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ABSTRACT

The Maximal Update Parametrization (µP) aims to make the optimal hyperpa-
rameters (HPs) of a model independent of its size, allowing them to be swept
using a cheap proxy model rather than the full-size target model. We present a
new scheme, u-µP, which improves upon µP by combining it with Unit Scaling, a
method for designing models that makes them easy to train in low-precision. The
two techniques have a natural affinity: µP ensures that the scale of activations is
independent of model size, and Unit Scaling ensures that activations, weights and
gradients begin training with a scale of one. This synthesis opens the door to a
simpler scheme, whose default values are near-optimal. This in turn facilitates a
more efficient sweeping strategy, with u-µP models reaching a loss that is equal to
or lower than comparable µP models and working out-of-the-box in FP8.
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Figure 1: (a) Two different HP sweeping processes used for µP and u-µP proxy models. Unlike µP,
u-µP admits independent (1D) search due to careful HP design. The first part of independent search is
an LR sweep, which alone reaches near-optimal loss for u-µP. (b) Using the best proxy HPs from (a),
we train many models at different widths and LRs. The best LR for width 256 is ~optimal for 4096,
showing LR transfer along with lower loss. (c) We re-train with a simple un-scaled .to(float8)
cast on matmul inputs. This would fail for other models, but u-µP trains with minimal degradation.
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1 INTRODUCTION

The challenges of large-model training extend beyond the domain of engineering; they are also
algorithmic in nature. Effective approaches for training smaller models are not guaranteed to work at
the multi-billion-parameter scale used for today’s large language models (LLMs). These difficulties
can be framed in terms of stability, which we consider in three forms:

1. feature learning stability, which ensures that parts of the model do not learn too fast or slow
relative to each other.

2. hyperparameter stability, which ensures that the optimal HPs for small models remain
unchanged as the model size grows.

3. numerical stability, which ensures that floating-point representations during training stay
within the range of a given number format.

The Maximal Update Parametrization (µP) (Yang & Hu, 2021; Yang et al., 2022) targets the first
two sources of instability. µP defines a set of scaling rules that in principle make a model’s optimal
HP values consistent across model sizes and ensure ‘maximal feature learning’ in the infinite-width
limit. The practical benefits of this are that models continue to improve as they get larger, and that
practitioners can re-use a set of HP values (especially the learning rate) found for a small proxy
version of their model, on a larger target model. This is vital for modern LLM training, where the
cost of sweeping over candidate HP values for the target model is prohibitive. Consequently, µP has
been adopted by several open LLM training efforts (Dey et al., 2023a;b; Liu et al., 2023; Hu et al.,
2024) and there are indications of its use in state-of-the-art LLMs1.

However, there exists a gap between the extensive theory underpinning µP and its effective use in
practice. This relates to issues surrounding efficient HP search, HP transfer, interpretability, ease-of-
use and low-precision training. Some of these problems have been observed in the literature (Yang
et al., 2022; Almazrouei et al., 2023; Lingle, 2024); others we outline here for the first time. As a
result, µP does not necessarily provide the kind of simple, stable scaling for which a user might hope.

To address this, we propose the Unit-Scaled Maximal Update Parametrization (u-µP). u-µP combines
µP with another closely-related training innovation, Unit Scaling (Blake et al., 2023). µP ideally
provides consistent training dynamics across model sizes, but says little about what those dynamics
should be. Unit Scaling addresses this by proposing an ideal principle for dynamics: unit variance for
all activations, weights and gradients. Unit Scaling was initially designed to ensure stable numerics,
but in the context of µP the principle of unit-scale brings many additional benefits. We show that it
provides a foundation upon which the broader range of drawbacks identified for µP can be addressed.

2 BACKGROUND

2.1 THE MAXIMAL UPDATE PARAMETRIZATION

Tensor Programs V (Yang et al., 2022) defines a parametrization as ‘a rule for how to change [HPs]
when the widths of a neural network change’. They show that µP is the only parametrization giving
‘maximal feature learning’ in the limit, while standard parametrization (SP) has imbalanced learning.

One consequence of this improved stability is that learning dynamics under µP are ideally independent
of model-size, as are optimal HPs. This facilitates a method known as µTransfer, which describes
the process of training many smaller proxy models to evaluate candidate HP values, then using the
best-performing ones to train a larger target model.

ABC-parametrizations. µP, SP, and the Neural Tangent Kernel (NTK) (Jacot et al., 2018) are all
instances of abc-parametrizations. This assumes a model under training where weights are defined as:

Wt = AW · wt, w0 ∼ N (0, B2
W ),

wt+1 = wt + CW · Φt(∇L0, ...,∇Lt), (1)

1 The GPT-4 technical report (OpenAI, 2023) hints at the use of µP by including Yang et al. (2022) in its
references, without citing it directly. The multipliers present in the Grok (xAI, 2024) codebase also suggest the
use of µP.
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with t a time-step and Φt(∇L0, ...,∇Lt) is the weight update based on previous loss gradients.

A parametrization such as µP is then defined by specifying how scalars AW , BW , CW change with
model width. This can be expressed in terms of width-dependent factors aW , bW , cW , such that
AW ∝ aW , BW ∝ bW , CW ∝ cW . The values these factors take are what characterize a particular
scheme. For µP these are given in Table 1. For depth, a similar result has been proved using depth-µP
(Yang et al., 2023b), albeit in a restricted setting. When we refer to µP in the paper we assume the
depth-µP scaling rules (Table 2, ‘Residual’ column).

A key property of the abc-parametrization is that one can shift scales between AW , BW , CW in a way
that preserves learning dynamics (i.e. the activations computed during training are unchanged). We
term this abc-symmetry. For a fixed θ > 0, the behavior of a network trained with Adam is invariant
to changes of the kind:

AW ← AW /θ, BW ← BW · θ, CW ← CW · θ (2)

(reproduced from Tensor Programs V, Section J.2.1). This means that parametrizations like µP can be
presented in different but equivalent ways. ABC-symmetry is a key component in developing u-µP.

Transferable HPs. µP focuses on the subset of HPs whose optimal values we expect to transfer across
axes such as width and depth. We term these µTransferable HPs. All µTransferable HPs function as
multipliers and can be split into three kinds: αW , σW , ηW where AW ∝ αW , BW ∝ σW , CW ∝ ηW .
The difference between these multipliers and the ones that define a parametrization is that they are
specified by the user, rather than being a function of width. αW and ηW are rarely introduced outside
of the µP literature, but can be valuable to tune for both µP and SP models. In the µP literature
the term ‘HPs’ often implicitly refers to µTransferable HPs. We adopt this convention here, unless
specified otherwise.

Base shape. Two additional non-µTransferable HPs introduced by µP are the base-width and
base-depth. This refers to a mechanism where a user specifies a particular shape for the model,
where its behavior under µP and SP are the same. The µP model still scales according to the abc-rules,
so for all other shapes the two models will be different.

In summary, the absolute expressions for AW , BW , CW under µP are given by:

AW ← αW
aW
aWbase

, BW ← σW
bW
bWbase

, CW ← ηW
cW
cWbase

(3)

Though base shapes are necessary for µP, they are not typically swept. Rather, they are considered a
preference of the user, who may wish to retain the behavior of an existing SP model at a given shape.

Choosing HPs to sweep. In theory, the search space of µTransferable HPs includes αW , σW , ηW for
every parameter tensor W in the model. In practice, far fewer HPs are swept, with global grouping
often used for σW and ηW , and many αW are dropped or grouped across layers.

The sets of HPs chosen for sweeps in the µP literature is explored in Appendix E.1. Tensor Programs
V uses a random search to identify the best HP values, which has become the standard approach to
sweeping. The number of runs in a sweep is typically in the low 100s, incurring a non-negligible cost
(though usually less than a single training run of the target model). This high number partly owes to
dependencies between HPs (shown in Section 4.1), making the search space hard to explore.

Table 1: The scaling rules defining µP. The type of a weight is determined by whether fan-in &
fan-out both depend on width (hidden), only fan-out does (input), or only fan-in (output). Hence
fan-in is always a multiple of width here.

ABC-multiplier Weight (W ) Type
Input Hidden Output

µP
parameter (aW ) 1 1 1/fan-in(W )

initialization (bW ) 1 1/
√

fan-in(W ) 1

Adam LR (cW ) 1 1/fan-in(W ) 1
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2.2 LOW-PRECISION TRAINING

All the major potential bottlenecks of model training—compute, communication and storage—see
roughly linear improvements as the bit-width of their number format is reduced. In modern LLM
training, the compute cost of large matrix multiplications (matmuls) means that substantial gains are
available if these can be done in low-precision (< 32 bit) formats, which makes them one of the most
promising avenues towards increased efficiency in deep learning.

Recent AI hardware offers substantial acceleration for the 8-bit FP8 E4 and E5 formats. However
their reduced range means that they cannot directly represent some values generated during training.
Various methods have been introduced to address this, such as the per-tensor dynamic re-scaling in
Transformer Engine (NVIDIA, 2024b). However, this comes at the cost of added complexity and
potential overheads. For a more in-depth treatment of low-precision formats, see Appendix J.

2.3 UNIT SCALING

An alternative approach to low-precision training is Unit Scaling (Blake et al., 2023), which also uses
per-tensor scaling factors to control range, but instead finds these factors via an analysis of expected
tensor statistics at initialization. These are fixed factors, calculated independently of the contents of a
tensor, at the beginning of training. As such, the method is easy to use and only adds the overhead of
applying static scaling factors (which we show to be negligible in Appendix K).

