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Supplementary Materials: Adjusting Machine Learning Deci-

sions for Equal Opportunity and Counterfactual Fairness

A Proof of Theorem 1

Before proving Thm. 1 about the eco-fairness and the optimality of the eco decision-maker, we first prove a
lemma about the eco-fairness, which will be useful for proving Thm. 1. It says that a decision-maker Ŷ is
eco-fair if and only if there is no causal arrow from A to Ŷ .
Lemma 3. (eco … No A æ Ŷ ) Assume the causal graph in Fig. 2. A decision-maker Ŷ satisfies equal
opportunities over A if and only if there is no causal arrow between A and Ŷ .

The intuition behind Lemma 3 is that all decisions (Ŷ ml, Ŷ eco, Ŷ cf) in the causal model Fig. 2 satisfy
Ŷ (a, s) ‹ A, S (Pearl, 2009). Therefore, the eco criterion (Def. 1) reduces to Ŷ (a, s) being constant in a. In
other words, Ŷ does not use the protected attribute to make a decision. Below we prove Lemma 3.

Proof. The goal is to show that eco (Def. 1) is equivalent to

Ŷ (a, s) d= Ŷ (aÕ, s) d= Ŷ (s) (3)

for any s œ S and a, aÕ œ A. This equation is equivalent to no causal arrow between A and Ŷ .

Begin with the definition of eco-fairness,

Ŷ (aÕ, s) | A = a, S = s
d= Ŷ (a, s) | A = a, S = s (4)

… Ŷ (aÕ, s) d= Ŷ (a, s) ’s, a, aÕ (5)

… Ŷ (aÕ, s) d= Ŷ (s). (6)

Eq. 5 is due to the observation that Ŷ (a, s) ‹ S, A in Fig. 2 (Pearl, 2009). Eq. 6 is true because

P (Ŷ (s)) =
⁄

P (Ŷ (A, s))P (A) dA = P (Ŷ (aÕ, s)) (7)

for any aÕ, where the last equality of Eq. 7 relies on Eq. 5. Eq. 6 is equivalent to no causal arrow from A to Ŷ .

Given Lemma 3, we next prove Thm. 1.

Proof. The first part of Thm. 1 is that Ŷ eco is eco-fair. It is an immediate consequence of Lemma 3 because
Ŷ eco(anew, snew) = Ŷ eco(snew) as is defined in Eq. 1.

The second part of Thm. 1 establishes the optimality of Ŷ eco:

Ŷ ECO = arg min
Y ECOœYECO

EP (A)P (S)

Ë
KL(P (Ŷ ml(A, S))||P (Y eco(A, S)))

È
.

Begin by rewriting the goal of the proof. We will show this goal is equivalent to the definition of the eco
decision-maker,

arg min
Y ecoœYeco

EP (A)P (S)

Ë
KL(P (Ŷ ml(A, S))||P (Y eco(A, S))

È

= arg min
Y ecoœYeco

EP (S)

5⁄
P (A)

⁄
P (Ŷ ml(A, S))

Ë
log P (Ŷ ml(A, S)) ≠ log P (Y eco(A, S))

È
dY dA

6
(8)

= arg min
Y ecoœYeco

≠EP (S)

5⁄
P (A)

⁄
P (Ŷ ml(A, S)) log P (Y eco(A, S)) dY dA

6
(9)
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= arg min
Y ecoœYeco

≠EP (S)

5⁄
P (A)

⁄
P (Ŷ ml(A, S)) log P (Y eco(S)) dY dA

6
(10)

= arg min
Y ecoœYeco

≠EP (S)

5⁄ 5⁄
P (A)P (Ŷ ml(A, S)) dA

6
log P (Y eco(S)) dY

6
(11)

= arg min
Y ecoœYeco

≠EP (S)

5
E

5⁄ 5⁄
P (A)P (Ŷ ml(A, s)) dA

6
log P (Y eco(s)) dY | S = s

66
(12)

= arg min
Y ecoœYeco

EP (S)

5
E

5
KL(

⁄
P (A)P (Ŷ ml(A, s)) dA||P (Y eco(s)) | S = s

66
(13)

=
⁄

P (Ŷ ml(A, s))P (A) dA (14)

=Ŷ eco(a, s) (15)

Eq. 8 is due to the definition of the kl divergence. Eq. 9 is due to Ŷ ml being a given random vari-
able. Eq. 10 is due to Lemma 3. Eq. 11 switches the integral subject to conditions of the dom-
inated convergence theorem. Eq. 12 is due to Fig. 2 and the tower property. Eq. 13 is due to
the definition of the kl divergence and Ŷ ml being given. Eq. 14 is because setting P (Y eco(s)) =s

P (A)P (Ŷ ml(A, s)) dA has KL(
s

P (A)P (Ŷ ml(A, s)) dA||P (Y eco(s)) = 0 for all s. The expectation is also
zero: EP (S)

Ë
KL(P (

s
P (A)P (Ŷ ml(A, s)) dA||P (Y eco(S))

È
= 0.

