Hilbert geometry of the symmetric positive-definite bicone

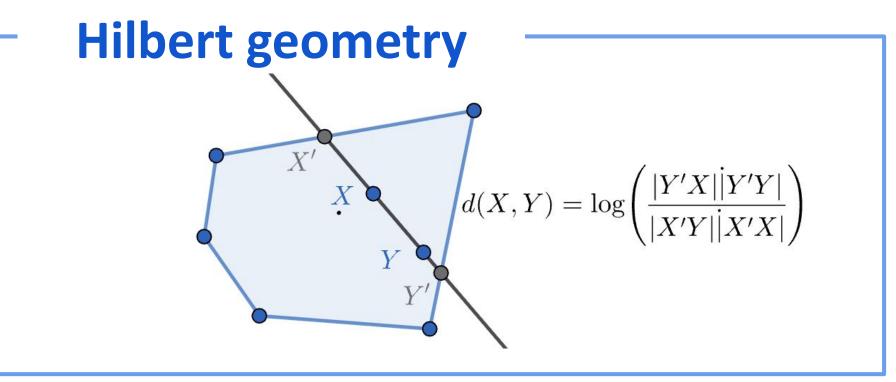
Application to the geometry of the extended Gaussian family

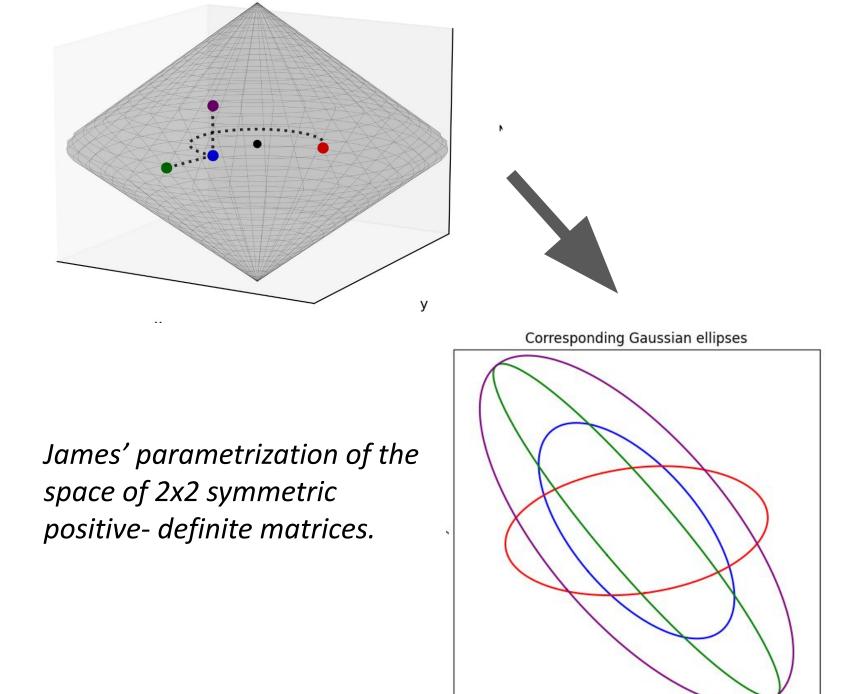
Jacek Karwowski
Department of Computer Science
University of Oxford, UK