These factors are chosen to ensure the unit variance of activations, weights and gradients at initial-
ization. This is a useful criterion as it places values around the center of floating-point formats’
absolute range. This applies to all tensors, meaning every operation in the network requires a scaling
factor that ensures unit-scaled outputs, assuming unit-scaled inputs. Unit Scaling does not provide
a mechanism for re-scaling tensors dynamically during training, but due to its ideal starting scale
for gradients, activations and weights this may not be required. Empirically this is shown to be true
across multiple architectures, though it is not guaranteed.

We provide an example of deriving the Unit Scaling rule for a matmul op in Appendix E.2, resulting
in the scaling factor: 1/

√
dfan-in. We accompany this example with a full recipe for applying Unit

Scaling to an arbitrary model.

3 THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

In this section we show how µP can be adapted to satisfy Unit Scaling, and provide a new set of
HPs which—thanks to Unit Scaling—are more interpretable and separable than those commonly
used for µP, unlocking several practical benefits. Although some features of u-µP presented here are
transformer specific, we stress that u-µP can in principle be applied to a wide range of architectures,
since both µP and Unit Scaling are very general approaches.

3.1 COMBINING µP WITH UNIT SCALING

Whereas Unit Scaling provides rules for scaling all operations, µP only does so for parametrized
ones. It’s these operations we need to address to arrive at a unified scheme, resolving differences
in the scaling rules each recommends. We begin with the expressions for the AW , BW , CW scaling
factors in Equation (3), and substitute in the µP scaling rules defined in Table 1. This results in a
full implementation of µP, which is shown in the top half of Table 2. We set out to turn this into a
valid Unit Scaling scheme, which requires unit initializations (BW ← 1) and matmuls with the Unit
Scaling factor we identified in Section 2.3 (AW ← 1/

√
fan-in).

Our first step is to drop the σW and base-fan-in HPs entirely, and associate the αW HPs with
subsequent non-linear functions instead of weights—decisions we justify in the rest of this section
(this results in the simplified intermediate implementation in Table 11). Our input weights now have
unit initializations as desired, and a unit parameter multiplier, which is also the appropriate scaling
factor (as input layers here are embedding lookups, not matmuls).
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Table 2: Scaling rules for µP versus u-µP, including associated HPs (assuming the extended set in
Table 3). These rules constitute the definition of u-µP, along with the unit-scaled ops in Appendix B.

ABC-multiplier
Weight Type

Residual
Input Hidden Output

parameter (AW ) αemb 1 (or αattn) αout
base-fan-in

fan-in

√
base-depth

depth
*

µP initialization (BW ) σinit σinit

√
base-fan-in

fan-in σinit —

Adam LR (CW ) η η̂emb η base-fan-in
fan-in η

√
base-depth

depth

parameter† (AW ) 1 1√
fan-in

1
fan-in

‡ 1√
depth

*

u-µP initialization (BW ) 1 1 1 —

Adam LR (CW ) η 1√
fan-out

η 1√
fan-in

η 1√
depth

*Residual multipliers are applied to the end of each branch, rather than the output of linear layers.
†u-µP’s α HPs are associated with operations, not weights, so are not included here (see Section 3.3).
‡To maintain unit scale we apply 1/

√
fan-out scaling in the backward pass (see Appendix H).

Hidden weights now have the implementation: AW ← 1, BW ← 1√
fan-in

, CW ← η 1
fan-in , which

differs from our Unit Scaling criteria. However, using abc-symmetry (Equation (2)) we can shift
scales by

√
fan-in, arriving at a unit-scaled scheme: AW ← 1√

fan-in
, BW ← 1, CW ← η 1√

fan-in
.

Finally, our output layers also have unit initialization, but a parameter multiplier of AW ← 1/fan-in.
This differs from the Unit Scaling rule, but in the forward pass this is permissible as there are no
subsequent matmuls in a transformer. In the backward pass this mis-scaling would propagate, so we
apply the desired← 1/

√
fan-out factor. Using different forward and backward scales in this way is

usually not allowed, but is valid for output layers due to the cut-edge rule (Appendix H).

The final change we make is to the input LR scaling rule, which we show in Section 3.4 is more
effective if cW ← 1 is replaced with cW ← 1/

√
fan-out. With these changes made, we arrive at our

final u-µP scheme, given in Table 2. Note that the scaling rules in this table must be combined with
the standard Unit Scaling rules for other non-matmul operations. These are covered in Appendix B.

3.2 OUT-OF-THE-BOX LOW-PRECISION TRAINING

When training a transformer model with u-µP most tensors have stable scale during training, except a
small number of critical tensors that exhibit scale growth, which can cause extreme values to go out
of FP8 range. We empirically identify these to be the inputs to the attention dense projection and
final FFN matmul as well as the weight of the decoder2 (for details see Appendix A.7).

Based on our analysis, we propose the following FP8 mixed-precision scheme for u-µP transformers:

• For layers using non-critical tensors, we cast the input and weight to E4M3, and the gradient
with respect to the output to E5M2. This is done in the forward computation, as well as the
two backward computations (for the gradients w.r.t. the weight and input).

• For layers using critical tensors, matmuls are performed in BF16 (along with non-matmul
operations). We keep optimizer states in FP32, leaving the use of FP8 to future work.

In some cases we are able to deal with the critical tensors by casting them to E5M2. However, we
observed instabilities applying this in a large-scale setting. In small-scale settings we also empirically
find that applying E4M3 instead of E5M2 for the gradients is possible, but again becomes problematic
in the large-scale setting where gradients require higher dynamic range. Under our mixed-precision
scheme, approximately 70% of the matmul computations in a Llama transformer block are performed
in FP8. If desired, a dynamic per-tensor scaling could still be applied to the critical tensors.
2 The decoder becomes negligible in terms of model flops as width and depth of the model increase, so we
generally keep this operation in higher precision.
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3.3 A PRINCIPLED APPROACH TO HYPERPARAMETERS

Approaches for selecting which HPs to sweep are poorly motivated in the literature (see Appendix C.2).
Our objective in u-µP is to find a simple, well-justified and effective alternative. To this end, we
propose the following ideal criteria:

1. Minimal cardinality: the use of as few HPs as possible.
2. Maximal expressivity: the ability to still express any model defined using the per-tensor

αW , σW , ηW HPs outlined in Section 2.1 (in practice, we relax this slightly).
3. Minimal interdependency: the optimal value of each HP should not depend on the value

of other HPs, simplifying the search space.
4. Interpretability: there should be a clear explanation for what an HP’s value ‘means’ in the

context of the model.

Table 3: Typical transformer HPs used under
different schemes. Basic HPs in bold are
most impactful and are commonly swept. Ex-
tended HPs in non-bold are not always swept,
often set heuristically or dropped.

SP µP u-µP

η η η
σ-scheme σinit

αemb|ηemb αffn-act
αattn αattn-softmax

αout αres

base-width αres-attn-ratio
base-depth αloss-softmax

The u-µP HPs given in Table 3 are designed to satisfy
these criteria, to the fullest extent possible. The place-
ment of these HPs in the model is given in Table 7.

Cardinality & expressivity. We arrive at our set of
HPs in three steps, starting with the full αW , σW , ηW
for each weight tensor W . Firstly, we can remove any
one of these HPs by permuting under abc-symmetry,
such that one HP = 1. As we want our weights to
begin with unit scale, we choose to drop σW . Sec-
ondly, we observe that several of the αW HPs com-
bine linearly with other αW HPs, providing an op-
portunity to re-parametrize with a single HP. For
instance, the scale of self-attention softmax activa-
tions is proportional to the product of αW multipliers:
std(xattn) ∝ αWQαWK . In this instance we use a sin-
gle α parameter (termed αattn-softmax) and associate
it with the attention operation, rather than the weights.

We apply the same principle to all operations, unless they are unary and k-homogeneous for k ≥ 0, in
which case they propagate scale and don’t require an HP (see Appendix G.1). This results in the set
of HPs shown, with their placement in the model given in Table 7. We note that this procedure also
works in other architectures than transformers, and naturally will produce other kinds of multipliers.

Thirdly, we use a single global η and group α HPs across layers. This breaks our expressivity
criterion, but we argue represents the best trade-off between expressivity and cardinality. We show in
Appendix A.3 that having tuned a global η HP and our extended α HPs, the further benefits of tuning
per-tensor η̂W HPs (which modify the global η) is minimal.

Interdependency. The second stage above, moving α HPs from weights into operations, not only
reduces the number of HPs, but also minimizes the interdependence between those that remain. We
find that u-µP’s optimal HP values depend less on each other than under µP (see Section 4.1).

Interpretability. The combination of unit scale and reduced dependencies between HPs means that
each α can be interpreted as determining some fundamental property of the model at initialization.
For example, the αloss-softmax HP defines the (inverse of) the softmax’s temperature for a unit-scaled
input. We also introduce a new scaling scheme (defined in Appendix G.2.2) for residual connections,
designed to give HPs independence and a clear interpretation: αres defines the contribution of the
residual connections to the output scale, and αres-attn-ratio defines the relative contribution of attention
versus FFN branches. Finally, we choose not to include base shape HPs in u-µP. They do not add
to expressivity, lack a clear interpretation (besides alignment to a base model at a particular shape),
break the interpretation of α HPs given above, and complicate implementation.

