derive a novel generalisation bound allowing deterministic predictors.

Theorem 14 Let δ ∈ (0, 1) and P ∈ M(H) a data-free prior. Assume H has a finite diameter
D > 0, for any loss function ℓ : H × Z → R+ and any m ∈ N∗, the generalisation gap h 7→

11
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RD(h) − R̂Sm(h) satisfies (⋆). Assume that Eh∼P Ez∼D[ℓ(h, z)
2] ≤ σ2, then the following holds

with probability at least 1− δ, for any m > 0 and any Q ∈ M(H):

RD(Q) ≤ R̂Sm(Q) +
G

2
W 2

2 (Q,P) +

√
2σ2 log

(
1
δ

)
m

+D E
h∼Q

(∥∥∥∇hRD(h)−∇hR̂Sm(h)
∥∥∥) .

The proof is deferred to Appendix C.7. Theorem 14 is not the first generalisation bound to involve
a 2-Wasserstein distance (Lugosi and Neu, 2022, 2023). However, these results require infinitely
smooth loss functions. Additionally, the results from Amit et al. (2022); Haddouche and Guedj
(2023b); Viallard et al. (2023b), which use the 1-Wasserstein, can be directly relaxed on bounds
involving the 2-Wasserstein, while still requiring a Lipschitz loss. In contrast, our result holds for
any nonnegative loss whom the generalisation gap h → RD(h) − R̂Sm(h), satisfies (⋆), being a
relaxation of gradient-Lipschitz assumption. Theorem 14 involves a rate of 1/

√
m, as we have to

control the generalisation gap over P. Another restriction of our result, compared to previous ones,
is that it holds for H with a finite diameter.

Can Theorem 14 go to zero with large m? In its current form, it is unclear whether Theorem 14
goes to zero with large m, as the Wasserstein distance and the gradient term, have no explicit
convergence rate in m. Concerning the gradient term, it has been shown that, if we consider Q to
be a Dirac in the output of SGD after T iterations, then according to Li and Liu (2022, Theorem
3), when the intrinsic noise of SGD is subgaussian, the output wT ∈ Rd of SGD satisfies with high
probability: ∥∇hRSm(wT )−∇hRD(wT )∥2 ≤ O

(
d
√
T log(T )
m

)
. Concerning the Wasserstein term,

if we assume directly that ℓ satisfies (⋆) with constant G, then using a technique inspired from Amit
et al. (2022) yields with probability 1 − δ that the generalisation gap satisfies (⋆) with constant
G′ = O

(
G
√

log(|H|/δ)/m
)

when H is finite. We prove this in Appendix A.5.

6. An empirical study of Assumption 5 for neural networks2

In this section, we empirically verify whether the QSB assumption holds for neural nets. This al-
lows us to assess whether Theorem 6 helps in understanding the generalisation ability of neural nets.

Experimental protocol. We consider classification tasks on two datasets: MNIST (LeCun, 1998)
and FashionMNIST (Xiao et al., 2017). We have kept the original training set Sm and the original
test set denoted by Tn (of size n). We consider the convolutional neural network of Springenberg
et al. (2015) adapted for MNIST and FashionMNIST. The model is composed of 4 layers containing
10 channels with a 5×5-kernel; we set the stride and the padding to 1, except for the second layer,
where it is fixed to 2. Each of these (convolutional) layers is followed by a Leaky ReLU activation
function. Moreover, an average pooling with a 8×8-kernel is performed before the Softmax activa-
tion function. To initialise the weights of the network, we use Glorot and Bengio (2010) uniform
initialiser, while the biases are initialised in [−1/

√
250,+1/

√
250] uniformly (except the first layer, the

interval is [−1/5,+1/5]). Hence, in this case, H is the set of neural networks with a fixed architecture,
and parametrised with a vector w. The posterior distribution Q is a Gaussian measure N (w, σ2Id)
centred on the parameters w associated with the model; σ is set to 10−4. Note that this distribution

2. The source code is available at this link.
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respects the Poinc(cP) assumption; see Section 3.1. We train the neural network with the (vanilla)
stochastic gradient descent algorithm, where the batch size is equal to 512, and the learning rate is
fixed to 10−2. We train for at least 104 gradient steps and finish the current epoch when this number
of iterations is reached. Our loss ℓ is the bounded cross-entropy loss of Dziugaite and Roy (2017,
Section D).

In Figure 1, we report the evolution of three quantities: (i) the estimated value of C, (ii) the test
risk R̂Tn(Q) and (iii) the test risk with the 01-loss. More precisely, the risks and C are estimated
by sampling 10 hypotheses from Q and by computing the values on a mini-batch of Tn (with 512
examples) at each iteration. Then, Figure 1 represents averaged values on 5 runs, each point of the
curve representing the average on 100 iterations of the training process (for 104 iterations, we only
plot 102 averaged points for clarity).

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

MNIST

0 2000 4000 6000 8000 10000
Iterations

0.2

0.4

0.6

0.8

FashionMNIST

Value of C Test risk - 01-loss Test risk - Bounded cross entropy loss

Figure 1: Evolution of the test risks (with the 01-loss and the bounded cross-entropy loss) and the
value of C during the training phase.

Empirical findings. Figure 1 illustrates that, when neural networks are involved for two classi-
fication tasks, Q evolves during the optimisation process while maintaining the QSB property with
constant C < 1. For both MNIST and FashionMNIST, the constant C decreases from approxi-
mately 0.55 to 0.45. We deduce that having a data-free P (0 iteration) being QSB with C < 1
suggests that the architecture of our neural network also has an influence on the QSB assumption.
As specified in Section 3, having C < 1 attenuates the impact of the KL term, thus P. This is
desirable as it allows the optimiser to deeply explore the predictor space when P yields poor per-
formances. We also note that the generalisation ability of Q on the training loss nearly matches the
performance on the 0-1 loss for MNIST but is deteriorated for FashionMNIST, this invites to study
more deeply the design of such surrogates in future work.