This calculation implies Ŷ eco =
s

P (Ŷ ml(A, s))P (A) dA minimizes the average kl distance between the ML
decision and the eco decision. In other words, the eco decision-maker maximally recovers the ML decision.
Put di�erently, the eco decision-maker minimally modifies the ML decision to achieve eco-fairness.

The optimality of ftu under the population P (A, S). We next present a supplementary result of Thm. 1 that
establishes the optimality of Ŷ FTU under the same KL divergence objective but the population P (A, S):

Ŷ FTU = arg min
Y FTUœYF T U

EP (A,S)

Ë
KL(P (Ŷ ml(A, S))||P (Y FTU(A, S)))

È
.

Begin by rewriting the goal of the proof. We will show this goal is equivalent to the definition of the ftu
decision-maker,

arg min
Y FTUœYFTU

EP (A,S)

Ë
KL(P (Ŷ ml(A, S))||P (Y FTU(A, S))

È

= arg min
Y FTUœYFTU

EP (S)

5⁄
P (A | S)

⁄
P (Ŷ ml(A, S))

Ë
log P (Ŷ ml(A, S)) ≠ log P (Y FTU(A, S))

È
dY dA

6
(16)

= arg min
Y FTUœYFTU

≠EP (S)

5⁄
P (A | S)

⁄
P (Ŷ ml(A, S)) log P (Y FTU(A, S)) dY dA

6
(17)

= arg min
Y FTUœYFTU

≠EP (S)

5⁄
P (A | S)

⁄
P (Ŷ ml(A, S)) log P (Y FTU(S)) dY dA

6
(18)

= arg min
Y FTUœYFTU

≠EP (S)

5⁄ 5⁄
P (A | S)P (Ŷ ml(A, S)) dA

6
log P (Y FTU(S)) dY

6
(19)

= arg min
Y FTUœYFTU

≠EP (S)

5
E

5⁄ 5⁄
P (A | S)P (Ŷ ml(A, s)) dA

6
log P (Y FTU(s)) dY | S = s

66
(20)

= arg min
Y FTUœYFTU

EP (S)

5
E

5
KL(

⁄
P (A | S)P (Ŷ ml(A, s)) dA||P (Y FTU(s)) | S = s

66
(21)

=
⁄

P (Ŷ ml(A, s))P (A | S) dA (22)
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=Ŷ FTU(a, s) (23)

Eq. 16 is due to the definition of the kl divergence. Eq. 17 is due to Ŷ ml being a given random
variable. Eq. 18 is due to Lemma 3. Eq. 19 switches the integral subject to conditions of the dom-
inated convergence theorem. Eq. 20 is due to Fig. 2 and the tower property. Eq. 21 is due to
the definition of the kl divergence and Ŷ ml being given. Eq. 22 is because setting P (Y eco(s)) =s

P (A)P (Ŷ ml(A, s)) dA has KL(
s

P (A)P (Ŷ ml(A, s)) dA||P (Y FTU(s)) = 0 for all s. The expectation is
also zero: EP (S)

Ë
KL(P (

s
P (A)P (Ŷ ml(A, s)) dA||P (Y FTU(S))

È
= 0.

This calculation implies Ŷ FTU =
s

P (Ŷ ml(A, s))P (A | S = s) dA = P (Y | S = s) minimizes the average kl
distance between the ML decision and the eco decision. In other words, the eco decision-maker maximally
recovers the ML decision. Put di�erently, the eco decision-maker minimally modifies the ML decision to
achieve eco-fairness.

B Proof of Theorem 2

Proof. We first prove that the cf decision-maker is cf-fair.

Recall the definition of the cf decision-maker,

P (Ŷ cf(anew, snew)) =
⁄ ⁄

P (Ŷ eco(S(Ā))) P (S(Ā) | A = anew, S = snew) P (Ā) dS(Ā) dS̄. (24)

Note the above equation is the same definition as in Eq. 2 except that the notation a is changed to Ā to
distinguish against the notation A used later in the proof.