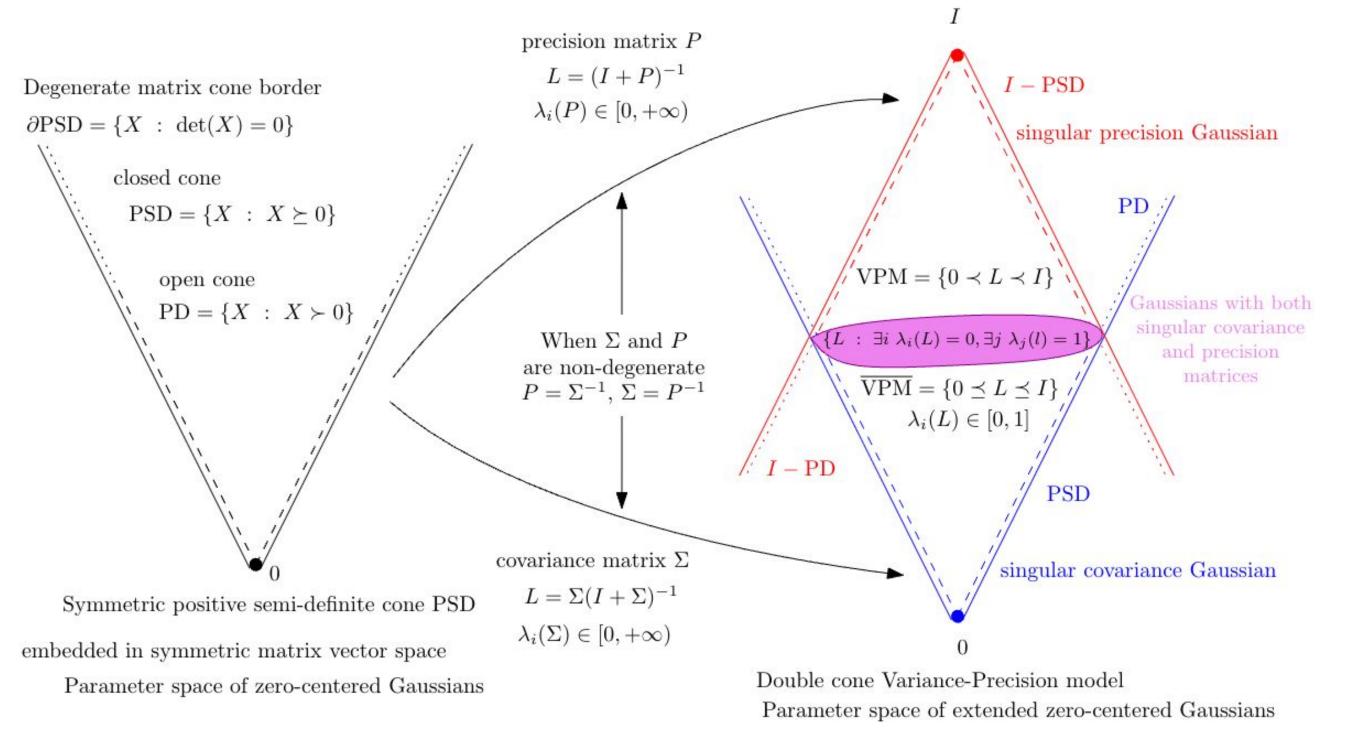
Frank Nielsen
Sony Computer Science Laboratories Inc.
Tokyo, Japan

Our work in one (long) sentence

Our work finds a closed-form Hilbert metric for the open bicone of real symmetric positive-definite matrices, fully characterizes its invariance properties, and outlines potential applications for extended Gaussian distributions: i.e., distributions formed by completing the Gaussian family with degenerate covariance (supported on a subspace) or degenerate precision ("kind of uniform distribution on an affine subspace") cases.







Hilbert distance in VPM

Theorem (Hilbert distance on VPM(n)). Given two matrices $A, B \in VPM(n)$,

$$d_H(A, B) = \log \frac{\max(\lambda_{\max}, \mu_{\max})}{\min(\lambda_{\min}, \mu_{\min})}$$

where

$$\lambda_{\min} = \lambda_{\min}(B^{-1}A), \qquad \lambda_{\max} = \lambda_{\max}(B^{-1}A),$$

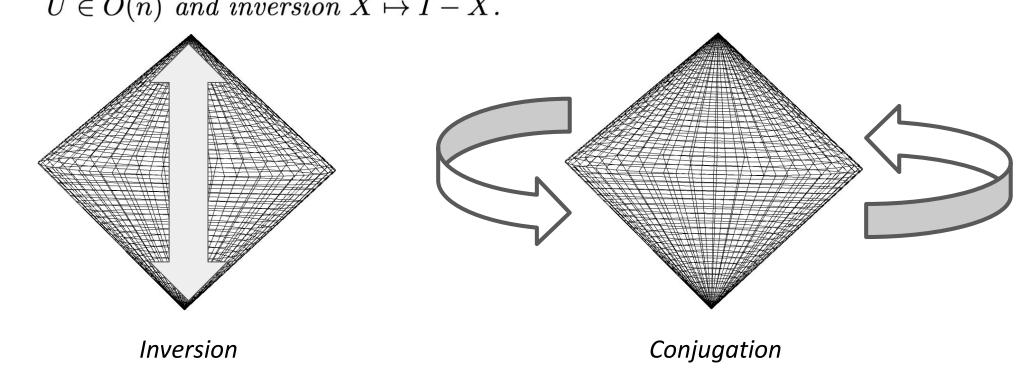
are the minimal and maximal eigenvalues of the $B^{-1}A$ matrix, and

$$\mu_{\min} = \lambda_{\min}((I - B)^{-1}(I - A)), \qquad \mu_{\max} = \lambda_{\max}((I - B)^{-1}(I - A)),$$

are the minimal and maximal eigenvalues of the $(I-B)^{-1}(I-A)$ matrix.

