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Abstract

We present a scalable and effective multi-agent safe motion1

planner that enables a group of agents to move to their desired2

locations while avoiding collisions with obstacles and other3

agents, with the presence of rich obstacles, high-dimensional,4

nonlinear, nonholonomic dynamics, actuation limits, and dis-5

turbances. We address this problem by finding a piecewise6

linear path for each agent such that the actual trajectories fol-7

lowing these paths are guaranteed to satisfy the reach-and-8

avoid requirement. We show that the spatial tracking error9

of the actual trajectories of the controlled agents can be pre-10

computed for any qualified path that considers the minimum11

duration of each path segment due to actuation limits. Us-12

ing these bounds, we find a collision-free path for each agent13

by solving Mixed Discrete-Continuous Linear Programs and14

coordinate agents by using priority-based search. We demon-15

strate our method by benchmarking in 2D and 3D scenarios16

with ground vehicles and quadrotors, respectively, and show17

improvements over the solving time and the solution quality18

compared to two state-of-the-art multi-agent motion planners.19

1 Introduction20

Multi-agent motion planning has a wide range of real-world21

applications, but it is notoriously difficult. Even navigating a22

single robot from an initial location to a goal location while23

avoiding collisions with obstacles is terribly challenging24

with the presence of rich obstacles, high-dimensional, non-25

linear, nonholonomic dynamics, actuation limits, and distur-26

bances. Not to say that when such complex robotic systems27

can interfere with each other in a shared environment, the28

scale of this problem is beyond the capability of most exist-29

ing methods.30

In this paper, we present Scalable and Safe Multi-agent31

Motion (S2M2) planner, a novel multi-agent motion planner32

that can fast and effectively generates provably safe plans33

for agent models with high-dimensional nonlinear dynam-34

ics and bounded disturbances in continuous time and space.35

Instead of directly planning dynamically-feasible trajecto-36

ries, which are extremely computationally expensive, S2M237

exploits a separation-of-concerns approach: We first design38

piecewise linear (PWL) paths Si for each dynamical agent39
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Ai to follow, with the understanding that the agents can- 40

not follow those PWL paths exactly. However, we show that 41

with appropriate tracking controllers, the actual trajectories 42

of each agent under disturbances can converge to Si with 43

guaranteed bounds on the spatial tracking error. More impor- 44

tantly, we show that such error bound can be pre-computed 45

for any qualified PWL path. The secrete sauce behind the 46

high efficiency of S2M2 is that we are able to formulate the 47

problem of finding PWL paths for a single agent as a Mixed 48

Integer-Linear Program (MILP), which can be solved effi- 49

ciently using off-the-shelf MILP solvers. 50

To avoid inter-agent collisions, we wrap our single-agent 51

motion planner with the priority-based search (Ma et al. 52

2019) that explores the space of priority orderings using sys- 53

tematic search. When priorities are specified, lower-priority 54

agents replan their paths while treating higher-priority 55

agents as moving obstacles. Together with the MILP-based 56

path planner and guaranteed tracking controller, S2M2 can 57

efficiently find plans that are provably safe and robust to dis- 58

turbances during execution. Moreover, by planning paths for 59

multiple agents on a continuous map over continuous time, 60

our method finds high-quality solutions with low flowtime 61

(i.e., makespan sum of all single-agent plans). 62

Consider an example of two disc-shaped vehicles mak- 63

ing u-turns, as shown in Figure 1. Given the partially known 64

initial locations and bounded disturbances, we first com- 65

pute the maximum spatial error of tracking a path segment, 66

which is a line, and then consider this error together with 67

the agent shape to obtain the possible swept area of the path 68

segment. The swept area of agent A1 during its second seg- 69

ment (p12, p13) is shown in light blue. We also consider the 70

minimum duration for each segment such that the agent has 71

enough time to adjust its position after turning, which is 3 72

seconds in our example. When our single-agent motion plan- 73

ner plans such paths for the agents, the obstacles are bloated 74

with respect to the spatial tracking error and the agent shape, 75

as shown in light red. The planner also constrains each seg- 76

ment to respect the minimum segment duration. As we can 77

see, when passing the corridor, both agents slow down and 78

use this 3 seconds to adjust its trajectory. After passing the 79

corridor, agentA2 uses its full speed to approach its goal lo- 80

cation. When potential collisions are detected, some agents 81

are assigned higher priorities and thus are treated as moving 82

obstacles for others. In our example, agent A1 is assigned 83
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Figure 1: Example of two disc-shaped vehicles making u-turns.
The initial and goal position sets are in blue and green, respectively.
The obstacles are in red. The bloated obstacles are in light red.
The paths of agents A1 and A2 are shown in solid black lines, and
examples of their actual trajectories are shown in dashed purple
lines. The swept area of agent A1 during its second segment is in
light blue.