3.4 A NEW EMBEDDING LR RULE

Although theoretical transfer properties have been proved for µP, not all its HPs have had µTransfer
shown empirically. We do so for the extended µP transformer HPs in Figure 15, where we observe
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poor transfer across width for the embedding LR multiplier η̂emb. This suggests that the corresponding
LR scaling rule for cemb is mis-specified.

We show in Figure 2 that changing it from the µP rule of cemb = 1 to 1/
√
fan-out corrects this failure

of HP transfer. As a result, we see improved loss under u-µP for larger model-sizes relative to µP. Our
adoption of this change is a key factor in the improved performance of u-µP over µP in Figure 1. We
offer no theoretical justification for this change, which we leave to future work.

3.5 HYPERPARAMETER SEARCH

As shown in section Section 2.1, the standard approach to HP search for µTransfer is via a random
sweep over all HPs simultaneously. Sweeping individual HPs separately is challenging due to the
dependencies between them. In contrast, u-µP’s HPs are designed to admit such a strategy due to our
interdependence criterion. Because of this, we propose a simpler sweeping strategy for u-µP which
we term independent search (outlined in detail in Appendix A.5). Independent search involves a
sweep of the LR, followed by a set of one-dimensional sweeps of the other HPs (which can be run in
parallel). The best results from the individual sweeps are combined to form the final set of HP values.

4 EXPERIMENTS

Our experiments use the Llama architecture (Touvron et al., 2023a) trained on WikiText-103 (Merity
et al., 2017) (except large-scale runs in Section 4.4). We apply best-practice LLM training techniques
from the literature (see Table 5). In accordance with our analysis in Appendix C.1, we remove
parameters from norm layers, use independent AdamW, and avoid training on too many epochs.

4.1 QUANTIFYING HYPERPARAMETER INTERDEPENDENCE

Our principled approach to HPs (see Section 3.3) contains the requirement that their optimal values
should depend minimally on the value of other HPs. We now investigate this empirically, conducting
a 2D sweep over every pair of HPs for µP and u-µP (see Figures 11 and 12 for pairwise results).

To derive an empirical measure of HP dependency, we introduce the notion of transfer error (see
Algorithm 1). We take the best value of the transfer HP for each non-optimal value of the fixed HP,
and use it with the optimal value of the fixed HP. The transfer error is the difference between the
losses obtained and the minimum loss. Figure 3 shows this measure for each pair of HPs, reflecting
the improvement in HP dependency as a result of our scheme. This gives u-µP a reduced risk of small
transfer errors leading to large degradations, and the potential to sweep HPs in a more separable way.
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4.2 HYPERPARAMETER SEARCH

Our new HP scheme, designed for improved separability, enables proxy model HPs to be swept more
efficiently. This is shown in Figure 1 (a). We conduct a standard random search for µP and u-µP,
along with the independent search outlined in Section 3.5 (and Appendix A.5).

Independent search begins with a simple LR sweep. This alone is sufficient for u-µP to reach near-
optimal loss (using only 9 runs). During this phase other HPs are fixed at 1, which for u-µP means
that the inputs to operations are generally unit-scaled. Consequently, we conclude that unit scale at
initialization is close to ideal scaling for effective learning here. In contrast µP still requires non-LR
HPs to be swept to attain a reasonable loss. The final ‘combined mults’ phase causes the loss to spike
for µP. This is due to the HP dependencies shown in Figure 3, which mean HPs cannot be swept
independently and used together, necessitating random search which can require hundreds of runs.

4.3 HYPERPARAMETER TRANSFER

We train many models and plot transfer of LR across width (Figure 1 (b)), steps, batch size and depth
(Figure 4), and transfer of other HPs across width (Figure 15). Note that u-µP (building on µP) is
designed to give transfer over width3; the other axes we report for practical purposes. We find that:

1. The optimal LR is constant across width under u-µP. There is a small drift for training steps
and batch size, and a larger one with depth. Hence we recommend proxy models which
primarily differ in width, moderately in steps and batch size, and least in depth.

2. Whereas µP sees diminishing returns for larger widths, u-µP continues to benefit from width.
We attribute this primarily to our improved embedding LR rule.

3. Non-LR HPs also have constant optima across width under u-µP. This is not true for µP,
where η̂emb has poor transfer (see Section 3.4), along with σinit (see Appendix C.2).

4. The optimal values found for non-LR HPs are all close to 1. In practice this means that
dropping these HPs entirely is potentially viable for similar models and training setups.

3 As we use depth-µP this could be said about depth as well, but as Yang et al. (2023b) show that transformers
don’t attain depth-transfer under depth-µP we do not expect strong transfer across depth.
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Table 4: 0-shot benchmark results at 7B scale.

Scheme Format MMLU HellaSwag OpenBook QA PIQA TriviaQA WinoGr

SP BF16 29.6 52.4 27.8 76.5 22.2 63.3
u-µP BF16 29.0 53.4 31.6 77.1 23.4 63.7
u-µP FP8 31.2 53.4 29.6 77.6 21.3 65.7

4.4 FP8 TRAINING

In this section we justify the simple mixed-precision scheme described in Section 3.2 and demonstrate
that it can be used to train u-µP models out-of-the-box.

Proof-of-concept. Figure 5 shows the RMS of all linear layer inputs for a moderately sized trans-
former. RMS captures the larger of the mean and scale of a distribution, and as such is a good test of
whether a tensor is likely to suffer over/underflow in low-precision. We observe that u-µP tensors
largely have RMS starting close to 1 and remaining so at the end of training, supporting our scheme.

As an initial proof-of-concept we train a u-µP model using our FP8 scheme over 8k steps, using HPs
from a proxy model, as shown in Figure 1 (c). We see only a small degradation versus FP32, and at
this scale critical tensors can still be cast to FP8 using E5M2, while gradients can even use E4M3.

Larger scale. Next we consider a more realistic training scenario. Using the same architecture, and
following the steps set out in our u-µP user-guide (Appendix D), we train our target models on 300B
tokens of the SlimPajama dataset (Shen et al., 2023) (see Appendix A.8 for training details).

We begin with an independent search (Section 3.5) over our u-µP proxy model’s HPs. Here we make
the following observations:

1. When using a relatively small proxy model (8 layers and 512 width), the HP-loss landscape
is rather noisy. By doubling the width we can discern optimal HP values more clearly.

2. The most important HPs are η and αres-attn-ratio. All others can be left at the default of 1.

3. The optimal values of these HPs are η = 23.5 and αres-attn-ratio = 2−2.0 and thus differ
non-trivially from the observed HPs in our smaller-scale experiments.

We then train u-µP models of approximately 1B, 3B and 7B parameters, using our FP8 mixed-
precision scheme (see Section 3.2). We also train two baselines at each size: the first is a BF16
version of our u-µP models, and the second is a set of SP models using the weight init scheme from
the Pythia model family (Biderman et al., 2023) and the LR scheme from Llama 3 (Dubey et al.,
2024), scaling inversely with width and using a LR of 3e-4 at 7B scale. For the SP baseline, we use a
non-independent weight decay of 0.1 and parametric RMS norm as in Llama (Dubey et al., 2024),
which is standard practice. The loss curves are shown in Figure 6. All FP8 runs converge and show
no significant loss degradation. In comparison to SP, the u-µP models have a qualitatively different
training curve with a higher loss for most of training that catches up in latter stages, hinting at a
fundamentally different optimization trajectory. In terms of downstream performance, both of the
u-µP 7B models are competitive with SP. In particular, the scores of the FP8 model are mostly on par
with the BF16 models (see Table 4).

activation

E4M3E5M2 E4M3

weight

grad

2−24 2−16 2−8 20 28

RMS

µP

u-µP
activation

E4M3E5M2 E4M3

weight

grad

2−24 2−16 2−8 20 28

RMS

µP

u-µP

Figure 5: Per-tensor RMS =
√

σ2 + µ2 across u-µP and µP models at initialization (left) and after
training (right). Dashed and solid red lines show each format’s min. normal and subnormal values.
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Figure 6: Large-scale training runs. (Left) u-µP BF16 vs u-µP FP8. (Right) u-µP BF16 vs SP BF16.

5 RELATED WORK

Low-precision training Techniques to facilitate FP8 training include those covered in Appendix J
and more (Wang et al., 2018; Mellempudi et al., 2019; Perez et al., 2023). These largely concern the
quantizing of activations, weights and gradients, though Peng et al. (2023) also explore FP8 optimizer
states and cross-device comms, which we consider interesting avenues of exploration. Quantization is
made harder by the emergence of large outlier values when training at scale, with several techniques
proposed to mitigate this (Bondarenko et al., 2023; Sun et al., 2024; He et al., 2024). Combining
these with u-µP is a natural extension of our work, facilitating simpler or lower-bit quantization.

Parametrizations The neural tangent kernel (NTK) (Jacot et al., 2018) and mean field parametriza-
tion (MFP) (Mei et al., 2018; Bordelon & Pehlevan, 2023) are alternatives to µP. In terms of width
exponents, u-µP is identical to MFP except for the embedding learning rate scaling, as shown in
Table 1 of Everett et al. (2024). The equivalence classes given by Everett et al. (2024) also mirror our
notion of abc-symmetry. They additionally show that under MFP gradients become sufficiently small
to require re-scaling the Adam epsilon term. u-µP naturally solves this problem in a similar way, via
the up-scaling of our gradients to unit scale.