Finally, the take-home message of this study is that the QSB assumption is verified for small
neural networks on MNIST. Such an empirical confirmation is crucial as it is required for our main
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result (Theorem 6) and thus confirms that, for neural networks, reaching flat minima during the
optimisation phase translates in increased generalisation ability.

7. Conclusion

We provide novel time-uniform PAC-Bayes bounds, that can be interpreted as a transitory conver-
gence rate of 1/m when a low empirical error is reached and expected gradients vanish. Doing so,
we draw sound theoretical links highlighting the impact of flat minima in generalisation. However,
a crucial open question remains: how do optimisation algorithms successfully attain flat minima in
the overparameterised setting? We leave this important question for future work.
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Appendix A. Supplementary details

A.1. Additional details on Poincaré and Log-Sobolev inequalities

We first provide a proof of Proposition 4.

Proposition 4 Assume that P is a probability measure on H such that dP (h) ∝ exp(−V (h))
with V : H → R a smooth function such that Hess(V ) ⪰ 2

cLS(P)
Id.3 Assume that ℓ(h, z) =

ℓ1(h, z) + ℓ2(h, z) with ℓ1 convex, twice differentiable and ℓ2 bounded. Then for any γ > 0, the
Gibbs posterior Qγ

Sm
is L-Sob(cLS) with constant cLS(Q

γ
Sm

) = cLS(P) exp (4∥ℓ2∥∞).

Proof We define P1 such that dP1(h) ∝ exp
(
−V (h)− γ

m

∑m
i=1 ℓ1(h, zi)

)
dh. Then, by the con-

vexity assumption over the loss ℓ1, we have Hess(V+ γ
m

∑m
i=1 ℓ1(h, zi) ⪰ 1

cLS
Id. Then, apply-

ing Chafaı̈ (2004, Corollary 2.1), we know that P1 satisfies a Poincaré inequality with constant
cLS(P). Finally, defining P2 such that dP2(h) ∝ exp

(
− γ
m

∑m
i=1 ℓ2(h, zi)

)
dh, thanks to the

boundedness of the loss ℓ2, we use Guionnet and Zegarlinksi (2003, Property 4.6), which ensures
that dP2(h) = Qγ

Sm
dP1(h) satisfies a Log-Sobolev inequality with constant cLS(P) exp(4∥ℓ2∥∞).

Observing that P2 = Qγ
Sm

completes the proof.

For the sake of completeness, we prove Proposition 15, which is Proposition 2.1 of Ledoux (2006),
showing that a Log-Sobolev inequality implies a Poincaré inequality.

Proposition 15 (Proposition 2.1 of Ledoux (2006)) If the distribution Q is L-Sob(cLS), then it
is also Poinc(cP), with cP(Q) = cLS(Q)

2 .

Proof Let f ∈ H1(Q) such that Eh∼Q[f(h)] = 0 and Eh∼Q[f
2(h)] = 1. For any ε > 0, we have

1 + εf ∈ H1(Q). We then apply the Log-Sobolev inequality on 1 + εf to obtain

E
h∼Q

[
(1 + εf(h))2

(
2 log(1 + εf(h))− log(1 + ε2)

)]
≤ cLS(Q)ε2 E

h∼Q

[
∥∇hf(h)∥2

]
.

Note that, by a Taylor expansion, we have log(1 + εf(h)) = εf(h)− (εf(h))2

2 + o(ε2) and we have
also log(1 + ε2) = ε2 + o(ε2). Then, plugging this into the previous equation gives

E
h∼Q

[
2εf(h) + 3(εf(h))2 − ε2 + o(ε2)

]
≤ cLS(Q)ε2 E

h∼Q

[
∥∇hf(h)∥2

]
.

We use that Eh∼Q[f(h)] = 0 and we then divide by ε2. Taking the limit ε→ 0 gives:

E
h∼Q

[
3f(h)2 − 1

]
≤ cLS(Q) E

h∼Q

[
∥∇hf(h)∥2

]
.

Using that Eh∼Q[f
2(h)] = 1, we obtain

1 ≤ cLS(Q)

2
E
h∼Q

[
∥∇hf(h)∥2

]
.

Then, for any g ∈ H1(Q) applying this proof on f : h 7→ g(h)−Eh∼Q[g(h)]√
Varh∼Q(g(h))

concludes the proof.

3. The notation A ⪰ B means that A−B is a semi-definite positive matrix.
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A.2. Wasserstein distances

We recall the definitions of the 1-Wasserstein and the 2-Wasserstein distances, which are valid for
any predictor space H ⊆ Rd equipped with the Euclidean distance.

Definition 16 The 1-Wasserstein distance between Q ∈ M(H) and P ∈ M(H) is defined as

W1(Q,P) = inf
π∈Π(Q,P)

∫
H2

∥x− y∥dπ(x, y).

where Π(Q,P) denotes the set of probability measures on H2 whose marginals are Q and P. Simi-
larly, the 2-Wasserstein distance between Q ∈ M(H) and P ∈ M(H) is defined as

W2(Q,P) =

√
inf

π∈Π(Q,P)

∫
H2

∥x− y∥2dπ(x, y).

A.3. Fundamental difference between time-uniform PAC-Bayes bounds and classical ones

In this work, we establish time-uniform estimation PAC-Bayes bounds. Specifically, we focus on the
bounds such that there exist C ⊆ M(H), a threshold ε > 0, and α > 0 such that, with probability
at least 1− δ, for all Q ∈ C and m ∈ N∗, we have

RD(Q) ≤ α

m
[KL(Q,P) + log(1/δ)] + εm.