higher priority and thus passes the corridor before agentA2.84

We compare the performance of S2M2 with ECBS-CT85

(Cohen et al. 2019) and MAPF/C+POST (Hönig et al. 2018)86

on 2D and 3D scenarios with ground vehicles and quadro-87

tors, respectively. Results show that S2M2 outperforms both88

planners in terms of solution qualities with 15 ∼ 70% re-89

duction for most instances. Moreover, S2M2 requires sev-90

eral magnitudes less time on pre-processing and also shows91

competitive runtime performance compared to the other two92

planners.93

2 Related Work94

Many works have approached the Multi-agent Motion Plan-95

ning (MAMP) problem from the perspectives of AI or96

robotics. These works can be generally divided into two97

categories with discrete and continuous settings, respec-98

tively. In the discrete setting, time and space are discretized99

into time steps and grids, respectively. Each agent occu-100

pies exactly one grid and can only move to adjacent grids101

at each time step. This problem is known as Multi-agent102

Path Finding (MAPF) (Stern et al. 2019). Researchers in103

the past years have made substantial progress in finding104

high-quality solutions to various scenarios with hundreds of105

agents and high congestion as described in surveys (Ma et al.106

2016; Felner et al. 2017). Prioritized planning is a popular107

and widely-used class of MAPF algorithms that coordinates108

multiple agents by specifying priorities among agents and109

forcing lower-priority agents to avoid collisions with higher-110

priority agents by treating their paths as dynamic obstacles111

(Velagapudi, Sycara, and Scerri 2010; Čáp, Vokřı́nek, and112

Kleiner 2015). The most recent prioritized planning algo-113

rithm Priority-based Search (PBS) (Ma et al. 2019) system-114

atically explores the space of priority orderings, which can115

lead to near-optimal solutions and possibly scale to a thou-116

sand agents. Our method adapts PBS to a continuous setting117

and thus can efficiently coordinate a large number of agents.118

While the classical MAPF assumes synchronized and dis-119

cretized time, zero-volume shape, constant velocities, and 120

rectilinear movement, several notable attempts have been 121

made towards closing the gap between classical MAPF and 122

MAMP using more realistic models. This includes consid- 123

ering the continuous timeline, different-size agent shapes, 124

kinematic constraints, robustness, and any-angle moving di- 125

rections (Walker, Sturtevant, and Felner 2018; Li et al. 2019; 126

Cohen et al. 2019; Andreychuk et al. 2019; Ma, Kumar, and 127

Koenig 2017; Atzmon et al. 2020; Yakovlev and Andrey- 128

chuk 2017). To obtain robust, executable, and high-quality 129

solutions, our method also supports these features. 130

In the continuous setting, sampling-based motion plan- 131

ners are often used (Le and Plaku 2018; Hönig et al. 2018). 132

They first generate a probabilistic roadmap and then ap- 133

ply MAPF algorithms on it. These MAPF solutions are ei- 134

ther used to guide the motion tree expansion (Le and Plaku 135

2018) or post-process to valid continuous trajectories (Hönig 136

et al. 2018). Similar to our approach, these algorithms can 137

handle high-order, nonlinear dynamics, and arbitrary com- 138

plex geometries. Some optimization-based planners tend to 139

solve a large optimization problem in which the decision 140

variables define the trajectories for all agents (Augugliaro, 141

Schoellig, and D’Andrea 2012; Mellinger, Kushleyev, and 142

Kumar 2012), which are only demonstrated on small agent 143

teams. Our motion planner also uses optimization problems 144

for generating trajectories. However, we only coordinate dif- 145

ferent agents on demand. To find a feasible plan for each 146

agent, we focus on finding a PWL path satisfying certain 147

duration and boundary requirements, which are encoded as 148

MILPs and solved efficiently. 149

As safety guarantee is important to successful execu- 150

tion, safe motion planning is receiving more attention re- 151

cently. Several approaches are studied in a reference track- 152

ing framework, which uses the idea of bounding tracking 153

errors through pre-computation based reachability analysis 154