Compatible parametrization frameworks Apart from u-µP, several other recent efforts have also
introduced frameworks for training under particular parametrizations, which have the potential to be
compatible with u-µP. Large et al. (2024) introduces the modular norm over the weight-space with the
aim to ensure stable updates that provide LR transfer, like µP. Everett et al. (2024) explore the notion
of alignment between parameters and data, showing that other parametrizations with per-layer LRs
can outperform standard µP. These parametrizations could admit unit scaling under abc-symmetry,
though this is outside the scope of this work.

Signal propagation Unit Scaling and µP are mainly concerned about statistical properties of single
tensors. Another line of work studies how the covariance between two distinct inputs propagates
through the model. For MLPs this was analyzed in Poole et al. (2016); Schoenholz et al. (2017),
revealing phase transitions in deep networks related to expressivity and trainability. For transformers,
more recent work (Noci et al., 2022) studies the collapse of token representations. Coming from this
angle, they derive the same 1/

√
depth residual multiplier scaling that is used in u-µP.

6 CONCLUSIONS

We introduce u-µP, a modified and improved version of µP that satisfies Unit Scaling. Through
careful analysis guided by first principles we identify an interpretable set of HPs that has minimal
interdependencies and facilitates an efficient independent sweeping strategy. We show that the
stability properties of µP combined with Unit Scaling enable a simple and robust FP8 mixed precision
scheme that works in a realistic large scale training scenario.

Limitations and future work. Some choices like the modified embedding LR rule are only justified
by empirical observations, and currently lack a theoretical explanation. Additionally, neither µP nor
Unit Scaling give guarantees for network quantities to be well-behaved over the course of training.
In particular we would like to understand the issue (or feature) of scale growth in the critical layers
better and look into possible mitigations. We also believe that low-precision training techniques can
be pushed further, with u-µP offering an ideal starting point for future optimizations.

10



Published as a conference paper at ICLR 2025

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The Falcon series
of open language models. CoRR, abs/2311.16867, 2023. doi: 10.48550/ARXIV.2311.16867. URL
https://doi.org/10.48550/arXiv.2311.16867.

Anonymous. Straight to zero: Why linearly decaying the learning rate to zero works best for LLMs.
In Submitted to The Thirteenth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=hrOlBgHsMI. under review.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Charlie Blake, Douglas Orr, and Carlo Luschi. Unit scaling: Out-of-the-box low-precision training.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp.
2548–2576. PMLR, 2023. URL https://proceedings.mlr.press/v202/blake23a.
html.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers:
Removing outliers by helping attention heads do nothing. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
edbcb7583fd8921dad78adecfe06a99b-Abstract-Conference.html.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks*. Journal of Statistical Mechanics: Theory and Experiment, 2023
(11):114009, nov 2023. doi: 10.1088/1742-5468/ad01b0. URL https://dx.doi.org/10.
1088/1742-5468/ad01b0.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3.int8(): 8-
bit matrix multiplication for transformers at scale. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html.

Nolan Dey, Gurpreet Gosal, Zhiming Chen, Hemant Khachane, William Marshall, Ribhu Pathria,
Marvin Tom, and Joel Hestness. Cerebras-GPT: Open compute-optimal language models trained on
the cerebras wafer-scale cluster. CoRR, abs/2304.03208, 2023a. doi: 10.48550/ARXIV.2304.03208.
URL https://doi.org/10.48550/arXiv.2304.03208.

Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu Pathria, Hemant Khachane,
Shaheer Muhammad, Zhiming Chen, Robert Myers, Jacob Robert Steeves, Natalia Vassilieva,
Marvin Tom, and Joel Hestness. BTLM-3B-8K: 7B parameter performance in a 3B parameter
model. CoRR, abs/2309.11568, 2023b. doi: 10.48550/ARXIV.2309.11568. URL https:
//doi.org/10.48550/arXiv.2309.11568.

11

https://doi.org/10.48550/arXiv.2311.16867
https://openreview.net/forum?id=hrOlBgHsMI
https://arxiv.org/abs/2304.01373
https://proceedings.mlr.press/v202/blake23a.html
https://proceedings.mlr.press/v202/blake23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/edbcb7583fd8921dad78adecfe06a99b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/edbcb7583fd8921dad78adecfe06a99b-Abstract-Conference.html
https://dx.doi.org/10.1088/1742-5468/ad01b0
https://dx.doi.org/10.1088/1742-5468/ad01b0
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2304.03208
https://doi.org/10.48550/arXiv.2309.11568
https://doi.org/10.48550/arXiv.2309.11568


Published as a conference paper at ICLR 2025

Nolan Dey, Shane Bergsma, and Joel Hestness. Sparse maximal update parameterization: A holistic
approach to sparse training dynamics. CoRR, abs/2405.15743, 2024. URL http://arxiv.
org/abs/2405.15743.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, and Frank Zhang et al. The llama 3 herd of models, 2024. URL https://arxiv.
org/abs/2407.21783.

Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A. Alemi, Roman Novak, Peter J. Liu,
Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, and Jeffrey Pennington.
Scaling exponents across parameterizations and optimizers, 2024. URL https://arxiv.org/
abs/2407.05872.

Dirk Groeneveld, Iz Beltagy, Evan Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson,
Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu,
Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep
Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca
Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of language
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pp. 15789–15809. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.841. URL https://doi.org/10.
18653/v1/2024.acl-long.841.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro von Werra, and Mar-
tin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. CoRR,
abs/2405.18392, 2024. doi: 10.48550/ARXIV.2405.18392. URL https://doi.org/10.
48550/arXiv.2405.18392.

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding
and minimising outlier features in neural network training. CoRR, abs/2405.19279, 2024. doi: 10.
48550/ARXIV.2405.19279. URL https://doi.org/10.48550/arXiv.2405.19279.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai
Li, Zhiyuan Liu, and Maosong Sun. MiniCPM: Unveiling the potential of small language models
with scalable training strategies. CoRR, abs/2404.06395, 2024. doi: 10.48550/ARXIV.2404.06395.
URL https://doi.org/10.48550/arXiv.2404.06395.

IEEE Computer Society. IEEE standard for floating-point arithmetic. pp. 1–84, July 2019. doi:
10.1109/IEEESTD.2019.8766229.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence
and generalization in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
8580–8589, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

12

http://arxiv.org/abs/2405.15743
http://arxiv.org/abs/2405.15743
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.05872
https://arxiv.org/abs/2407.05872
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.48550/arXiv.2405.18392
https://doi.org/10.48550/arXiv.2405.18392
https://doi.org/10.48550/arXiv.2405.19279
https://doi.org/10.48550/arXiv.2404.06395
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html


Published as a conference paper at ICLR 2025

Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl Case, and Paulius Mi-
cikevicius. OpenSeq2Seq: Extensible toolkit for distributed and mixed precision training of
sequence-to-sequence models. CoRR, abs/1805.10387, 2018. URL http://arxiv.org/
abs/1805.10387.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. CoRR, abs/2405.14813, 2024. doi: 10.48550/ARXIV.2405.
14813. URL https://doi.org/10.48550/arXiv.2405.14813.

Lucas D. Lingle. A large-scale exploration of µ-transfer. CoRR, abs/2404.05728, 2024. doi: 10.
48550/ARXIV.2404.05728. URL https://doi.org/10.48550/arXiv.2404.05728.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang,
Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren,
Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P.
Xing. LLM360: Towards fully transparent open-source LLMs. CoRR, abs/2312.06550, 2023.
doi: 10.48550/ARXIV.2312.06550. URL https://doi.org/10.48550/arXiv.2312.
06550.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–
E7671, 2018. doi: 10.1073/pnas.1806579115. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1806579115.

Naveen Mellempudi, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul. Mixed precision training
with 8-bit floating point. CoRR, abs/1905.12334, 2019. URL http://arxiv.org/abs/
1905.12334.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David García,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=r1gs9JgRZ.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-
pudi, Stuart F. Oberman, Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats
for deep learning. CoRR, abs/2209.05433, 2022. doi: 10.48550/ARXIV.2209.05433. URL
https://doi.org/10.48550/arXiv.2209.05433.

Microsoft. Maximal update parametrization (µP) and hyperparameter transfer (µTransfer). https:
//github.com/microsoft/mup, 2024.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phan-
ishayee, and Matei Zaharia. Efficient large-scale language model training on GPU clusters using
Megatron-LM. In Bronis R. de Supinski, Mary W. Hall, and Todd Gamblin (eds.), International
Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021, St.
Louis, Missouri, USA, November 14-19, 2021, pp. 58. ACM, 2021. doi: 10.1145/3458817.3476209.
URL https://doi.org/10.1145/3458817.3476209.

13

http://arxiv.org/abs/1805.10387
http://arxiv.org/abs/1805.10387
https://doi.org/10.48550/arXiv.2405.14813
https://doi.org/10.48550/arXiv.2404.05728
https://doi.org/10.48550/arXiv.2312.06550
https://doi.org/10.48550/arXiv.2312.06550
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.pnas.org/doi/abs/10.1073/pnas.1806579115
https://www.pnas.org/doi/abs/10.1073/pnas.1806579115
http://arxiv.org/abs/1905.12334
http://arxiv.org/abs/1905.12334
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.48550/arXiv.2209.05433
https://github.com/microsoft/mup
https://github.com/microsoft/mup
https://doi.org/10.1145/3458817.3476209


Published as a conference paper at ICLR 2025

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aure-
lien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank
collapse. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 27198–27211. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/ae0cba715b60c4052359b3d52a2cff7f-Paper-Conference.pdf.