Following this definition, we have

P (Ŷ cf(aÕ, S(aÕ) | A = a, S = s) (25)

=
⁄ ⁄

P (Ŷ eco(S(Ā))) P (S(Ā) | A = aÕ, S = S(aÕ)) (26)

◊ P (Ā)P (S(aÕ) | A = a, S = s) dS(aÕ) dS(Ā) dĀ (27)

=
⁄ ⁄

P (Ŷ eco(S(Ā))) P (S(Ā) | A = a, S = s) P (Ā) dS(Ā) dĀ. (28)

Eq. 28 is due to the structural equation representation of the causal graph S
a.s.= f(A, ‘), which impliess

P (S(Ā) | A = aÕ, S = S(aÕ))P (S(aÕ) | A = a, S = s) dS(aÕ) = P (S(Ā) | A = a, S = s). The intuition here is
that the observed A, S will provide the same information as aÕ, S(aÕ) for the same person. They all contain
the information about the background variable that a�ects S,

P (S(Ā) | S(aÕ), s, a) = P (S(Ā) | A = aÕ, S = S(aÕ) = P (S(Ā) | S(aÕ), aÕ, s, a).

Notice that the right hand side of Eq. 28 does not depend on aÕ, which implies that

P (Ŷ cf(aÕ, S(aÕ) | A = a, S = s) = P (Ŷ cf(a, S(a)) | A = a, S = s).

This shows that the cf decision-maker is cf-fair, hence establishes the first part of Thm. 2.

We then prove demographic parity for Ŷ cf(A, S). First we notice that
⁄

P (Ŷ cf(A, S) | A)P (S | A) dS (29)

=
⁄

P (Ŷ eco(S(AÕ))P (S(AÕ) | A, S)P (AÕ) dS(AÕ) dAÕP (S | A) dS (30)
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=
⁄

P (Ŷ eco(S(AÕ))P (S(AÕ) | A)P (AÕ) dS(AÕ) dAÕ (31)

=
⁄

P (Ŷ eco(S(AÕ))P (S(AÕ))P (AÕ) dS(AÕ) dAÕ. (32)

The third equality is due to S(AÕ) ‹ A by applying the Pearl’s twin network strategy (Pearl, 2009). We then
compute the marginal distribution of Ŷ cf(A, S).

⁄
P (Ŷ cf(A, S))P (A, S) dA dS (33)

=
⁄ ⁄

P (Ŷ eco(S(AÕ))P (S(AÕ) | A, S)P (AÕ) dS(AÕ) dAÕP (A, S) dS dA (34)

=
⁄

P (Ŷ eco(S(AÕ))P (S(AÕ))P (AÕ) dS(AÕ) dAÕ, (35)

which implies P (Ŷ cf(A, S) | A) = P (Ŷ cf(A, S)), i.e., demographic parity Ŷ cf(A, S) ‹ A.

We finally prove the second part of Thm. 2. We show that the cf decision-maker Ŷ cf minimizes the average kl
distance between the eco decision and the cf decision EP (S,A)

Ë
KL(P (Ŷ eco(A, S))||P (Y cf(A, S)))

È
. In other

words, the cf decision-maker maximally recovers the eco decision. Put di�erently, the cf decision-maker
minimally modifies the eco decision to achieve cf-fairness.

To establish this optimality of the cf decision-maker, we first notice that the cf criterion implies that any
cf decision-maker must take the form of Y cf(‘), where S = f(A, ‘) is the structural equation of the causal
model in Fig. 2. We then compute the minimizer of the kl distance.

arg min
Y cfœYcf

EP (A)P (S)

Ë
KL(P (Ŷ eco(A, S))||P (Y cf(A, S))

È

= arg min
Y cfœYcf

EP (S)

5⁄
P (A)

⁄
P (Ŷ eco(A, S))

Ë
log P (Ŷ eco(A, S)) ≠ log P (Y cf(A, S))

È
dY dA

6
(36)

= arg min
Y cfœYcf

≠EP (S)

5⁄
P (A)

⁄
P (Ŷ eco(A, S)) log P (Y cf(A, S)) dY dA

6
(37)

= arg min
Y cfœYcf

≠EP (S)

5⁄
P (A)

⁄
P (Ŷ eco(f(A, ‘))) log P (Y cf(‘)) dY dA

6
(38)

= arg min
Y cfœYcf

≠EP (S)

5⁄ 5⁄
P (AÕ)P (Ŷ eco(f(AÕ, ‘))) dAÕ

6
log P (Y cf(‘)) dY

6
(39)

= arg min
Y cfœYcf

≠EP (S)

5
E

5⁄ 5⁄
P (AÕ)P (Ŷ eco(f(AÕ, ‘))) dAÕ

6
log P (Y cf(s)) dY | A = a, S = s

66
(40)