(Herbert et al. 2017; Singh et al. 2017; Vaskov et al. 2019; 155

Fan, Miller, and Mitra 2020; Tedrake 2009; Majumdar and 156

Tedrake 2017). Other safe motion planners employ barrier 157

functions (Barry, Majumdar, and Tedrake 2012; Agrawal 158

and Sreenath 2017) or use robust model predictive con- 159

trol with chance constraints (Blackmore, Ono, and Williams 160

2011; Jasour and Williams 2019; Yu et al. 2013). Some of 161

these works have been extended to the multi-robot setting 162

(Wang, Ames, and Egerstedt 2016; Panagou, Stipanovič, 163

and Voulgaris 2013; Srinivasan, Coogan, and Egerstedt 164

2018; Desai et al. 2019; Huang, Ayton, and Williams 2018; 165

Richards and How 2004; Wagner and Choset 2017). Recent 166

learning-based methods also show great potential to effec- 167

tively navigate robot teams (Semnani et al. 2020; Liu et al. 168

2020). However, they cannot provide safety guarantees and 169

may lead to collisions. 170

3 Preliminaries and Problem Statement 171

For an n-dimensional vector x ∈ Rn, x(i) is its ith entry, ‖x‖ 172

is its Euclidean norm, and Bε(x) ≡ {y ∈ Rn‖ ‖y − x‖ ≤ 173

ε} is the ε-ball centered at it with ε > 0. Given a matrixH ∈ 174

Rn×m and a vector b ∈ Rn, an (H, b)-polytope Poly(H, b) 175

is the set {x ∈ Rm‖ Hx ≤ b}. Each row of the polytope 176



defines a halfspace H(i)x ≤ b(i), and each face is defined177

by H(i)x = b(i). dP(H) is the number of its faces.178

Definition 1 (Agent Model). An agent model Ai =179

〈Xi,Ui,Di, fi,Pi〉 is defined by its state space Xi ∈ Rn,180

input space Ui ⊆ Rm, disturbance space Di ∈ Rl, dynamic181

function fi : Xi × Ui × Di → Xi, and geometric shape182

Pi : Xi → 2R
δ

.1183

The semantics of agent dynamics are defined by trajec-
tories, which describe the evolution of states over time. An
input trajectory u over duration T is a continuous function
u: [0, T ] → Ui, which maps each time t ∈ [0, T ] to a con-
trol signal u(t) ∈ Ui. Similarly, a disturbance trajectory d
over duration T is a continuous function d: [0, T ] → Di.
Given an input trajectory u over Ui, a disturbance trajectory
d over Di, and an initial state x0 ∈ Xi, its state trajectory ξi
satisfies ξi(x0, u, d, 0) = x0 and for all t > 0,

ξ̇i(x0, u, d, t) = fi(ξi(x0, u, d, t), u(t), d(t)).

Example 1. Consider a nonholonomic differential two-184

wheeled vehicle (Rodrı́guez-Seda et al. 2014) as an exam-185

ple. Its state ξi(t) consists of three components: p(t) =186

[px(t), py(t)]T is the Cartesian coordinate of the center of187

inertia, θ(t) is the angular orientation, and v(t) is the lin-188

ear velocity. We also consider the bounded disturbances dx189

on px, dy on py , and dθ on θ. The dynamic function fi190

consists of five components: ṗx(t) = v(t) cos θ + dx(t),191

ṗy(t) = v(t) sin θ + dy(t), v̇(t) = u1(t) − kv(t), ω̇(t) =192

u2(t) − kω(t), and θ̇(t) = ω(t) + dθ(t), where k is a con-193

stant, and u1(t) and u2(t) are control force and torque as194

inputs, which can be used to compute the torques for the left195

and right wheels.196

Definition 2 (MAMP). A multi-agent motion planning
(MAMP) problem is defined by

〈W, O,A1, ..,AN ,X init
1 , ..,X init

N ,X goal
1 , ..,X goal

N 〉,

where workspaceW ⊆ Rδ is a bounding box in Rδ; δ = 2197

for ground vehicles and δ = 3 for aerial and underwater198

vehicles, and ξi(t) ↓ W is the projection of ξi(t) to the199

workspace; obstacles O = {oi}i ⊆ W are polytopes inW;200

A = {A1, ..,AN} is a set of agent models; X init
i ⊆ Xi201

and X goal
i ⊆ Xi are the initial set and the goal set of Ai.202

The planning problem is to find inputs (u1, .., uN ) for every203

(xinit1 , .., xinitN ) ∈ X init
1 × X init

2 × · · · X init
N and every204

disturbance trajectories (d1, .., dN ) such that the state trajec-205

tories (ξ1, .., ξN ) satisfy the reach-and-avoid requirement:206

1. (Dynamics) ∀Ai ∈ A, ξi(t) ≡ ξi(xiniti , ui, di, t);207

2. (Reach goal set) ∃t ≥ 0, ∀Ai ∈ A, ξi(t) ∈ X goal
i ;208

3. (Avoid obstacles) ∀t ≥ 0, ∀Ai ∈ A, Pi(ξi(t)) ∈ W and209

Pi(ξi(t)) ∩O = ∅.210

4. (Avoid inter-agent collisions) ∀t ≥ 0, ∀Ai,Aj ∈ A and211

i 6= j, Pi(ξi(t)) ∩ Pj(ξj(t)) = ∅212

1A state is usually made up of positions, orientations, and ve-
locities, while an input refers to the input of the controller, such as
accelerations and steering rates.