We show that, in a favourable setting, time-uniform estimation PAC-Bayes bounds are sufficient
to ensure the almost sure convergence of (RD(Qm))m∈N∗ for a posterior sequence (Qm)m∈N∗ ,
whereas classical PAC-Bayes bounds provide only convergence in probability.

Let us first consider a nonnegative loss ℓ, a prior P, a countable dataset S , and assume there ex-
ists a sequence (Qm)m∈N∗ which is such that KL(Qm,P) ≤ D for all m ∈ N∗ and both R̂Sm(Qm)
and Ez∼D,h∼Qm

[
∥∇hℓ(h, z)∥2

]
go to zero as m goes to infinity almost surely. Then, the classical

McAllester’s bound states that for any m ∈ N∗, and δm ∈ (0, 1], with probability at least 1 − δm
over Sm, we have

PSm

(
RD(Qm) ≤ R̂Sm(Qm) +

√
KL(Qm,P) + log(2

√
m/δm)

2m

)
≥ 1− δm.

Let α > 0 and take for all m ∈ N∗, the confidence parameter δm = δ/m. Since we assume that
R̂Sm(Qm) → 0, the square root in McAllester’s bound goes to zero. Thus, there exists m0 ∈ N∗

such that for all m ≥ m0, we have

RD(Qm) ≤ R̂Sm(Qm) +

√
KL(Qm,P) + log(2m

√
m/δ)

2m
≤ α.

Thus, for all m ≥ m0, we know that PSm (RD(Qm) < α) ≥ 1− δ/m. Taking the limit as m goes
to infinity ensures that for any α > 0, we have

lim
m→∞

PSm (RD(Qm) < α) = 1.
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Thus, the classical McAllester’s bound allows the sequence RD(Qm) to converge in probability to
zero. In contrast, Theorem 6 with λ = 1/C is a time-uniform estimation bound with α = 2C and
εm = 2

(
R̂Sm(Q) + 1

2C Ez∼D,h∼Q

[
∥∇hℓ(h, z)∥2

])
. Under our assumptions, we know that both

α
m [KL(Q,P) + log(1/δ)] and εm go to zero as m goes to infinity. Then, taking the limit, we have
for all δ > 0

PS

(
lim
m→∞

RD(Qm) = 0
)
≥ 1− δ.

As limm→∞RD(Qm) does not depend on δ, we can then make δ go to zero to obtain

PS

(
lim
m→∞

RD(Qm) = 0
)
= 1.

Thus, RD(Qm) converges almost surely to zero. Such a conclusion cannot be achieved with classi-
cal PAC-Bayes bounds; our bound is stronger as it allows an almost sure convergence, which cannot
be obtained by simple manipulations of classical bounds.

A.4. A deeper look at the nature of our gradient terms and their originality in PAC-Bayes

Here, we highlight the novelty of incorporating ∇hℓ(h, z) in PAC-Bayes bounds and argue that this
is not a trivial extension of the PAC-Bayes Bernstein bound. Given a bounded loss ℓ : H × Z →
[0, 1], and starting from the Bernstein bound of Tolstikhin and Seldin (2013), it is possible to derive
a bound involving gradient terms with an additional cost when the posterior satisfies a Poincaré
inequality. We first restate the PAC-Bayes Bernstein bound of Tolstikhin and Seldin (2013).

Theorem 17 For any c1 > 1, for any data-free prior P ∈ M(H), for any loss function ℓ :
H×Z → [0, 1], and for any δ ∈ (0, 1], with probability at least 1− δ over the sample S, we have
for all distributions Q ∈ M(H) that satisfy√

KL(Q,P) + ln ν1
δ1

(e− 2)Eh∼Q[Varz∼D(ℓ(h, z))]
≤

√
m, (3)

we have

RD(Q) ≤ R̂Sm(Q) + (1 + c1)

√
(e− 2)Eh∼Q[Varz∼D(ℓ(h, z))]

(
KL(Q,P) + ln ν1

δ

)
m

,

where

ν1 =

[
1

ln c1
ln

(√
(e− 2)m

4 ln (1/δ)

)]
+ 1.

Assuming the technical conditions of Theorem 17, that the distribution D satisfies a Poincaré in-
equality, and that the loss ℓ(h, ·) ∈ H1(D) for all h ∈ H, we obtain the following corollary.

Corollary 18 Under the same conditions of Theorem 17, for any distribution D being Poinc(cD),
and for any loss ℓ(h, ·) ∈ H1(D), with probability at least 1− δ over the sample S, we have for all
distributions Q ∈ M(H) satisfying Equation (3)

RD(Q) ≤ R̂Sm(Q) + (1 + c1)

√
(e− 2)Eh∼Q Ez∼D [∥∇zℓ(h, z)∥2]

(
KL(Q,P) + ln ν1

δ

)
m

.
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Proof From Poincaré inequality (Definition 1), we have

E
h∼Q

[
Var
z∼D

(ℓ(h, z))

]
≤ E

h∼Q
E

z∼D

[
∥∇zℓ(h, z)∥2

]
,

which is then substituted into the bound of Theorem 17.

By using the additional Poincaré assumption on the data distribution D, we can obtain a bound with
gradient term Eh∼Q Ez∼D[∥∇zℓ(h, z)∥2]. However, it remains unclear how ∇zℓ(h, z) behaves, as
we do not optimise with respect to z. As a result, these gradients may remain large even after a
successful learning phase. In contrast, Theorem 6 involves the term Ez∼D Eh∼Q[∥∇hℓ(h, z)∥2],
which is minimised during a successful optimisation process. Moreover, the Poincaré assumption
on the data distribution D is difficult to verify, as we do not know D. Our Poincaré assumption on
the posterior Q is much easier to verify, as we can choose Q in practice. A similar discussion then
applies for the empirical Bernstein bound (Tolstikhin and Seldin, 2013, Theorem 4) as the empirical
variance is with respect to the dataset S.