= arg min
Y cfœYcf

EP (S)

5
E

5
KL(

⁄
P (AÕ)P (Ŷ eco(f(AÕ, ‘))) dAÕ||P (Y cf(s)) | A = a, S = s

66
(41)

=
⁄ ⁄

P (Ŷ eco(f(AÕ, ‘)))P (AÕ)P (‘ | a, s) dAÕ d‘ (42)

=
⁄ ⁄

P (Ŷ eco(S(AÕ)) P (S(AÕ) | A = a, S = s)p(AÕ) dS(AÕ) dAÕ (43)

=Ŷ cf(a, s) (44)

Eq. 36 is due to the definition of the kl divergence. Eq. 37 is due to Ŷ eco being a given random variable. Eq. 38
is due to the observation that eco decision must only depend on S = f(A, ‘) and cf decisions must only depend
on ‘. Eq. 39 switches the integral subject to conditions of the dominated convergence theorem. Eq. 40 is due to
Fig. 2 and the tower property. Eq. 41 is due to the definition of the kl divergence and Ŷ eco being given. Eq. 42 is
because setting P (Y cf(‘)) =

s
P (AÕ)P (Ŷ eco(f(AÕ, ‘))) dAÕ has KL(

s
P (AÕ)P (Ŷ eco(f(AÕ, ‘))) dAÕ||P (Y cf(‘)) =
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0 for all ‘. The expectation is also zero: E
Ë
KL

1s
P (AÕ)P (Ŷ eco(f(AÕ, ‘))) dAÕ||P (Y cf(‘)

2È
= 0. Eq. 43

rewrites the ‘ in terms of A and S. Eq. 44 is due to the definition of the cf decision-maker.

In addition, we show that Ŷ cf recovers the marginal distribution of Ŷ eco,
⁄

P (Ŷ cf(A, S))P (A, S) dA dS (45)

=
⁄

P (Ŷ eco(S(AÕ))P (S(AÕ) | A, S)P (A, S)P (AÕ) dS(AÕ) dAÕ dA dS (46)

=
⁄

P (Ŷ eco(S)P (A, S) dS(A) dA dS (47)

=
⁄

P (Ŷ eco(S))P (S) dS (48)

=
⁄

P (Ŷ eco)P (A, S) dA dS. (49)

The second equality is because P (A) = P (AÕ) by the construction of the cf decision-maker.

This calculation shows that the cf decision-maker Ŷ cf preserves the marginal distribution of Ŷ eco.

C The correctness of Algorithm 1

We prove the identifiability of the eco and cf decision given observational data, which establishes the correctness
of Alg. 1.

For the eco decision-maker, we utilize the backdoor adjustment formula (Pearl, 2009).
Proposition 4. Assume the causal graph Fig. 2. The eco decision-maker can be computed using the observed
data (Ai, Si, Yi),

P (Ŷ ECO(anew, snew)) =
⁄

P (Yi | Ai, Si = snew)P (Ai) dAi, (50)

if P (Si œ S | Ai = a) > 0 for all a œ A and sets S such that P (S) > 0 and S µ S.

Proof. Proposition 4 is a direct consequence of Theorem 3.3.2 of Pearl (2009).

Eq. 50 reiterates the fact that Ŷ ECO does not simply ignore the protected attribute A; estimating P (Yi | Ai, Si)
relies on A in the training data. However, Ŷ ECO(anew, snew) does not rely on the protected attribute anew in
predicting on the test data.

For the cf decision-maker, we adopt the abduction-action-prediction approach (Pearl, 2009).
Proposition 5. Assume the causal graph Fig. 2. Write S

a.s= fS(A, ‘S) for some function fS and zero mean
random variable ‘S satisfying S ‹ ‘S. The cf decision-maker can be computed using the observed data
(Ai, Si, Yi):

P (Ŷ cf(a, s)) =
⁄

P (Ŷ eco(a, sÕ)) · P (S = sÕ | A = aÕ, ‘S) (51)

◊ P (‘S | A = a, S = s) · P (A = aÕ) dsÕ daÕ (52)

¥
⁄

P
1

Ŷ eco (E [Si | Ai = aÕ] + ‘̂S) , a
2

· P (A = aÕ) daÕ, (53)

where ‘̂S = s ≠ E [Si | Ai = a].

Proof. Eq. 52 is a direct consequence of Theorem 7.1.7 of Pearl (2009). Eq. 53 is due to a linear approximation
of fS .
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D Datasets in empirical studies

Each dataset in empirical studies consists of training and test sets, potentially with multiple protected and
unprotected attributes.