Badreddine Noune, Philip Jones, Daniel Justus, Dominic Masters, and Carlo Luschi. 8-bit numerical
formats for deep neural networks. CoRR, abs/2206.02915, 2022. doi: 10.48550/ARXIV.2206.
02915. URL https://doi.org/10.48550/arXiv.2206.02915.

NVIDIA. Using FP8 with transformer engine. https://docs.nvidia.com/
deeplearning/transformer-engine/user-guide/examples/fp8_primer.
html, 2024a.

NVIDIA. Transformer Engine. https://github.com/NVIDIA/TransformerEngine,
2024b.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue
Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe Wang,
Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, and Peng Cheng. FP8-LM: training FP8 large
language models. CoRR, abs/2310.18313, 2023. doi: 10.48550/ARXIV.2310.18313. URL
https://doi.org/10.48550/arXiv.2310.18313.

Sergio P. Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca, Carlo
Luschi, Stephen Barlow, and Andrew Fitzgibbon. Training and inference of large language models
using 8-bit floating point. CoRR, abs/2309.17224, 2023. doi: 10.48550/ARXIV.2309.17224. URL
https://doi.org/10.48550/arXiv.2309.17224.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_
files/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
toward training trillion parameter models. In Christine Cuicchi, Irene Qualters, and William T.
Kramer (eds.), Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November
9-19, 2020, pp. 20. IEEE/ACM, 2020. doi: 10.1109/SC41405.2020.00024. URL https:
//doi.org/10.1109/SC41405.2020.00024.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=Hkuq2EkPf.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=H1W1UN9gg.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020. URL https:
//arxiv.org/abs/2002.05202.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, and Eric P. Xing. SlimPajama-DC:
Understanding data combinations for LLM training. CoRR, abs/2309.10818, 2023. doi: 10.48550/
ARXIV.2309.10818. URL https://doi.org/10.48550/arXiv.2309.10818.

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/ae0cba715b60c4052359b3d52a2cff7f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ae0cba715b60c4052359b3d52a2cff7f-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2206.02915
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://github.com/NVIDIA/TransformerEngine
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2310.18313
https://doi.org/10.48550/arXiv.2309.17224
https://proceedings.neurips.cc/paper_files/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://openreview.net/forum?id=Hkuq2EkPf
https://openreview.net/forum?id=Hkuq2EkPf
https://openreview.net/forum?id=H1W1UN9gg
https://openreview.net/forum?id=H1W1UN9gg
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://doi.org/10.48550/arXiv.2309.10818


Published as a conference paper at ICLR 2025

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. doi:
10.1016/J.NEUCOM.2023.127063. URL https://doi.org/10.1016/j.neucom.2023.
127063.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models. CoRR, abs/2402.17762, 2024. doi: 10.48550/ARXIV.2402.17762. URL https:
//doi.org/10.48550/arXiv.2402.17762.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalak-
shmi Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating
point (HFP8) training and inference for deep neural networks. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
4901–4910, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/ARXIV.2302.13971. URL https:
//doi.org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023b. doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/10.
48550/arXiv.2307.09288.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Train-
ing deep neural networks with 8-bit floating point numbers. In Samy Bengio, Hanna M. Wal-
lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
7686–7695, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
335d3d1cd7ef05ec77714a215134914c-Abstract.html.

Xi Wang and Laurence Aitchison. How to set adamw’s weight decay as you scale model and
dataset size. CoRR, abs/2405.13698, 2024. doi: 10.48550/ARXIV.2405.13698. URL https:
//doi.org/10.48550/arXiv.2405.13698.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities. CoRR, abs/2309.14322, 2023. doi: 10.48550/ARXIV.2309.14322.
URL https://doi.org/10.48550/arXiv.2309.14322.

xAI. Grok-1. https://github.com/xai-org/grok-1, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin

15

https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.48550/arXiv.2402.17762
https://doi.org/10.48550/arXiv.2402.17762
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://doi.org/10.48550/arXiv.2405.13698
https://doi.org/10.48550/arXiv.2405.13698
https://doi.org/10.48550/arXiv.2309.14322
https://github.com/xai-org/grok-1


Published as a conference paper at ICLR 2025

Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen,
Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men,
Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu
Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yun-
fei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2
technical report. CoRR, abs/2407.10671, 2024. doi: 10.48550/ARXIV.2407.10671. URL
https://doi.org/10.48550/arXiv.2407.10671.

Greg Yang. Tensor programs I: Wide feedforward or recurrent neural networks of any architecture are
Gaussian processes. CoRR, abs/1910.12478, 2019. URL http://arxiv.org/abs/1910.
12478.

Greg Yang. Tensor programs II: Neural tangent kernel for any architecture. CoRR, abs/2006.14548,
2020a. URL https://arxiv.org/abs/2006.14548.

Greg Yang. Tensor programs III: Neural matrix laws. CoRR, abs/2009.10685, 2020b. URL
https://arxiv.org/abs/2009.10685.

Greg Yang and Edward J. Hu. Tensor programs IV: Feature learning in infinite-width neural networks.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 11727–11737. PMLR, 2021. URL http://proceedings.
mlr.press/v139/yang21c.html.

Greg Yang and Etai Littwin. Tensor programs IIb: Architectural universality of neural tangent
kernel training dynamics. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 11762–11772. PMLR, 2021. URL
http://proceedings.mlr.press/v139/yang21f.html.

Greg Yang and Etai Littwin. Tensor programs IVb: Adaptive optimization in the infinite-width limit.
CoRR, abs/2308.01814, 2023. doi: 10.48550/ARXIV.2308.01814. URL https://doi.org/
10.48550/arXiv.2308.01814.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs V: Tuning large neural networks
via zero-shot hyperparameter transfer. CoRR, abs/2203.03466, 2022. doi: 10.48550/ARXIV.2203.
03466. URL https://doi.org/10.48550/arXiv.2203.03466.

Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning. CoRR,
abs/2310.17813, 2023a. doi: 10.48550/ARXIV.2310.17813. URL https://doi.org/10.
48550/arXiv.2310.17813.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning in
infinite-depth neural networks. CoRR, abs/2310.02244, 2023b. doi: 10.48550/ARXIV.2310.02244.
URL https://doi.org/10.48550/arXiv.2310.02244.

Chao Yu and Zhiguo Su. Symmetrical Gaussian error linear units (SGELUs). CoRR, abs/1911.03925,
2019. URL http://arxiv.org/abs/1911.03925.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
12360–12371, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.

16

https://doi.org/10.48550/arXiv.2407.10671
http://arxiv.org/abs/1910.12478
http://arxiv.org/abs/1910.12478
https://arxiv.org/abs/2006.14548
https://arxiv.org/abs/2009.10685
http://proceedings.mlr.press/v139/yang21c.html
http://proceedings.mlr.press/v139/yang21c.html
http://proceedings.mlr.press/v139/yang21f.html
https://doi.org/10.48550/arXiv.2308.01814
https://doi.org/10.48550/arXiv.2308.01814
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.02244
http://arxiv.org/abs/1911.03925
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html


Published as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL SETUP

Our experimental analysis of u-µP was conducted by adapting the codebase used for Tensor Programs
V, allowing us to compare µP and u-µP in the same setting. We change various experimental settings
from the µP paper to make our experiments better reflect standard training procedures, particularly
the dataset which we switch from WikiText-2 to the larger WikiText-103 (Merity et al., 2017). Where
not specified otherwise, the default setting used in our experiments are given in Table 5. These also
represent the settings of our proxy model.

Dataset WikiText-103 (Merity et al., 2017)
Sequence length 256

Vocab size 32000

Training set tokens 138M

Architecture Llama (Touvron et al., 2023a) (Transformer, PreNorm, RMSNorm,
SwiGLU, RoPE, “untied” embeddings), non-trainable RMSNorm pa-
rameters.

Width 256 (scaled up to 4096)
Depth 4

Number of heads 4 (scaled up to 64)
Head dimension 64

Total parameters 19.5M (scaled up to 1.07B)
Batch size 64

Training steps 8192 (0.97 epochs)
LR schedule Cosine to 10%, 2000 steps warm-up

Optimizer AdamW (β1, β2, ϵ) = (0.9, 0.999, 10−8)

Weight decay 2−13, independent (Loshchilov & Hutter, 2019)
Dropout 0.0

µP HP search range η ∈ [2−10, 2−6]

η̂emb ∈ [20, 28]

σinit, αemb, αattn, αoutput ∈ [2−2, 22]

u-µP HP search range η ∈ [2−1, 23]

αattn ∈ [2−2, 22]

αresidual, αresidual-attn-ratio, αffn-act, αoutput ∈ [2−3, 23]

µP HP defaults σinit = αemb = αattn = αoutput = η̂emb = 1

u-µP HP defaults αresidual = αresidual-attn-ratio = αffn-act = αoutput = αattn = 1

Table 5: Default hyperparameters and training settings.
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A.2 VALIDATING OUR EXPERIMENTAL SETUP

In this section we run a series of ablations to validate decisions relating to our experimental setup
given above. In particular, we examine the effect of using repeated data, the effect of using a shorter
warmup duration, and the effect of different final learning rates at the end of decay.