A.5. How to make the Wasserstein term go to zero in Theorem 14?

In this section, we prove the following lemma.

Lemma 19 Assume that the hypothesis set H is finite and that the loss ℓ : H × Z → R satisfies
(⋆) with constant G. Then, with probability at least 1− δ, the generalisation gap RD(h)− R̂Sm(h)

satisfies (⋆) with the constant G′ = O
(
G
√

log(|H|/δ)/m
)

.

Proof For the sake of simplicity, let f : h 7→ RD(h)− R̂Sm(h) be the generalisation gap. Then, fix
(h1, h2, a, a

′) ∈ H4 and our goal is to prove that f satisfies (⋆) with another constant G′. First of
all, notice that〈

∇hf(h1)−∇hf(h2), a− a′
〉

=
1

m

m∑
i=1

〈
∇hℓ(h2, zi)−∇hℓ(h1, zi)− (∇hRD(h)−∇hRD(h)), a− a′

〉
.

Moreover, by the condition (⋆) for all z ∈ Z , we know that

|⟨∇hℓ(h2, z)−∇hℓ(h1, z), a− a′⟩| ≤ G · ∥a− a′∥ · ∥h1 − h2∥.

Then, by Hoeffding’s inequality, applied on the centered random variable ∇hℓ(h2, zi)−∇hℓ(h1, zi)−
(∇hRD(h2)−∇hRD(h1)) bounded byG∥a−a′∥∥h1−h2∥, with probability at least 1−δ, we have

∣∣〈∇hf(h1)−∇hf(h2), a− a′
〉∣∣ ≤ G · ∥a− a′∥ · ∥h1 − h2∥ ·

√
2 log(2/δ)

m
.

Taking a union bound on all possible values of (h1, h2, a, a′) ∈ H4 with δ′ = δ/|H|4 and a union
bound on all tuples yields that, with probability at least 1− δ, for all (a, a′) ∈ H2,

the function h 7→ ⟨∇hf(h), a− a′⟩ is G

√√√√2 log
(
2|H|4
δ

)
m

∥a− a′∥-Lipschitz,
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meaning the condition (⋆) is verified with constant G′ = G

√
2 log

(
2|H|4

δ

)
m for the gap.

Appendix B. PAC-Bayes bounds for Lipschitz losses through log-Sobolev inequalities

Extending Catoni’s bound to Lipschitz losses. A well-known relaxation of Catoni (2007, The-
orem 1.2.6) (see also Alquier et al., 2016, Theorem 4.1) holding for subgaussian losses has been
widely used in practice as a tractable PAC-Bayesian algorithm exhibiting a linear dependency on
the KL divergence. Below, we exploit a consequence of the Herbst argument, as stated, for example,
in Ledoux (2006, Section 2.3), which asserts that an L-Lipschitz function of a random variable fol-
lowing a distribution D being L-Sob(cLS) is L

√
cLS(D)-subgaussian. This leads to the following

corollary.

Corollary 20 For any λ > 0, for any data-free prior P ∈ M(H), for any L-Lipschitz loss ℓ :
H × Z → R for any h ∈ H, for any data distribution D being L-Sob(cLS), with probability at
least 1− δ over S, for any Q ∈ M(H), we have

RD(Q) ≤ R̂Sm(Q) +
KL(Q,P) + log(1/δ)

λ
+
λ2L2cLS(D)

2m
.

Proof First, we take f(h,Sm) := λ(RD(h)−R̂Sm(h)) and we use the change of measure inequality
(Csiszár, 1975; Donsker and Varadhan, 1976) to state that, for all Q ∈ M(H), we have

E
h∼Q

[f(h,Sm)] ≤ KL(Q,P) + log

(
E
h∼P

[exp (f(h,Sm))]
)
.

Moreover, Markov’s inequality alongside Fubini’s theorem gives, with probability at least 1−δ over
the sample S,

E
h∼Q

[f(h,Sm)] ≤ KL(Q,P) + log(1/δ) + log

(
E
h∼P

E
Sm

[exp (f(h,Sm))]
)
.

Now, since the loss ℓ is L-Lipschitz on z ∈ Z for all h ∈ H, we show below that the function f is
λL√
m

-Lipschitz on the variable Sm for each h ∈ H. Indeed, as the loss is L-Lipschitz w.r.t. z ∈ Z ,
for any dataset Sm = (z1, . . . , zm), any S ′

m = (z′1, · · · , z′m), and any h ∈ H, we have

∥f(h,Sm)− f(h,S ′
m)∥ ≤ λL

m

m∑
i=1

∥zi − z′i∥ =
λL

m

m∑
i=1

√
∥zi − z′i∥2.

Then, by the concavity of the square root, we have

∥f(h,Sm)− f(h,S ′
m)∥ ≤ λL

√√√√ 1

m

m∑
i=1

∥zi − z′i∥2 = λL
∥Sm − S ′

m∥√
m

.

The underlying norm ∥S ′
m∥ is the one derived from the scalar product ⟨Sm,S ′

m⟩ =
∑m

i=1⟨zi, z′i⟩.
As the distribution D is L-Sob(cLS), we can deduce that D⊗m is also L-Sob(cLS) with the same
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constant (Ané et al., 2000, Corollary 3.2.3). Then, using the Herbst argument similarly to Ledoux

(2006, Section 2.3), we conclude that for all h ∈ H, the function f(h, ·) isLλ
√

cLS(D)
m -subgaussian.