The simulated college admissions data in Fig. 1 comes from the structural model in § 4. We set —s = 2.0 and
—a = 1.0 so that for the same test score the committee is more likely to admit males than females. We set
⁄ = 2.0 to model that females perform less well on the test.

The case studies involve three public datasets.

• Adult income data (Dua and Gra�, 2017a) The task is to decide whether an individual is loan worthy;
the decision is binary. The data do not initially contain decisions about loan worthiness; instead, each
individual’s income is provided. To evaluate the algorithms, we produce a decision about loan worthiness
by thresholding income; individuals that make more than $50K are decided as being loan worthy. The
protected attributes are gender and race; other attributes include education and marital status. The
dataset has 32,561 training samples and 16,282 test samples.

• ProPublica’s COMPAS recidivism data. The task is to decide an individual’s risk score of recidivating;
the decision is real-valued. The protected attributes are gender and race; other attributes include the
priors count, juvenile felonies count, and juvenile misdemeanor count. The dataset has 6,907 complete
samples. We split them into 75% training and 25% testing.

• German credit data. (Dua and Gra�, 2017b) The task is again to decide whether an individual is loan
worthy. In this setting, each individual is initially labeled as having good or bad credit; we use this
covariate to produce a decision. Individuals with good credit are decided as being loan worthy. The
protected attributes are gender and marital status; other attributes include credit history, savings, and
employment history. The dataset has 1,000 samples. We split them into 75% training and 25% testing.

E Implementation of decision-makers in the empirical studies

We implement classical ML decision-makers with linear/logistic regression using all attributes (including the
protected ones). The ftu decision-makers perform regression but omit the protected attributes. The eco and
cf decision-makers adjust the classical ML decision-makers using Alg. 1. FairLearning infers background
causal variables by fitting a linear regression of A against S and compute the residuals ‘i = Si ≠ E [Si | Ai];
it then performs linear/logistic regression against the background variables. (This is the same procedure
used in the abduction step for calculating fcf .) With these decision-makers, we make algorithmic decisions ŷ
about the test set units.

F Additional empirical studies

In the adult income data and COMPAS data, race and gender are the protected attributes. In the German
credit data, gender and marital status are protected attributes. The decisions about loan worthiness are
binary (as in the admissions example); the decisions in the COMPAS data are real-valued assessments of the
recidivism score.

Tables 1 and 2 present detailed results of the eco and cf decision-makers on the COMPAS and the German
credit datasets.
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Metrics (◊10≠2
) on COMPAS

fleco flcf KL Prediction

ML predictor fml -68.1(42.1) -104.9(59.7) 17.1 28.0
ftu 0(0) -52.9(30.1) 0.5 25.6

eco predictor feco 0(0) -36.8(21.2) 0.5 25.6

FairLearning -41.2(28.9) 0(0) 0.2 22.7

cf predictor fcf -41.2(29.4) 0(0) 0.2 22.7

Table 1: Both the eco predictor feco and ftu are eco-fair; they achieve zero in the eco metric (lower is better).
cf predictor fcf and FairLearning (Kusner et al., 2017) are cf-fair; they achieve zero in the cf metric (lower is
better). cf predictor fcf achieves demographic parity; it has close-to-zero kl divergence (Lower is better.) ML
predictor fml predicts best; eco predicts best among the fair predictors (higher prediction scores are better.)
We report mean values across individuals with the standard deviation in parentheses. eco and cf metric
standard deviations are Æ 0.42 and Æ 0.6, respectively. We also report the KL divergence and prediction
accuracy, which are both distributional metrics.

Metrics (◊10≠2
) on German Credit

fleco flcf KL Prediction

ML predictor fml -5.4(2.5) -3.9(1.8) 18.6 64.7
ftu 0(0) -2.0(1.0) 15.6 63.4
eco predictor feco 0(0) 1.5(0.7) 13.2 64.5

FairLearning -1.4(0.7) 0(0) 8.3 63.5
cf predictor fcf -1.3(0.6) 0(0) 7.8 64.3

Table 2: Both eco predictor feco and ftu are eco-fair; they achieve zero in the eco metric (lower is better). cf
predictor fcf and FairLearning (Kusner et al., 2017) are cf-fair; they achieve zero in the cf metric (lower is
better). cf predictor fcf achieves demographic parity; it has close-to-zero kl divergence (Lower is better.) ML
predictor fml predicts best; eco predicts best among the fair predictors (higher prediction scores are better.)
We report mean values across individuals with the standard deviation in parentheses. eco and cf metric
standard deviations are Æ 0.02 and Æ 0.02, respectively. We also report the KL divergence and prediction
accuracy, which are both distributional metrics.
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