A.2.1 REPEATED DATA

As outlined in Table 5, our standard training setup uses 0.97 epochs of the WikiText-103 dataset
(50x larger than the WikiText-2 dataset used in Tensor Programs V). However on our batch size and
training steps scaling experiments in Figure 4 we train on up to 4× the amount of data than in our
standard setup, and hence use up to 4 epochs.

Though this is still a small level of repeated data, this moves our training slightly into the over-fitting
regime. Based on this change, we here investigate the hypothesis that this regime has better or worse
transfer of the optimal LR than the non-overfitting regime, and hence our results could be misleading.
To do so, we repeated these experiments with the same number of tokens, but using the much larger
SlimPajama dataset (Shen et al., 2023) where we use < 1 epoch.

The results for this experiment are seen in Figure 7. The shape of curves is very similar across the two
datasets, for both batch size and training steps (albeit with a higher loss, due to the more varied nature
of SlimPajama). From this we conclude that the effect of repeated data from our use of WikiText-103
is not significant.
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Figure 7: A repeat of the batch size and training steps experiments in Figure 4, but using the larger
SlimPajama dataset where no data is repeated. In both settings our validation loss basins take the
same shape, indicating that our analysis using the WikiText-103 dataset holds.
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A.2.2 WARMUP DURATION

For our experimental setup (Table 5) we use a longer duration of warmup than in our large-scale
setup (Table 6). We do so out of caution, as we use fewer tokens-per-batch for the smaller-scale
experiments and so may require longer warmup. However, doing so also creates the risk of spending
too large a proportion of training doing warmup, which could affect transfer.

To investigate this effect, we run two experiments. Firstly, we re-run the experiment for LR transfer
over training steps, shown in Figure 4, on a quarter of the warmup steps. This is shown in Figure 8
(left). The main effect appears to be higher loss for larger learning rates, but the optima are largely
unchanged. The only exception is the 4096-step run, where the optimum shifts left and the loss
improves slightly. This appears to now align the optimum better with the other training durations, but
leads to narrower basins as a result, suggesting a trade-off for this particular experiment.

However, all our other experimental runs use the 8192-step configuration, which has a consistent
optimum regardless of warmup duration here. To investigate the effect of reduced warmup on width
transfer at this particular step-count, we re-run our experiment in Figure 1 (b) under the shorter
warmup duration, shown in Figure 8 (right). The only significant impact of this change is to narrow
the basins, inducing no significant change in the optimal LR. As such, we conclude that using 2000
steps of warmup in our experimental setup is a reasonable choice, and both give the same width
transfer.
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Figure 8: (Left) Learning rate transfer across training steps under different numbers of warmup steps.
(Right) Learning rate transfer across width under different numbers of warmup steps. In this setting
(training steps = 8192) the optimal LR is consistent, meaning either warmup regime can be used,
though the longer gives wider basins.

A.2.3 LEARNING RATE DECAY TARGET

In all our experiments we use a cosine decay of our learning rate down to 10% of the maximum.
This follows the standard approach taken by most LLM training projects (Touvron et al., 2023b;
Biderman et al., 2023; Groeneveld et al., 2024; Almazrouei et al., 2023; Yang et al., 2024). However,
recent research has indicated that this may not be the optimal decay target, with implications for LR
transfer. Hägele et al. (2024) show that the choice of target percentage can alter the shape of transfer
curves and potentially shift the optimum value (Figure 21, right). They also suggest that using a fixed
target value may work better than a percentage (Figure 22, right), which could be swept separately.
Anonymous (2024) separately suggest that linear decay to zero is the most effective scheme.

Though using the optimal decay scheme is not necessarily essential to the validity of our method, any
implications of different schemes on transfer properties should be investigated. To do so, we run two
experiments. The first sweeps the learning rate for our standard model at various percentages and
fixed values of cosine decay target, including zero, in Figure 9 (left). Lower decay targets perform
better here, including zero, suggesting that this simple rule may be ideal.

We then re-run our width transfer experiment from Figure 1 (b) but with our LR decaying to 0, and
plot the result in Figure 9 (right). This leads to slightly better results for large learning rates, though
for large models this difference diminishes. Fortunately the effect this decay target has on the shape
of curves (and hence optimal LR transfer) is minimal, indicating that our conclusions are not effected
significantly by the choice of decay target.
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Figure 9: (Left) A learning rate sweep over LR targets of different types (percentage, fixed and zero)
on our standard model. (Right) Using the zero and 10% learning rate targets, LR transfer over width.
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A.3 PER-TENSOR LEARNING RATES

In Section 3.3 we relax the requirement for each weight tensor in the u-µP model to have an
associated tuneable learning-rate multiplier on top of the global learning rate. Whilst this does reduce
the theoretical expressivity of the u-µP scheme, Figure 10 shows that using a single globally optimized
learning rate is already at or close to the optimal choice for all weight tensors, and therefore it is
reasonable to drop these multipliers in favor of reducing the number of HPs. However, a practitioner
attempting to absolutely maximize the task performance of their model could experiment with tuning
a few key per-tensor LRs, in particular the embedding table.
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Figure 10: Independently varying per-tensor learning rate multipliers ηW , using the u-µP model
of width 256 from Figure 1 with optimized global learning rate 21.5 as the starting point. Where
applicable, the same multiplier is used for tensors of the same name across transformer layers. Each
subplot fixes all but one multiplier at 1, therefore the midpoint of each subplot is precisely the u-µP256

model from Figure 1.

A.4 HYPERPARAMETER INDEPENDENCE

In Section 4.1 we explore the question of HP independence under µP and u-µP. The following plots
in Figures 11 and 12 show the result of a 2D sweep over every pair of HPs under each scheme. All
other HPs are held at 1 when not swept, except the η which is held at 2−7.5 for µP and 21.5 for u-µP,
and η̂emb which is held at 24 for µP.

These results show visual dependence between µP hyperparameters as a diagonal structure in the
grids, such as (η̂emb, σinit) and (η, αattn). We quantify this in the plot in Figure 3, where we use a
measure of HP dependence termed transfer error. This is explained verbally in Section 4.1, and we
provide an algorithmic description in Algorithm 1. We note that differences in transfer error between
the two methods may also be influenced by the flatness of the optimum. The HP and loss values used
for our transfer error calculations are those in Figures 11 and 12.
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Algorithm 1 Transfer Error

Require: A ‘fixed’ HP with candidate values F = {f1, · · · , fn}, a ‘transfer’ HP with candidate
values T = {t1, · · · , tm}, a function that gives the final validation loss for the pair of HPs
L : F × T → R (assuming all other HPs are fixed at default values).

err← 0
f∗, t∗ ← argmin(L)
for f in F do

if f ̸= f∗ then
t← argmin(L(f))
err += L(f∗, t)− L(f∗, t∗)

end if
end for
return err/(n− 1)
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Figure 11: Hyperparameter coupling sweep for µP. Note strong coupling between optima, e.g. in the
cases of (η̂emb, σinit) and (η, αattn). See also: u-µP, Figure 12.
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Figure 12: Hyperparameter coupling sweep for u-µP. Note less coupling than with µP, see Figure 11.
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A.5 HYPERPARAMETER SEARCH

Here we outline the particular search processes used for our µP and u-µP HP sweeps in Figure 1 (a).
The random search samples uniformly from a grid defined over all extended HPs (extended HP sets
are defined in Table 3, with grid values defined in Table 5). We perform the random search over 339
runs, each of which is a full training of the width-256 proxy model. We then simulate the effect
of shorter searches at various run-counts by taking a random sample of the results, resulting in the
smooth curve over run-count shown.

The independent search consists of the following phases:

1. Perform a 1D line search for an optimal learning rate, with other hyperparameters set to
their default values (9 runs).

2. For each hyperparameter in parallel, perform a 1D line search (330 runs).
3. Combine the best settings from step 2, and re-evaluate (6 runs).

The number of runs in the 1D line search is an order of magnitude higher than is required in practice.
We do so to form a fair comparison with the random search, which benefits from this large number
of runs. The number of runs for the 1D line search could be reduced further by using binary search,
though this would require sequential runs and limit the extent of parallelism.

A.6 HYPERPARAMETER TRANSFER EXPERIMENTS

Baseline µP transfer Figure 13 is a companion plot to Figure 4 in the body of the paper, showing
the LR transfer of the baseline µP model over the same axes. u-µP shows marginally more stable HP
transfer here relative to the baseline, and at a consistently lower loss.

LR transfer over width The transfer experiments shown in Figure 1 (b) use the non-LR HPs found
in Figure 1 (a) (indicated by the circled points), rather than using default HP values. For the u-µP
sweep we take the HPs at the end of the LR portion of the independent search, as these are already
close-to-optimal, and means only 9 runs were required in the sweep. In contrast, for µP it is necessary
to use the results of the random search over a large number of runs.

LR transfer over other axes For the training steps, batch size and depth transfer experiments
in Figure 4, all HP values are fixed to 1 except LR which is swept. As with width transfer, u-µP
outperforms µP here using these default HP values. Reducing training steps is done by fixing the
number of warm-up steps (at 2000) and still cosine-decaying the learning rate to 10%; all that changes
is the number of post-warm-up steps. We found this to be more effective than cutting-short the decay
schedule. For both Figure 1 (b) and Figure 4 we sweep the LR over a logarithmically-spaced grid of
step 21/2×, with 3 runs for each point.