Thus, we have

log

(
E
h∼P

E
Sm

[exp (f(h,Sm))]
)

≤ λ2L2cLS(D)

2m
,

which concludes the proof.

Disintegrated PAC-Bayes bounds. Numerical estimation of PAC-Bayes bounds is usually chal-
lenging as it often involves Monte-Carlo approximations of the expectation over the posterior Q.
A recent line of work (Rivasplata et al., 2020; Haddouche and Guedj, 2022; Viallard et al., 2023a,
2024a) studies disintegrated PAC-Bayes bounds, i.e. bounds that hold with high probability on both
the dataset S and a single predictor h drawn from the posterior Q. These bounds may be relevant
for practitioners when sampling is easy, as in the case of Gaussian distributions, since they require
little computational time. However, a drawback of these bounds is that they do not allow the KL
divergence to be used as a complexity measure. Instead, either the disintegrated KL (Rivasplata
et al., 2020) or the Rényi divergence (Viallard et al., 2023a) is considered, which can be seen as
a relaxation of the KL divergence one. By leveraging the subgaussianity behaviour of Lipschitz
losses, it is possible to derive PAC-Bayesian disintegrated bounds, as long as the posterior distribu-
tion satisfies a log-Sobolev inequality with a sharp constant (which can be achieved, for instance,
for Gaussian distributions with a small operator norm). The new disintegrated bound is introduced
in the following lemma.

Lemma 21 For any L-Lipschitz loss ℓ : H × Z → R, for any distribution Q being L-Sob(cLS)
with cLS(Q) ≤ 1/m (and that can depend on the dataset Sm), with probability 1− δ over the draw
of h ∼ Q and Sm, we have

RD(h)−R̂Sm(h) ≤ RD(Q)−R̂Sm(Q) +

√
L2 log(1/δ)

2m
.

Proof We simply remark, by the same argument as in the proof of Corollary 20 that the gap h 7→
RD(h)− RSm(h) is L-Lipschitz for any Sm thus the gap is L

√
cLS(Q)-subgaussian. Then we use

RD(h)−R̂Sm(h) = log
(
exp

(
RD(h)−R̂Sm(h)

))
.

We then apply Markov inequality and exploit the subgaussiannity of the gap alongside cLS(Q) ≤
1/m to conclude the proof.

This lemma states that, as long as we assume our loss to be Lipschitz with respect to h, it is pos-
sible to easily derive disintegrated PAC-Bayesian bounds. Additionally, Lemma 21 can be easily
completed by Corollary 20, which introduces a KL divergence as a complexity term. Note also
that, since the loss is Lipschitz, it is also possible to incorporate the 1-Wasserstein distance through
the bounds of Haddouche and Guedj (2023b); Viallard et al. (2023b, 2024b). Therefore, having
a Log-Sobolev assumption with a sharp constant on the posterior distribution is enough to provide
disintegrated PAC-Bayesian bounds involving the KL divergence or the Wasserstein distance, rather
than the Rényi divergence or the disintegrated KL divergence.

24



A PAC-BAYESIAN LINK BETWEEN GENERALISATION AND FLAT MINIMA

Appendix C. Proofs

C.1. Proof of Corollary 7

The goal of this section is to prove Corollary 7, which is restated for ease of readability.

Corollary 7 For any C>0, for any λ such that 2
C>λ>0, for any data-free prior P ∈ M(H), for

any loss function ℓ : H × Z → R+ such that ℓ(h, ·) is C1 almost everywhere on Z , any δ ∈ (0, 1],
if the data distribution D is Poinc(cP), with probability at least 1 − δ over the sample S , for
any m ∈ N∗, any posterior Q being Poinc(cP) with RD(Q) ≤ C and such that for any z ∈ Z ,
ℓ(·, z) ∈ H1(Q):

RD(Q) ≤ 1

1− λC
2

(
R̂Sm(Q) +

KL(Q,P) + log(1/δ)

λm

)
+

λ

2− λC

(
cP (Q) E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
+ cP (D) E

z∼D

(∥∥∥∥ E
h∼Q

[∇zℓ(h, z)]

∥∥∥∥2
))

.

To begin this proof, we first state an important intermediate theorem, which holds without any
assumptions on the data distribution.

Theorem 22 For any C > 0, for any λ such that 2
C>λ>0, for any data-free prior P ∈ M(H), for

any loss function ℓ : H× Z → R+, and for any δ ∈ (0, 1], with probability at least 1− δ over the
sample S, for all m ∈ N∗, for all posterior Q being Poinc(cP) with RD(Q) ≤ C and such that
for any z ∈ Z , ℓ(·, z) ∈ H1(Q):

RD(Q) ≤ 1

1− λC
2

(
R̂Sm(Q) +

KL(Q,P) + log(1/δ)

λm

)
+

λ

2− λC

(
cP (Q) E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
+ Var

z∼D

(
E
h∼Q

[ℓ(h, z)]

))
.

Theorem 22 highlights the influence of the gradient norm of ∇hℓ(h, z) on the generalisation ability:
small gradients make the bound vanish. The remaining variance term is not addressed at this stage
and can be assumed to be bounded, but we cannot then recover a fast rate.

Proof We start from Chugg et al. (2023, Corollary 17), for any λ > 0, with probability at least 1−δ,
for all m ∈ N∗, for all posteriors Q ∈ H, we have

RD(Q) ≤ R̂Sm(Q) +
KL(Q,P) + log(1/δ)

λm
+
λ

2

(
E
h∼Q

[
E

z∼D
[ℓ(h, z)2]

])
.