In this work, we will solve the MAMP problem by find- 213

ing a piecewise linear (PWL) path for each agent. The 214

PWL paths for the agents will be sufficiently far away from 215

the obstacles and from each other so that agents’ tracking 216

controllers can drive them to follow their PWL paths to 217

reach their goals without collisions. Here we define PWL 218

paths, tracking controllers, and reachability envelopes of 219

each agent with a given tracking controller. 220

Definition 3 (Piecewise Linear Path). A PWL path Si in the 221

workspaceW for an agent Ai is a function Si : R≥0 → W 222

that maps a time point to a position Si(t) ∈ W , which 223

can be constructed from a sequence of time-stamped way- 224

points Si = Path({(tk, pk)}k) such that Si(t) = pk−1 + 225
pk−pk−1

tk−tk−1
(t − tk−1) for t ∈ [tk−1, tk]. (tk, pk) ∈ R≥0 ×W 226

is called the kth waypoint of path Si, and Si(t) when t ∈ 227

[tk−1, tk] is called the kth segment of Si and denoted by 228

S
(k)
i . 229

Definition 4 (Decentralized Tracking Controller). A track- 230

ing controller for an agent Ai is a (state feedback) function 231

gi : Xi×W → Ui. At any time t, a tracking controller takes 232

in a current state of the system x ∈ Xi and a desired position 233

Si(t) ∈ W , and gives an input gi(x, Si(t)) ∈ Ui for Ai. 234

Fix a tracking controller gi and a PWL path Si for an 235

agent Ai, the resulting closed-loop controlled agent be- 236

comes an autonomous system. We use ξgii (x0, Si, di, t) = 237

ξi(x0, gi(x0, Si(t)), di, t) to represent the trajectory of the 238

controlled agent Ai starting from x0 with disturbance di. 239

The reachablity envelope of a controlled agent is a set of 240

states around the PWL path that contains all possible actual 241

trajectories of the controlled agent, defined as follows. 242

Definition 5 (Reachability Envelope). Given an agent 243

model Ai = 〈Xi,Ui,Di, fi,Pi〉, an initial set X init
i ⊆ Xi, 244

a PWL path Si, and a tracking controller gi, the reachablity 245

envelope at time t is ReachAi(X init
i , Si, gi, Di, t) = 246

{ξgii (x0, Si, di, t) ∈ Xi | ∃x0 ∈ X init
i ,∃di : R≥0 → Di}. 247

Example 2. Let a S(t) = [p∗x(t), p∗y(t)]T be a PWL path
of waypoint sequence {(tk, pk)}k. From (Rodrı́guez-Seda
et al. 2014), a valid tracking trajectory for Example 1 can be
constructed as[
u1

u2

]
=

[
cos θ sin θ

− sin θ/L cos θ/L

] [
u′1 + vω sin θ + Lω2 cos θ
u′2 − vω cos θ + Lω2 sin θ

]
,

where L is a positive constant and u′1, u
′
2 are computed as[

u′1
u′2

]
=

[
v∗ cos θ∗ − L sin θ∗ω∗

v∗ sin θ∗ + L cos θ∗ω∗

]
+G

z2p−1

1 + ‖z‖2p−1
,

where G is a positive constant, p is a positive integer, z = 248[
(px − p∗x) + L(cos θ − cos θ∗)
(py − p∗y) + L(sin θ − sin θ∗)

]
and ∀t ∈ [tk−1, tk], v∗(t) = 249

‖pk−pk−1‖
tk−tk−1

, θ∗(t) = atan2(pk − pk−1). The dashed purple 250

lines in Figure 1 illustrate such two trajectories of the closed- 251

loop agents. 252

4 Approach 253

Figure 2 gives an overview of our approach S2M2, consist- 254

ing of three key modules: (a). (Figure 2 left): Given a track- 255

ing controller gi for each agentAi, pre-compute reachability 256
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Figure 2: Schematic illustration of the approach.