Additionally, in Figure 14 we show learning rate transfer over sequence length for both µP and u-µP
fixing either tokens per batch or sequences per batch. In both scenarios u-µP shows not only better
absolute training performance, but also better transfer behaviour as sequence length increases. Since
our default proxy sequence length is 256, using µP to transfer to sequence length 2048 would result
in minimal improvements or even a degradation in validation loss, whereas the u-µP shows much
greater and more consistent improvements.

Other HP transfer over width For our non-LR HP transfer results in Figure 15, we note that good
transfer under µP has not been demonstrated for all HPs used in the literature. This is particularly true
for the η̂emb HP, which has poor transfer under µP. Our investigation here led to our identification
of the need to adjust the embedding LR scaling rule outlined in Section 3.4. In many cases users
have not swept this HP, but instead swept the corresponding parameter multiplier αemb. How this
HP interacts with the embedding LR scaling problem identified (and our proposed fix) remains to be
explored, though we note in Figure 15 that it also appears to have poor transfer.

Combined HP transfer Whilst Figure 15 demonstrates the transfer of individual hyperparameters
over width, Figure 16 instead demonstrates the simultaneous transfer of all hyperparameters when
co-optimized on the small-scale proxy model, as is done for µTransfer. The µP and u-µP points are
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Figure 13: Learning rate transfer for µP over training steps, batch size and depth. This is a companion
to the equivalent u-µP plot in Figure 4.
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Figure 14: Transfer of learning rate over sequence length for µP (left) and u-µP (right). As sequence
length varies, we can fix the number of tokens per batch by inversely varying the number of sequences
per batch (top). Alternatively we can fix the sequences per batch and allow the number of tokens
per batch to vary with sequence length (bottom). In the latter case, larger sequence lengths mean
the model sees more tokens during training, though as per Table 5 this translates to >1 epoch on
WikiText-103 when sequence length goes above 256.

taken from Figure 1, with hyperparameters swept on a model of width 256 using a full random HP
search and a simple learning rate sweep for µP and u-µP respectively. The Standard Parametrization
scheme, as shown in Table 3 requires choosing a learning rate and a weight-initialization scheme. We
follow the initialization scheme of Pythia (Biderman et al., 2023), and transfer learning rate using a
heuristic scaling factor of base-width/width, as is done in Dubey et al. (2024).
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A.7 NUMERICAL PROPERTIES

Our analysis of the numerical properties of u-µP focuses on the RMS of tensors that we wish to
cast to FP8: linear module input activations, weights and output gradients. From the RMS training
statistics plots in Figure 5 and Figure 17 we note that

1. µP has gradients and weights with low RMS, at risk of FP8 underflow, whereas u-µP starts
with RMS ≈ 1.

2. Many input activations do not grow RMS during training (due to a preceding non-trainable
RMSNorm), however the attention out projection and FFN down projection have uncon-
strained input activations that grow considerably during training.

3. The decoder weight grows during training. Since it is preceded by a RMSNorm, the model
may require scale growth in order to increase the scale of softmax inputs. Other weights
grow slightly during training.

4. Gradients grow quickly but stabilize, except for attention out projection and FFN down
projection, whose gradients shrink as the inputs grow.

We also evaluate how RMS growth is affected by model and training hyperparameters in the tensors
that showed the highest end-training RMS, shown in Figure 18. This shows that the main parameter
affecting scale growth is learning rate, with end-training RMS increasing to the right of the optimal
LR basin, as training becomes unstable. End-training RMS is remarkably stable as width, depth,
training steps and batch size are independently increased.
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A.8 LARGE-SCALE TRAINING DETAILS

Our large-scale training settings are given in Table 6. These are largely the same as our standard
experiments (Table 5), but with many more tokens used for training and scaling up to a larger
model-size.

Dataset SlimPajama (Shen et al., 2023)
Sequence length 4096

Vocab size 65536

Training set tokens 600B

Architecture Llama (Touvron et al., 2023a) (Transformer, PreNorm, RMSNorm,
SwiGLU, RoPE, “untied” embeddings), non-trainable RMSNorm pa-
rameters.

Width [2048, 3072, 4096] (1024 for proxy model)
Depth [16, 24, 32] (8 for proxy model)

Number of heads [16, 24, 32] (8 for proxy model)
Head dimension 128

Total parameters [1.07B, 3.12B, 6.98B]

Batch size 1024

Training steps 72000 (∼ 300B tokens; 20000 for proxy model)
LR schedule Cosine to 10%, 500 steps warm-up

Optimizer AdamW (β1, β2, ϵ) = (0.9, 0.95, 10−8)

Weight decay 2−13, independent (Loshchilov & Hutter, 2019)
Dropout 0.0

Table 6: Large-scale training settings.

We use mixed-precision during training with optimizer states in FP32 that are sharded via ZeRO
stage 1 (Rajbhandari et al., 2020). We retain the model weights in BF16 and apply our FP8 scheme as
described in Section 3.2 to the tensors participating in matmul operations throughout the transformer
block. All other tensors remain either in BF16 (embedding, readout layer, norm, activation function)
or FP32 (Flash Attention (Dao et al., 2022)).

Each model was trained on several Nvidia A100 (80GB) or H100 GPUs, with all FP8 experiments
conducted on the H100 chips utilizing their native FP8 support. For the FP8 operations we use
PyTorch’s torch._scaled_mm function as a backbone.
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B UNIT-SCALED OP DEFINITIONS

Table 7: Implementations of unit-scaled ops, building on Table A.2. from the Unit Scaling paper
(Blake et al., 2023). These are considered part of u-µP and should be used in the place of standard
operations.

Op Unit Scaling factors

matmul(x,w) = xw α = 1√
fan-in

, βx = 1√
fan-out

, βw = 1√
batch-size

attention(q, k, v) = α = βq = βk = βv =

softmax
(
αattn d

−1
head (qk

⊤) ⊙ cmask
)
v 1/ log_interpolate

(
1

1+
4dhead
α2
attn

, 1,
√

log(s)
s

)
gated_silu(xin, xgate) = α = βxin

= βxgate
=

xin ⊙ xgate ⊙ sigmoid(αffn-act xgate) 1/ log_interpolate
(

1
1+ 1

α2
ffn-act

, 1√
2
, 1
2

)
residual_add(xresid., xskip) = a = τ√

τ2+1
, b = 1√

τ2+1

a xresid. + b xskip (see G.2.2 for full details, inc. values for τ ,
which depends on αres and αres-attn-ratio.)

softmax_xent(x, t) =
log_softmax(αloss-softmax x)t α = 1, β = s/

√
s− 1

RoPE(x) α = β = 1 (i.e. no scaling)

RMSNorm(x) (non-trainable, see (Lingle, 2024)) α = β = 1 (i.e. no scaling)

The Unit Scaling paper provides scaling factors for various ops, in order to make them unit-scaled.
However, these ops do not cover every case required for the Llama architecture used in our experi-
ments, nor do they cover our updated residual layer implementation. To address this, in this section
we outline a series of new unit-scaled ops for each of our required architectural features, as well as
existing unit-scaled ops, as given in Table 7.

The presentation here is derived from that of the Unit Scaling Compendium given in (Blake et al.,
2023, Table A.2). This makes reference to the factors α, β1, . . . , βk. α is the output scaling factor in
the forward pass, and βi are the scaling factors for the gradient of the op’s inputs in the backward
pass. For each op, a value or rule is provided for determining the required mult to ensure unit-scale.
The correct value for these multipliers is derived by analyzing the scaling behavior of each op,
given some reasonable distributional assumptions about the input and incoming gradient tensors (see
Appendix E.2 for an example). Below we provide an in-depth overview of each new or modified
unit-scaled op we introduce here.

Unit-scaled dot-product attention The Unit Scaling paper considers the attention layer scaling in
terms of its separate components: the various matmul operations and the internal softmax. Linear
operations are scaled using the standard rule, and the softmax scaling is given a α = β = s factor.

From an implementation perspective, the self-attention layer is more typically broken down into
weight-matmuls and a fused scaled-dot-product attention operation. This is the case we handle here,
accounting for three complicating factors not considered in the Unit Scaling paper:

1. As we use a decoder-style transformer in our experiments, our softmax operation has a
causal mask applied to its input.
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2. We follow the µP guidance of using 1/dhead scaling in our self-attention layer, rather than
the usual 1/

√
dhead.

3. We place a αattn multiplier immediately before the softmax, which is an HP that users may
tune.

As a result our dot-product attention takes the form:

attention(q, k, v) = softmax
(
αattn-softmax · d−1

head · (q · k⊤)⊙ cmask
)
· v

The addition of an HP before the softmax introduces an additional challenge for Unit Scaling, as our
scaling multipliers will need to account for this value when preserving unit scale.

This operation is sufficiently complex that we found an empirical model of its scale to be more
accurate than any mathematically-derived rule (future work may consider justifying our model
mathematically). We find that the scale of dot-product attention is approximately

σ(attention(q, k, v)) = log_interpolate

(
1

1 + 4dhead

α2
attn

, 1,

√
log(s)

s

)
where

log_interpolate(α, bupper, blower) = eα log(bupper)+(1−α) log(blower).

The corresponding scaling rule is therefore to divide by this factor in both the forward and backward
pass, as outlined in Table 7.