The last term is then controlled as follows:

E
h∼Q

[
E

z∼D
[ℓ(h, z)2]

]
≤ E

z∼D

[
cP (Q) E

h∼Q

(
∥∇hℓ(h, z)∥2

)
+

(
E
h∼Q

[ℓ(h, z)]

)2
]
.
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We then introduce a supplementary variance term:

= E
z∼D

[
cP (Q) E

h∼Q

(
∥∇hℓ(h, z)∥2

)]
+ Var

z∼D

(
E
h∼Q

[ℓ(h, z)]

)
+

(
E

z∼D
E
h∼Q

[ℓ(h, z)]

)2

.

Note that by Fubini’s theorem, the last term on the right-hand side is exactly RD(Q)2. Then, using
the fact that the averaged true risk is less than C, and reorganising the terms in Chugg et al. (2023,
Corollary 17), we obtain, for λ ∈

(
0, 2

C

)
:

RD(Q) ≤ 1

1− λC
2

R̂Sm(Q) +
KL(Q,P) + log(1/δ)

λ
(
1− λC

2

)
m

+
λ

2− λC

(
cP (Q) E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
+ Var

z∼D

(
E
h∼Q

[ℓ(h, z)]

))
.

Now that Theorem 22 is proven, we only need to apply the Poincaré assumption on the data distri-
bution to the variance term to derive Corollary 7.

C.2. Proof of Theorem 8

Theorem 8 For any C1, C2, c > 0, for any data-free prior P ∈ M(H), for any loss function
ℓ : H × Z → R+ being C2 and for any δ ∈ (0, 1], we have, with probability at least 1 − δ over
the sample S , for all m ∈ N∗, for all Q being Poinc(cP)=c, QSB(ℓ, C1), QSB

(
∥∇hℓ∥2, C2

)
, and

ℓ(·, z) ∈ H1(Q), and ∥∇hℓ(·, z)∥2 ∈ H1(Q) for all z,

RD(Q) ≤ 2R̂Sm(Q) +
2c

C1
E
h∼Q

[
1

m

m∑
i=1

∥∇hℓ(h, zi)∥2
]

+ 2

(
C1 + c

4cG2 + C2

C1

)
KL(Q,P) + log(2/δ)

m
.

Proof We start again from Theorem 6, with λ = 1/C1, to obtain, with probability at least 1− δ/2:

RD(Q) ≤ 2

(
R̂Sm(Q) + 2C1

KL(Q,P) + log(2/δ)

m

)
+
cP(Q)

C1
E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
. (4)

We now observe that g : h, z 7→ ∥∇hℓ(h, z)∥2 is nonnegative. Given our assumptions, we apply the
proof technique of Theorem 6 on g, i.e. we start again from Corollary 17 of (Chugg et al., 2023),
apply Poincaré inequality on Q and use the QSB assumption on g. We then have, for any λ > 0,
with probability at least 1− δ/2, for all Q being Poinc(cP), QSB (g, C2) and g(·, z) ∈ H1(Q) for
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all z ∈ Z :

E
z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
≤ E

h∼Q

[
1

m

m∑
i=1

∥∇hℓ(h, zi)∥2
]
+

KL(Q,P) + log(2/δ)

λm

+
λcP(Q)

2
E

z∼D

[
E
h∼Q

(
∥∇hg(h, z)∥2

)]
+
λC2

2
E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
. (5)

Notice that by definition of g(·, z) : Rd → R, we have ∇hg(h, z) = 2Hessh(ℓ)(h, z)∇hℓ(h, z),
where Hessh(ℓ) denotes the Hessian of ℓ. Thus, using the fact that ℓ(·, z) is G gradient-Lipschitz
for any z ∈ Z , we get, for any (h, z), that ∥∇hg(h, z)∥ ≤ 2G∥∇hℓ(h, z)∥. Substituting this in
Equation (5) gives:

E
z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
≤ E

h∼Q

[
1

m

m∑
i=1

∥∇hℓ(h, zi)∥2
]
+

KL(Q,P) + log(2/δ)

λm

+
λ

2

(
4cP(Q)G2 + C2

)
E

z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
. (6)

Using that cP(Q) = c, taking λ = 1
4cG2+C2

and reorganising the terms in Equation (6) gives:

E
z∼D

[
E
h∼Q

(
∥∇hℓ(h, z)∥2

)]
≤ 2 E

h∼Q

[
1

m

m∑
i=1

∥∇hℓ(h, zi)∥2
]

+ 2(4cG2 + C2)
KL(Q,P) + log(2/δ)

m
. (7)

Finally, taking a union bound and plugging Equation (7) in Equation (4) concludes the proof.

C.3. Proof of Lemma 10

Lemma 10 For any γ > 0, for anym ∈ N∗, for any data-free prior P ∈ M(H) being L-Sob(cLS),
for any loss function ℓ : H×Z → R+ such that ℓ(·, z) ∈ H1(P) for any z, we have

KL
(
Qγ

Sm
,P
)
≤ γ2cLS(P)

4
E

h∼Qγ
Sm

[
∥∇hR̂Sm(h)∥2

]
.

Proof For conciseness, we rename Q := Qγ
Sm

. We first note that we have

KL
(
Qγ

Sm
,P
)
= E

h∼Q

[
log

(
dQ

dP
(h)

)]
= Ent

P

(
dQ

dP

)
= Ent

P
[g2],

where g =
√

dQ
dP and dQ

dP is the Radon-Nikodym derivative of Q with respect to P. Recall that
dQ
dP (h) = 1

Z exp(−γR̂Sm(h)), where Z = Eh∼P[exp(−γR̂Sm(h))]. Then, the function g : h 7→
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1√
Z
exp(−γ

2 R̂Sm(h)) belongs to H1(P) as long as ℓ ∈ H1(P). Indeed, since exp is infinitely

smooth, g ∈ D1(Rd). Also, as the loss is nonnegative, we have g ≤ 1√
Z

, so g ∈ L2(P). Finally, we

have ∇hg(h) = −γ
2g(h)∇hR̂Sm(h). Since g(h) ≤ 1√

K
, we only need to bound ∥∇hR̂Sm(h)∥2 to

ensure that g ∈ H1(P):

∥∇hR̂Sm(h)∥2 =
1

m2

∑
1≤i,j≤m

⟨∇hℓ(h, zi),∇hℓ(h, zj)⟩

≤ 1

2m2

∑
1≤i,j≤m

∥∇hℓ(h, zi)∥2 + ∥∇hℓ(h, zj)∥2.