envelopes for any PWL path Si using symmetry transfor-257

mations and cashed reachability envelopes, to get two key258

parameters: (1) an upper bound of the spatial tracking error259

between the actual trajectory ξgii (x0, Si, di, t) ↓ W and Si,260

and (2) the minimum duration of each path segment S(k)
i261

such that the spatial tracking error bound is always valid262

(Section 4.1). (b). (Figure 2 middle): Given two parame-263

ters from (a), the safe motion planning problem for each264

agent is reduced to finding a PWL path that is sufficiently265

far from the obstacles and other agents, which is further en-266

coded as a MILP problem (Section 4.2). (c). (Figure 2 mid-267

dle): To coordinate multiple agents, employ priority-based268

search to avoid inter-robot collisions, in which some agents269

treat other agents as moving obstacles and replan their paths270

optimally (Section 4.3). Putting them all together (Figure 2271

right), S2M2 finds a PWL path for each agent in the multi-272

agent system, so the closed-loop agents driven by tracking273

controllers can move along the PWL paths to safely achieve274

the reach-and-avoid requirement.275

4.1 Computing Reachability Envelopes276

Beyond the fact that a PWL path can be computed efficiently277

through solving a MILP problem (see Section 4.2), another278

key idea behind the use of PWL paths is that the reachability279

envelope can be pre-computed independent of the concrete280

values of the PWL paths’ waypoints. In this way, we know281

in advance how far the actual trajectories of each agent are282

away from their reference PWL paths, which can be used as283

constraints in finding the PWL paths.284

Various methods can be used to pre-compute the reach-285

ability envelope, including Contraction Metrics (Singh286

et al. 2017; Tsukamoto and Chung 2020), Lyapunov func-287

tions (Fan, Miller, and Mitra 2020), Funnels (Majumdar and288

Tedrake 2017), and Hamilton-Jacobi analysis (Herbert et al.289

2017). In this section, we take an alternative approach and290

show that under mild assumptions, using symmetry transfor-291

mation, we can construct the reachability envelope of each292

agent Ai following a PWL path Si = Path({(tk, pk)}k)293

from a finite number of reachability envelopes. These en-294

velopes are of the agent with the same dynamics follow-295

ing a single straight line defined by only two waypoints296

(0, [0, 0]T ) and (T, [σ, 0]T ). As a result, from these en-297

velopes around straight-line paths, we can obtain (1) an298

upper-bound of the distance between the actual trajectory299

projected to the workspace ξgii (t)(x0, Si, di, t) ↓ W and300

the reference PWL path Si; and (2) the minimum dura-301

tion bound for each path segment to guarantee such distance 302

bound. 303

Symmetry transformations on dynamical systems are first 304

introduced in (Russo and Slotine 2011) and defined as 305

the ability to compute new trajectories (reachable states) 306

of dynamical systems using existing trajectories (reachable 307

states). Intuitively, the reachability envelope for each line 308

segment are similar and can be constructed using translation 309

and rotation transformations. Due to the space limit, we pro- 310

vide a detailed definition and steps to use symmetry trans- 311

formations in the supplementary material. 312

For the rest of this section, we abuse the notation and use 313

ReachAi(X init
i,k , S

(k)
i , gi, Di, t)) to denote the reachability 314

envelope of the agent following the path segment S(k)
i from 315

(tk−1, pk−1) to (tk, pk), where trajectories start from initial 316

set X init
i,k at time tk−1. The initial set is defined recursively 317

as X init
i,k = ReachAi(X init

i,(k−1), S
(k−1)
i , gi, Di, tk−1)). 318

Consider the ground vehicle model in Example 1 with the
tracking controller in Example 2, we construct the following
symmetry operator for this model, which encodes translation
and rotation transformations:

γ([px, py, θ, v, ω]) = [px cos θ
∗ − py sin θ∗ + pk−1,x,

px sin θ
∗ + py cos θ

∗ + pk−1,y, θ + θ∗, v, ω],

where θ∗ = atan2(pk − pk−1). Using such γ, the reachabil-
ity envelopes of the segment S(k)

i can be constructed from
a reachability envelope of path Sx-axis

i , which moves and ro-
tates S(k)

i as a line along the x-axis from the origin:

Sx-axis
i = Path

({(
0,

[
0

0

])
,

(
tk − tk−1,

[
‖pk − pk−1‖

0

])})
.

Then, the reachability envelope of S(k)
i is constructed as:

ReachAi(X
k
i , S

(k)
i , gi, Di, t)) =

γ
(
ReachAi

(
γ−1(X k

i ), S
x-axis
i , gi, Di, t)

))
,

where for a set Y ⊆ X , γ(Y) = {γ(x) | x ∈ Y} and 319

γ−1(Y) = {y | ∃x ∈ Y, γ(y) = x}. 320

Since the translation and rotation transformations pre- 321

serve vector lengths, γ (Reach(·, ·, ·, ·, ·)) has the same size 322

as Reach(·, ·, ·, ·, ·). Thus, as long as we pre-compute the 323

envelope ReachAi(X init
i , Sx-axis

i , gi, Di, t)) that follows a 324

path Sx-axis
i = Path({(0, [0, 0]T ), (T, [σ, 0]T )}) for suffi- 325

ciently long T and for all σ ∈ [vminT, vmaxT ], and also if 326

γ−1(X ki ) ⊆ X init
i for all k = 1, ..,K (K is the number of 327

path segments in Si), we can always construct the reach- 328

ability envelope of following PWL paths using the sym- 329

metry operator γ on the envelope following Sx-axis
i . More- 330

over, agents with the same dynamics and same tracking 331

controller can also re-use the cached reachability envelope 332

ReachAi(X init
i , Sx-axis

i , gi, Di, t)). These envelopes can 333

be computed using any nonlinear reachability toolbox, such 334

as Flow* (Chen, Ábrahám, and Sankaranarayanan 2013), 335

CORA (Althoff, Grebenyuk, and Kochdumper 2018), and 336

DryVR (Fan et al. 2017). The construction of reachability 337

envelope for aerial vehicles is similar. 338



To understand how far the reference path Si needs to be
away from the obstacles and each other, we define the max-
imum spatial tracking error ei,max as follows:

ei,max = argmine∀σ ∈ [vminT, vmaxT ],∀t ∈ [0, T ],

Be(S
x-axis
i (t)) ⊇ ReachAi

(
X init

i , Sx-axis
i , gi, Di, t

)
↓ W,

where Sx-axis
i = Path({(0, [0, 0]T ), (T, [σ, 0]T )}). We im-339

plement this equation by first discretizing [vminT, vmaxT ]340

with ∆ and calculating the error bound e for each reacha-341

bility envelopes with length σj = (vminT + j∆). Then, we342

choose the maximum value over all these errors as ei,max.343

Notice is that to guarantee that, for any segment S(k)
i , the344

trajectories can converge close enough to it before switch-345

ing to the next line segment, the tracking controller needs346

to be applied sufficiently long. So we identify the minimum347

segment duration Ti,min such that tk − tk−1 > Ti,min guar-348

antees γ−1(X ki ) ⊆ X init
i , for k = 1, . . . ,K. Similarly, for349

the last line segment S(K)
i , we also find the minimum dura-350

tion T ′i,min < tK − tK−1 such that the final reachable states351

of the trajectory following path S(K)
i have enough time to352

be sufficiently small to fit into the goal set X goal
i .353

4.2 Finding Paths for Single Agents354

In this section, we describe the method for finding a PWL355

path for a single agent Ai with the presence of static obsta-356

cles and moving obstacles. To obtain a valid path, we solve357

a MILP problem. The decision variables of this MILP are358

(p0, p1, .., pK) with domain W and (t0, t1, .., tK) with do-359

main R≥0, which represent the waypoint positions and their360

time stamps, respectively. The objective is to minimize the361

makespan tK . We constrain the initial position to be at the362

center of the initial set Siniti and the initial time to be 0:363

(p0 = Center(Siniti ↓ W)) ∧ (t0 = 0).364

In the rest of this section, we introduce the other sets of the365

constraints that ensure the instantiated trajectory of the ob-366

tained path is valid with respect to the system dynamics, spa-367

tial tracking error ei,max, minimum segment duration Ti,min,368

and minimum duration for the last segment T ′i,min.369

Time-Position Constraints We first add constraints over
the duration (tk − tk−1) and the spatial difference
(pk − pk−1) for each segment to make sure its veloc-
ity pk−pk−1