Classification of isometries of VPM

Theorem (Classification of VPM isometries). The group of isometries of VPM(n) for n > 1 is generated by conjugation by orthonormal matrices $X \mapsto U^T X U$ for $U \in O(n)$ and inversion $X \mapsto I - X$.



Comparison with AIRM

Affine-Invariant Riemannian distance:

$$ho(Q_1,Q_2) = \sqrt{\sum_{i=1}^n \log^2 \lambda_i(Q_1Q_2^{-1})}.$$

Comparison of the AIRM vs Hilbert VPM distances. By $Mob(Q_1, Q_2)$ we denote the Möbius transformation $Mob(Q_1, Q_2) = (I - Q_1)^{-1}(I - Q_2)$.

Eigenvalues: $\{\lambda_i(Q_1)\}$ Invariance under a map: XInvariance under congruence:

 $\begin{array}{ll} \text{AIRM distance} & \text{Hilbert VPM distance} \\ \{\lambda_i(Q_1Q_2^{-1})\}_{1 \leq i \leq n} & \lambda_1(Q_1Q_2^{-1}), \lambda_n(Q_1Q_2^{-1}) \\ & \lambda_1(\text{Mob}(Q_1,Q_2)), \lambda_n(\text{Mob}(Q_1,Q_2)) \\ X \mapsto X^{-1} & X \mapsto I - X \\ \text{GL}(n) & O(n) \end{array}$

Extension to the boundary

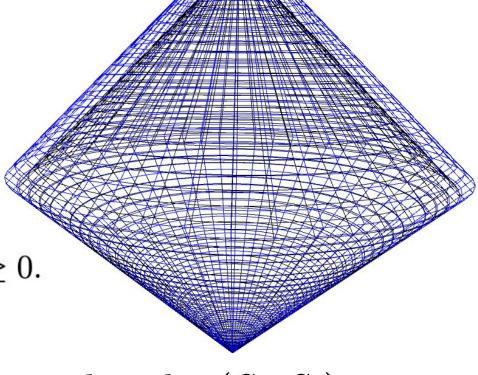
Proposition (Lower bounding Hilbert VPM distance)

 $\forall \epsilon > 0, \forall S_1, S_2 \in \mathrm{VPM}(n)$

 $d_H(S_1, S_2) \ge d_{H,\epsilon}(S_1, S_2).$

where:

$$\overline{\text{VPM}}_{\epsilon} = \{ -\epsilon I \leq X \leq (1 + \epsilon) I \}, \quad \epsilon \geq 0.$$

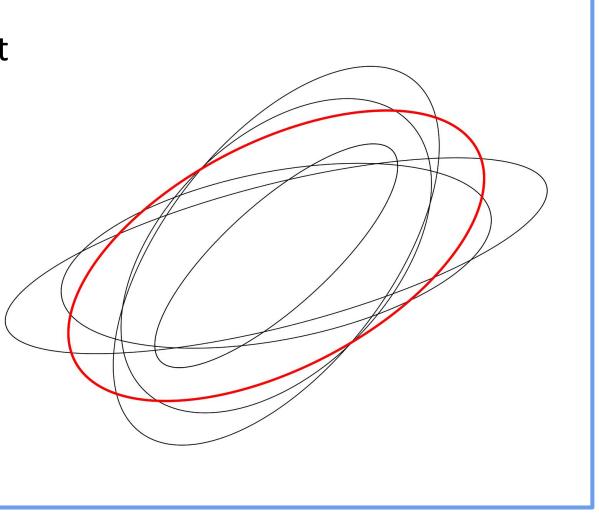


For $S_1, S_2 \in \partial \overline{VPM}(n)$, $d_H(S_1, S_2) = +\infty$ but $d_{H,\epsilon}(S_1, S_2) < +\infty$.

Smallest Enclosing Ball

Straight-line geodesics in Hilbert geometry allow for easy implementation of various geometric primitives.

Here, an example implementation of Badoiu and Clarkson iterative geodesic-cut algorithm for approximating Smallest Enclosing Ball.



Extension to non-centered Gaussians

Using Calvo-Oller embedding, we can map non-centered Gaussians into positive-definite matrices, and thus, into VPM.

$$(\mu, \Sigma) \mapsto \in \Sigma_{\mu}^{+} = \begin{bmatrix} \Sigma + \mu \mu^{\top} & \mu \\ \mu^{\top} & 1 \end{bmatrix} \subset PD(n+1).$$

If you'd like to read more, see the full paper (arXiv:2508.14369) QR code \rightarrow