Since we assumed ∥∇hℓ(h, z)∥2 ∈ L2(P) for all z ∈ Z , we conclude that g ∈ H1(P). We then can
apply the log-Sobolev inequality to conclude that

KL
(
Qγ

Sm
,P
)
≤ cLS(P) E

h∼P
[∥∇hg(h)∥2]

=
γ2cLS(P)

4
E
h∼P

[
∥∇hR̂Sm(h)∥2g2(h)

]
=
γ2cLS(P)

4
E
h∼P

[
∥∇hR̂Sm(h)∥2

dQ

dP
(h)

]
=
γ2cLS(P)

4
E

h∼Qγ
Sm

[
∥∇hR̂Sm(h)∥2

]
.

C.4. Proof of Theorem 11

Theorem 11 We first have C > 0, γ > 0, and a data-free prior P ∈ M(H) being L-Sob(cLS).
(i) For any loss function ℓ : H × Z → [0, 1] and for any δ ∈ (0, 1], with probability at least 1 − δ
over the sample S, for any m ∈ N∗, we have

RD(Q
γ
Sm

) ≤ 2

(
R̂Sm(Q

γ
Sm

) +
γ2cLS(P)

4m
E

h∼Qγ
Sm

[
∥∇hR̂Sm(h)∥2

]
+

log(1/δ)

m

)
.

(ii) For any loss function ℓ and prior P satisfying the conditions of Proposition 4. Then, for any
2
C > λ > 0, with probability at least 1 − δ over the sample S, for all m ∈ N∗, assuming ℓ(·, z) ∈
H1(Qγ

Sm
) and that Qγ

Sm
is QSB(C), we have

RD(Q
γ
Sm

) ≤ 1

1− λC
2

(
R̂Sm(Q

γ
Sm

) +
γ2cLS(P)

4λm
E

h∼Qγ
Sm

[
∥∇hR̂Sm(h)∥2

]
+

log(1/δ)

λm

)

+
λe4∥ℓ2∥∞cLS(P)

4− 2λC
E

z∼D

[
E

h∼Qγ
Sm

(
∥∇hℓ(h, z)∥2

)]
.
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Proof We start again from Chugg et al. (2023, Corollary 17), instantiated with a single λ. Then with
probability at least 1− δ, for all posteriors Q and for all m ∈ N∗, we have

RD(Q) ≤ R̂Sm(Q) +
KL(Q,P) + log(1/δ)

λm
+
λ

2

(
E
h∼Q

[
E

z∼D
[ℓ(h, z)2]

])
.

For the first inequality, we simply take λ = 1, use the fact that ℓ(h, z)2 ≤ ℓ(h, z), and reorganise
the terms. Finally, we upper-bound the KL term using Lemma 10. For the second inequality, we
apply Proposition 4 to use the fact that Qγ

Sm
is L-Sob(cLS), and Proposition 15, which ensures

that Qγ
Sm

is Poinc(cP), with constant equal to cLS
(
Qγ

Sm

)
/2. We then follow a proof technique

similar to Theorem 6. We have :

E
h∼Qγ

Sm

[
E

z∼D
[ℓ(h, z)2]

]
= E

z∼D

 Var
h∼Qγ

Sm

(ℓ(h, z)) +

(
E

h∼Qγ
Sm

[ℓ(h, z)]

)2
 .

Applying Poincaré inequality then gives:

≤ E
z∼D

cLS(P)
2

e4∥ℓ2∥∞ E
h∼Qγ

Sm

(
∥∇hℓ(h, z)∥2

)
+

(
E

h∼Qγ
Sm

[ℓ(h, z)]

)2
 .

Finally, using the fact that Qγ
Sm

is QSB(ℓ, C) allow us to reorganise the terms as in Theorem 6.
Combining this with Lemma 10 to bound the KL divergence concludes the proof.

C.5. Proof of Theorem 12

Theorem 12 For any predictor set H with finite diameter D > 0, and for any function f : H → R
satisfying (⋆), we have for all distributions P ∈ M(H) and Q ∈ M(H)

E
h∼Q

[f(h)] ≤ G

2
W 2

2 (Q,P) + E
h∼P

[f(h)] +D E
h∼Q

[∥∇f(h)∥].

Proof We first assume that G = 1 in the (⋆) assumption. We start from the Kantorovich duality
formula (Villani, 2009, Theorem 5.10), instantiated with the cost function c(x, y) = ∥x− y∥2. For
any Q,P, since W2 is a distance, we have:

W 2(Q,P) =W 2(P,Q) = sup
ϕ,ψ

E
h∼Q

[ϕ(h)]− E
h∼P

[ψ(h)], (8)

where the supremum is taken over the functions ϕ, ψ ∈ L1(Q)×L1(P) such that for all h, h′ ∈ H2,
we have ϕ(h)−ψ(h′) ≤ ∥h−h′∥2. We claim that if ϕ(h) = f(h)−D∥∇f(h)∥ and ψ(h′) = f(h′),
then the pair (Φ,Ψ) satisfies ϕ(h)− ψ(h′) ≤ ∥h−h′∥2

2 . Indeed, we have

ϕ(h)− ψ(h′) = f(h)− f(h′)−D∥∇f(h)∥
= f ◦ g(1)− f ◦ g(0)−D∥∇f(h)∥,
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where g(t) = th+ (1− t)h′. Then, by the fundamental theorem of calculus, we have

ϕ(h)− ψ(h′) =

∫ 1

0
(f ◦ g)′(t)dt−D∥∇f(h)∥

=

∫ 1

0

〈
∇f

(
th+ (1− t)h′

)
, h− h′

〉
dt−D∥∇f(h)∥.