tk−tk−1
respects the velocity bound. Let vmin and

vmax be the minimum and maximum velocities, respec-
tively. Then, the feasible velocity set is Bvmax(0)/Bvmin(0).
We further under-approximate Bvmax(0) to polytope
Poly(Hvmax, bvmax), and over-approximate Bvmin(0) to
polytope Poly(Hvmin, bvmin). The constraints to ensure
each segment to satisfy such dynamic relations are:

(∨dP(Hvmin)
j=1 H

(j)
vmin(pk − pk−1) ≥ b(j)vmin(tk − tk−1))

∧(Hvmax(pk − pk−1) ≤ bvmax(tk − tk−1)) ∀k = 1, 2, ..,K

We handle disjunctive linear constraints (∨dP(H)
j=1 H(j)x ≤370

b(j) by using the big-M method. We define a dP(H)-vector371

of binary variables α, and α(j) = 1 if and only if H(j)x ≤372

b(j) holds for x. LetM be a very large positive number, then 373

the constraints is encoded as (∧dP(H)
j=1 H(j)x+M(1−α(j)) ≤ 374

b(j)) ∧ (
∑dP(H)
j=1 α(j) ≥ 1). 375

Reach-and-Avoid Constraints As the actual tracking tra- 376

jectories deviate from the PWL paths due to inertia, actua- 377

tion limits, disturbances, and uncertain initial position, we 378

should consider this deviation when encoding constraints 379

related to obstacles and goals. We have shown that the er- 380

ror between the actual trajectory and the PWL path can 381

be bounded within ei,max for each agent Ai. In addition to 382

the position deviation, we should consider the agent shape, 383

and the swept area should not intersect with obstacles as 384

well. Then, we know all the possible swept area at posi- 385

tion p is R = p ⊕ Bl(0), where l = ei,max + ri, and ri is 386

the radius of the ball containing the agent Ai. For obstacle 387

o = Poly(Ho, bo) ∈ O, the bloated obstacle with respect 388

to R is Poly(Ho, bo + ‖Ho‖ l). As long as the path is away 389

from these bloated obstacles, the actual tracking trajectories 390

are guaranteed to be collision-free. 391

To constrain the segments to be away from an obstacle,
which is an polytope, we force the end points of every seg-
ment to be at least on one face of this polytope, which is a
sufficient condition of being collision-free. The constraint is
then as follows: ∀k = 1, 2, ..,K, ∀o ∈ O,

∨dP(Ho)j=1 ((H(j)
o pk−1 > bo + ‖Ho‖ l) ∧ (H(j)

o pk > bo + ‖Ho‖ l)).

For the moving obstacle o ∈ O′ defined by its occupied
region Poly(Ho, bo) and the occupying duration [lbo, ubo],
we require the agent to either avoid colliding with o or mov-
ing through this region out of the duration [lbo, ubo]:

∨dP(Ho)j=1 ((Hopk−1 > bo + ‖Ho‖ l) ∧ (Hopk > bo + ‖Ho‖ l))
∨(tk−1 < lbo) ∨ (tk > ubo), ∀k = 1, 2, ..,K,∀o ∈ O′.

To make sure the spatial error are indeed bounded by
ei,max, we add a constraint to force the nonzero-duration
segment to be at least Ti,min time:

(tk − tk−1 = 0) ∨ (tk − tk−1 ≥ Ti,min) ∀k = 1, 2, ..,K.

We also require the agent to be at the goal set Sgoali 392

at time tK , and the last segment should be at least T ′i,min 393

such that the agent has enough time to fit in: (pK = 394

Center(Sgoali ↓ W)) ∧ (tK − tK−1 ≥ T ′i,min). 395

4.3 Coordinating Multiple Agents 396

We deploy Priority-based Search (PBS) (Ma et al. 2019) to 397

coordinate agents and avoid inter-agent collisions. PBS is 398

an efficient two-level search algorithm designed for solving 399

MAPF near-optimally. When it detects a collision between 400

two agents, it constrains one of the agents to have a lower 401

priority than the other and replans its path by treating the 402

path of the higher-priority agent as dynamic obstacles. As 403

we coordinate the agent trajectories over continuous time- 404

line and continuous space, which is nontrivial or inefficient 405

to summarizes collisions to conflicts, PBS is a more natu- 406

ral candidate to effectively coordinate agents than conflict- 407

based algorithms such as CBS (Sharon et al. 2015). 408



Formally, we coordinate agents and resolve collisions by409

exploring a priority tree (PT). We start with the root PT node,410

that contains a set of individually optimal paths, not nec-411

essarily collision-free, and an empty priority ordering. We412

explore the PT in a depth-first manner, breaking ties by in413

favor of the node with smaller flowtime. During expansion,414

we identify the pair of agents Ai and Aj with the earliest415

collision and generate two child PT nodes that inherit the416

priority ordering of the current PT node plus an additional417

ordered pairs (j ≺ i) and (i ≺ j), respectively. For each418

child PT node, we pick the lower-priority agent, i.e., Ai or419

Aj , and replans an individually optimal path for it by treat-420

ing all agents that have higher priorities than it as moving421

obstacles. This procedure is terminated when we find a PT422

node whose paths are collision-free.423

Compared to the original PBS in (Ma et al. 2019), we424

make two modifications: (1) the single-agent planner in425

S2M2 uses our MILP encoding since our sub-problem is426

to find a sequence of time-stamped waypoints in a contin-427

uous map over continuous timeline rather than a graph over428

discrete time steps; (2) when a new priority is added to re-429

solve a collision, we lazily update the paths by replanning430

for only the lower-priority agent involved in this collision431

instead of all the lower-priority agents that have collisions,432

which shows better scalability in our practical experiments.433

Figure 3: Examples of moving obstacles in 2D and 3D
workspaces. All the possible swept area is in blue, and is over ap-
proximated to polytopes as shown with dashed line boundaries.

During replanning, some agents are treated as moving ob-434

stacles for other agents. Here we introduce our method for435

encoding all the possible swept area of a path segment as436

a moving obstacle. Consider a segment from (tk−1, pk−1)437

to (tk, pk). As we know all the swept area at position p is438

R = p ⊕ Bl(0), we can calculate its moving obstacle as439

(tk−1, tk,Poly(Hk, bk)), where Poly(Hk, bk) is a poly-440

gon containing all the possible swept area during duration441

(tk−1, tk). Thus, if other agents do not swept Poly(Hk, bk)442

during (tk−1, tk), their paths are guaranteed to be collision-443

free. The central axis of this moving obstacle is in the di-444

rection atan2(pk − pk−1) with length 2l + ‖pk − pk−1‖. In445

a 2D workspace, the cross section of this tube is a line that446

is vertical to the central axis, and its width is 2l. In a 3D447

workspace, the cross section is a circle with radius l. We448

further over approximate this circle as a polygon such as a449

octagon. Figure 3 shows examples in 2D and 3D workspace.450

5 Experimental Results451

We present experimental results on both 2D and 3D envi-452

ronments with ground vehicles and quadrotor models, re-453

spectively. We used DryVR (Fan et al. 2017) to generate454

reachability envelopes and Gurobi 9.0.1 (Gurobi Optimiza-455

tion 2020) as the MILP solver. We compared S2M2 with the456

state-of-the-art 2D planner ECBS-CT (Cohen et al. 2019) 457

and 3D planner MAPF/C+POST (Hönig et al. 2018). All ex- 458

periments were run on a 3.40GHZ Intel Core i7-6700 CPU 459

with 36GB RAM with a runtime limit of 100s. We repeated 460

each experiment 25 times for each agent number using dif- 461

ferent randomly generated initial and goal locations for the 462

agents. We report the average runtime, success rates, and 463

flowtime for each agent number on each map. We also pro- 464

vide additional experiments and videos in the supplementary 465

materials. 466

(a) Arena. (b) Den502d. (c) Wall.

Figure 4: Maps and scenarios.

2D Experiment We compare S2M2 against ECBS-CT 467

on two benchmark maps from the Grid-Based Path Plan- 468

ning Competition (GPPC)2, namely Arena (49 × 49) and 469

Den502d (251 × 211). We assume a disc-shaped agent with 470

a radius 0.5. While agent dynamics for ECBS-CT is ap- 471

proximated with 16 discrete orientations and 5 primitives, 472

which is taken from the Search-based Planning Laboratory 473

(SBCL)3, S2M2 considers a vehicle model with continuous, 474

nonholonomic, nonlinear dynamics from (Rodrı́guez-Seda 475

et al. 2014) with additional bounded disturbances. Both the 476

cost multiplier for the motion primitive model and the max- 477

imum velocity for our model are set to 1. We set the focal 478

weight ω (i.e., suboptimality ratio) for ECBS-CT to 1.2 and 479

1.5. The average runtime and success rate of our method and 480

ECBS-CT on these two maps are given in Figure 5(a)-(d). 481

The corresponding solution qualities are given in Table 1. 482

First of all, we observe that S2M2 is several magnitudes 483

faster than ECBS-CT in terms of the pre-processing time. 484

While S2M2 takes 0.33s to pre-compute the spatial error 485

bound and the minimum duration for all agents, the time 486

for ECBS-CT to pre-compute the perfect heuristic is 0.27s 487

on Arena and 18.18s on Den502d for each agent, which 488

make the total pre-processing time for ECBS-CT very large. 489

For instance, for each instance on Den502d with 60 agents, 490

ECBS-CT spends roughly 1, 100s to compute these heuris- 491

tics. This makes S2M2 a much better candidate to real-time 492

navigate large agent teams. 493

Furthermore, S2M2 outperforms ECBS-CT in terms of 494

both runtime and success rates, as shown in Figure 5(a)- 495

(d). While S2M2 halves the runtime of ECBS-CT on Arena 496

for most instances when ω = 1.5, it is roughly one-third 497

of that when ω = 1.2 (Figure 5(a)). In Figure 5(c), the 498

runtime of ECBS-CT does not change much with different 499

weights on Den502d. While S2M2 takes half the time than 500

ECBS-CT for most Den502d instances, S2M2 is one mag- 501

nitude faster when the agent number is less 40. As shown 502

in Figure 5(b)(d), the success rates of ECBS-CT drop much 503

sharper than S2M2. When ECBS-CT fails half the instances, 504

2GPPC: https://movingai.com/GPPC
3SBCL: http://sbpl.net



(a) Runtimes for Arena. (b) Success rates for Arena.