We now control the last term using that ∥h− h′∥ ≤ D and Cauchy-Schwarz inequality:

ϕ(h)− ψ(h′) ≤
∫ 1

0

〈
∇f

(
th+ (1− t)h′

)
, h− h′

〉
dt−

〈
∇f(h), h− h′

〉
=

∫ 1

0

〈
∇f

(
th+ (1− t)h′

)
−∇f(h), h− h′

〉
dt.

Then by the (⋆) assumption:

ϕ(h)− ψ(h′) ≤ ∥h− h′∥
∫ 1

0
(1− t)dt

∥∥h− h′
∥∥ dt

=
∥h− h′∥2

2
.

We then conclude by applying Equation (8) to the pair (2ϕ, 2ψ). The general case with G ̸= 1
follows immediately by considering the pair ( 2

Gϕ,
2
Gψ).

C.6. Proof of Corollary 13

Corollary 13 For any distribution P being L-Sob(cLS) such that dP(h) ∝ exp(−V (h))dh, with
V being C2, for any R > 0, for any function f on the centred ball B(0, R) of radius R satisfying
the (⋆) assumption, and for any distribution Q ∈ M(H), we have:

E
h∼Q

[f (PR(h))] ≤
GcLS(P)

4
KL(Q,P) + E

h∼P
[f (PR(h))] + 2R E

h∼Q
[∥∇hf (PR(h))∥] ,

where PR denotes the Euclidean projection onto B(0, R).

Proof We fix R > 0, and we start from Theorem 12 with predictor space H0 = B(0, R), where f is
gradient-Lipschitz on this ball and the prior and the posterior are respectively PR#Q and PR#P.
We have

E
h∼Q

[f (PR(h))] ≤
G

2
W 2

2 (PR#Q,PR#P) + E
h∼P

[f (PR(h))] + 2R E
h∼Q

[∥∇hf (PR(h))∥] .

We first prove that W 2
2 (PR#Q,PR#P) ≤ W 2

2 (Q,P). Let π ∈ Γ(Q,P) be the optimal transport
coupling from P to Q, i.e.

W 2
2 (Q,P) = E

(X,Y )∼π

[
∥X − Y ∥2

]
.
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Then, notice that if we denote by π1 = (PR,PR)#π, then π1 ∈ Γ (PR#Q,PR#P) and so:

W 2
2 (PR#Q,PR#P) ≤ E

(X,Y )∼π1

[
∥X − Y ∥2

]
= E

(X,Y )∼π1

[
∥PR(X)− PR(Y )∥2

]
.

Using the fact that PR is 1-Lipschitz gives:

W 2
2 (PR#Q,PR#P) ≤ E

(X,Y )∼π1

[
∥X − Y ∥2

]
=W 2

2 (Q,P).

Next, we need to control W 2
2 (Q,P). To do so, we use the fact that P is L-Sob(cLS) to as-

sert, through Otto-Villani’s theorem (Otto and Villani, 2000, Theorem 1) that the following holds:
W 2

2 (Q,P) ≤
cLS(P)

2 KL(Q,P). This concludes the proof.

C.7. Proof of Theorem 14

Theorem 14 Let δ ∈ (0, 1) and P ∈ M(H) a data-free prior. Assume H has a finite diameter
D > 0, for any loss function ℓ : H × Z → R+ and any m ∈ N∗, the generalisation gap h 7→
RD(h) − R̂Sm(h) satisfies (⋆). Assume that Eh∼P Ez∼D[ℓ(h, z)

2] ≤ σ2, then the following holds
with probability at least 1− δ, for any m > 0 and any Q ∈ M(H):

RD(Q) ≤ R̂Sm(Q) +
G

2
W 2

2 (Q,P) +

√
2σ2 log

(
1
δ

)
m

+D E
h∼Q

(∥∥∥∇hRD(h)−∇hR̂Sm(h)
∥∥∥) .

Proof We start from Theorem 12, using the fact that RD(h) − R̂Sm(h) is G-gradient-Lipschitz for
any m ∈ N∗ to obtain:

E
h∼Q

[RD(h)− R̂Sm(h)] ≤
G

2
W 2

2 (Q,P) + E
h∼P

[RD(h)− R̂Sm(h)]

+D E
h∼Q

(∥∥∥∇hRD(h)−∇hR̂Sm(h)
∥∥∥)

The only remaining term to control is Eh∼P[RD(Q)−R̂Sm(Q)]. For this, we use the supermartingale
concentration inequality of Chugg et al. (2023, Corollary 17) instantiated with the prior equals to
the posterior, which shows that, for any λ > 0, with probability at least 1− δ, we have

E
h∼P

[RD(h)− R̂Sm(h)] ≤
log(1/δ)

λ
+
λ

2
E
h∼P

E
z∼D

[ℓ(h, z)2].

The last term on the right-hand side is bounded by σ2 by assumption. Taking λ =
√

2 log(1/δ)
σ2 , we

finally get Eh∼P Ez∼D[ℓ(h, z)
2] ≤

√
2 log(1/δ)/m, which concludes the proof.
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