(c) Runtimes for Den502d. (d) Success rates for Den502d.

(e) Runtimes for Wall. (f) Success rates for Wall.

Figure 5: Runtimes and success rates.

S2M2 still solves more than 90% of them. We do not include505

the case when ω = 1 (i.e., search for optimal solutions) since506

ECBS-CT merely solves instances even for 10 agents. We507

also test with larger focal weights, but it does not show sig-508

nificant improvement over runtimes or success rates.509

In Table 1, we can see S2M2 reduces at least half flow-510

time for Arena instances, and this reduction is up to 70% as511

the agent number increases. This is because S2M2 directly512

plans high-fidelity models on a continuous map over con-513

tinuous timeline, which provides more flexibility in avoid-514

ing collisions, especially in smaller maps. On the larger map515

Den502d, we can still observe roughly 15% cost reduction.516

3D Experiment We use map Wall (13 × 13 × 5) from517

(Hönig et al. 2018). In this scenario, a nano-quadrotor team518

(Preiss et al. 2017) starts from one side of the wall with519

three windows and is asked to fly to the other side. We520

compare S2M2 with MAPF/C+POST, which performs a521

generalized-MAPF algorithm called MAPF/C on a graph522

with sparse samples and then post-processes the discrete so-523

lution to valid continuous trajectories. We use the same pa-524

rameters for sampling and post-processing as the original525

paper. The focal weight of MAPF/C is chosen to be 1.2. In526

post-processing, we set the total iterations to 7 and continu-527

ity degree to 4. The average runtime and success rate of our528

method and MAMP/C+POST are given in Figure 5(e)-(f),529

while the solution qualities are given in Table 1.530

While it takes only 0.83s for S2M2 to pre-compute the531

error bound and minimum duration, the time to generate532

#agents S2M2
ECBS-CT
(ω = 1.2)

ECBS-CT
(ω = 1.5)

A
re

na

10 382.02 867.83 868.00
20 741.20 1848.07 1948.07
30 1062.60 2929.95 3147.36
40 1366.23 NA 4554.60

D
en

50
2d

10 1292.01 1566.78 1567.87
20 2569.11 3135.57 3134.96
30 3962.72 4621.11 4620.03
40 5517.90 6292.29 6202.304
50 7289.37 7798.79 7821.35
60 8681.73 9452.26 9480.53

#agents S2M2 MAPF/C MAPF/C+POST

W
al

l

5 48.00 50.32 80.35
10 102.77 103.08 142.27
15 162.37 152.38 200.36
20 230.75 200.67 230.00
25 299.29 265.09 315.20

Table 1: Solution quality (i.e., average flowtime) for Arena and
Den502d (above) and Wall (below).

roadmaps for MAPF/C by using SPARS is 668.94s and an- 533

notating conflicts takes 902.00s, which leads to 1570.94s 534

in total. This pre-processing time takes such long because 535

the sampling and conflict-annotating procedures, which is 536

critical to the efficiency and solution qualities of MAPF/C, 537

requires computationally expensive distance checking on an 538

exponentially increasing number of edges. Thus, MAPF/C is 539

sensitive to the map size and only scales to small maps. We 540

also tested the SPARS sampling module with the 3D Arena 541

map (49 × 49 × 5), in which the obstacle height is 5. We 542

failed to get a reasonably connected roadmap in hours. 543

Although MAPF/C is efficient on sparse, well-connected 544

roadmaps, S2M2 can still solve most instances faster when 545

#agents < 20. The runtime is less than 1s for instances 546

with 10 agents, which makes S2M2 a better candidate to 547

coordinate agents in real-time. In Table 1, we also ob- 548

serve that S2M2 has up to 40% cost reduction compared 549

to MAPF/C+POST trajectories. Even though the discrete 550

MAPF/C solution is bounded suboptimal, the quality of its 551

valid continuous trajectory is not guaranteed. 552

6 Conclusions 553

We presented S2M2, a fast and effective multi-agent motion 554

planner that generates provably safe plans for agent mod- 555

els with high-dimensional, nonlinear dynamics and bounded 556

disturbances. S2M2 plans piecewise linear paths for each 557

agent that satisfies certain safe bounds and coordinates mul- 558

tiple agents using priority-based search. We show that S2M2 559

improves both the solving time and the solution quality com- 560

pared to two state-of-the-art multi-agent motion planners 561

ECBS-CT and MAPF/C+POST. Especially, S2M2 saves 562

much time on pre-processing either for computing heuristics 563

or sampling roadmaps compared to the existing methods. In 564

the future, we intend to explore the search-based method, 565

such as any-angle pathfinding to improve the efficiency of 566

our single-agent motion planner. 567
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