SwiGLU FFN Llama uses a SwiGLU (Shazeer, 2020) layer for its FFN, which introduces two
new operations for us to unit-scale: a SiLU (Yu & Su, 2019) (a.k.a. swish (Ramachandran et al.,
2018)) operation and an element-wise multiplication. We take a similar approach to our dot-product
attention, and consider unit-scaling the following fused operation:

gated_silu(xin, xgate) = xin ⊙ xgate ⊙ sigmoid(αffn-act xgate)

For the surrounding weight-matmuls we follow the standard Unit Scaling rules.

Again, we use an empirical model of the scale of this op, which is surprisingly similar to the
dot-product attention model:

σ(gated_silu(xin, xgate)) = log_interpolate

(
1

1 + 1
α2

ffn-act

,
1√
2
,
1

2

)
,

dividing through by this factor to get our scaling rule.

Residual layers Our implementation of residual layers for u-µP is more complex than other
operations, as adjustments are required to:

1. Make pre-norm residual networks support Unit Scaling (see Appendix F).

2. Introduce our new, principled residual HPs (see Appendix G).

Our residual layer scheme is presented in full in G.2.2. For readers interested in our justification for
this, see the sections noted above.

We also follow the example of Unit Scaling and delay the application of our residual multiplier in the
backward pass to the base of the branch (see (Blake et al., 2023), Figure 3c). This does not change
the model, and enables unit-scale to be maintained on the residual branch regardless of the value of
the multiplier.

RoPE embeddings We also require a unit-scaled implementation of Rotary Position Embeddings
(RoPE (Su et al., 2024)), which are applied just before the scaled dot-product attention operation.
As RoPE essentially consists of pair-wise rotations of elements by different degrees, we observe no
meaningful scale-change as a result of it’s application, and hence leave it unchanged.

31



Published as a conference paper at ICLR 2025

RMSNorm Following (Lingle, 2024) we opt to use a non-trainable version of RMSNorm (Zhang
& Sennrich, 2019), in order to facilitate better transfer. As a result, we also leave this operation
unchanged. Were a trainable RMSNorm to be used, the recipe would follow closely that of the
LayerNorm presented in the Unit Scaling paper’s compendium.

Scale constraints One final, minor deviation from the scheme outlined in the Unit Scaling paper is
the way in which we apply scale constraints (see their Section 5.2). The essence of scale constraints
is that for perfect unit scaling, sometimes the ideal scale for the forward pass differs from those in the
backward pass. In some special cases (e.g. at the ends of the network) the use of different scales can
be valid, but in the general case a single scale must be agreed upon. The solution in the Unit Scaling
paper is to use the geometric mean of the forward and backward scales.

We propose instead to simply use the forward scale over the backward scale(s) in these cases. We do
so for the following reasons:

1. For these architectures we find empirically that where there is a disparity in ideal forward
and backward scales, it is not large.

2. By taking the forward scale, we can ensure strict unit-scale in the forward pass.

The value of the latter point is in terms of what it means for the interpretation of our u-µP multiplier
HPs. Consider the αffn-act multiplier; with strict unit scale we can say that the standard deviation
of activations immediately before this multiplier is 1. Therefore the standard deviation immediately
after is αffn-act. As this multiplier is (by design) the last operation before the ffn activation function,
we can say that the interpretation of αffn-act is simply to set the input standard deviation to the FFN’s
activation function. Similar arguments can be made for other u-µP multiplier HPs. This interpretation
only holds because we use the forward-scale in our constraints.

C THE CHALLENGES WITH µP IN PRACTICE

C.1 NOT ALL TRAINING SETUPS GIVE µTRANSFER

Lingle (2024) shows that directly applying µP to a decoder LM fails to provide LR transfer across
width. Given that the primary use of µP in the literature has been LM training of this kind, this result
suggests a significant limitation. How do we reconcile this with the strong LR transfer across width
shown for language models in Tensor Programs V?

We answer this in Figure 19. The first training setup (a) is aligned with that used in Tensor Programs
V (their Figure 4). There are several atypical aspects to their training setup, primarily the use of
a constant LR schedule and a high number of epochs; we outline the precise differences between
setup (a) and (b) in Table 8. This overfitting regime makes validation loss unusable, and transfer
misleadingly good. When we remove these and shift to a standard Llama training setup (b), optimal
HPs begin to drift with width (see Figure 21 for an ablation of individual changes). This confirms
Lingle’s findings that standard µP is in fact a poor fit for modern LM training. We fix this (c) by the
removal of parameters from LayerNorms/RMSNorms, as suggested by Lingle, and the introduction
of independent weight decay for AdamW, as suggested by Wortsman et al. (2023) 4 (see Wang &
Aitchison (2024) for further analysis). With these changes adopted, we recover the strong transfer
shown in Tensor Programs V’s experiments. Each change is evaluated independently in Figure 20,
which shows that the dominant effect is a narrowing of the learning basin due to non-parametric
RMSNorms, leading to better learning rate transfer.

C.2 IT’S NOT CLEAR WHICH HYPERPARAMETERS TO SWEEP

The problem of selecting HPs to sweep can be framed as choosing a subset of the per-tensor
αW , σW , ηW HPs outlined in Section 2.1, and grouping across/within layers. As shown in Table 9,
µTransfer experiments in the literature have done this in a variety ways. Practitioners have not

3 As in other work, we use µP as a shorthand for the method outlined in Tensor Programs V, including µTransfer.
Strictly speaking, µP ought only to refer to the parametrization outlined in Tensor Programs IV. 4 Lingle
suggests independent weight decay is unstable, but we find it to be more so than Adam or standard AdamW.
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Figure 19: Effective µTransfer does not hold across all training setups. (a) We show strong transfer
for the unrealistic setup used in Tensor Programs V (too many epochs; constant LR). (b) Moving to a
more standard Llama training setup, transfer breaks down. (c) This is restored by the introduction of
two improvements to transfer stability: non-parametric norms and independent weight decay.
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Figure 20: The effect of the individual transfer stability fixes from Figure 19. (a) In this setting
switching from non-independent to independent weight decay has only a minor effect, though
Wortsman et al. (2023) Figure 6 suggests it may be highly valuable in other settings. (b) Non-
parametric norms give a narrower learning rate basin, leading to better transfer. (c) The combination
of these, for comparison, matching Figure 19 (c).
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Feature Tensor Programs V Standard Llama
Dataset wikitext-2 wikitext-103
Vocab Size 33278 32000
Nsteps 10000 8192
Batch Size 20 64
Optimizer adam adamw
LR Schedule constant cosine
Weight Decay 0 0.00012
Positional Encoding absolute rotary
Norm layer_norm rms_norm
Dropout 0.2 0
NLayers 2 4
Use Gated FFN False True
Activation FN relu swish
FFN Ratio 4 2.75
Final Norm False True
Base Depth 1 4
Zero Init Readout True False

Table 8: Comparison of Tensor Programs V’s standard settings (as best we can tell) and our Standard
Llama setup, corresponding to (a) and (b) in Figure 19.
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Figure 21: An ablation of the more standard Llama training settings against the Tensor Programs
V settings from Figure 19. This shows that the flat basins with poor transfer are not due to a single
change, but the combination of a larger dataset (training <1 epoch) and the stronger Llama model
are largely responsible. Note that ‘Llama model’ here indicates a group of changes: rms norm, rotary
embeddings & swiglu FFN.

justified these choices, appearing to rely on a mixture of precedent and intuition. We outline two
major downsides to the lack of a principled approach.

Firstly, not all groupings of HPs are suitable. Consider the commonly-used global σinit HP. At
initialization the activations going into the FFN swish function have std(xswish) ∝ σWgate , whereas
the self-attention softmax activations have std(xattn) ∝ σWQσWK . A global σ HP thus has a linear
effect on the FFN and a quadratic effect on attention, suggesting that this grouping may be unideal.

Secondly, not all HPs are independent of one another. The key example of this is the interaction
between σW and ηW . The relative size of a weight update is determined by the ratio ηW /σW , not by
either HP individually. Because of this, the optimal values for σ and η depend on each other, which
we demonstrate empirically in Section 4.1. This can make the problem of HP search much harder,
and may be why hundreds of random-search runs have been required for sweeps in the literature.
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C.3 BASE SHAPE COMPLICATES USAGE

Most practitioners are unlikely to require alignment with an SP model, in which case it is unclear what
base-width (and base-depth) should be used. The literature has aligned on a standard base-width
of 256 (see Table 9), but this appears to lacking a principled motivation—though the fact that they
are not dropped entirely suggests they may be beneficial under u-µP.

Implementing base-shape HPs (see Equation (3)) can also add complications from an engineering
perspective. The proposed implementation in the mup library (Microsoft, 2024) reflects this, requiring
an extra ‘base’ model to be created and the original model to be re-initialized. This can interact
awkwardly with other model-transforms for features like quantization, compilation, etc:

import mup

proxy_model = MupModel(d_model=128, ...) # proxy width
base_model = MupModel(d_model=256, ...) # base width
mup.set_base_shapes(proxy_model, base_model) # re-init proxy_model

C.4 µP APPEARS TO STRUGGLE WITH LOW-PRECISION

Finally, we note an interesting contradiction observed in the relationship between µP and low-
precision. One of the stated aims for µP is that its activations have Θ(1)-sized coordinates in the limit
(Yang et al., 2022, Desiderata J.1). This desideratum is specifically given in order that values can
be represented using finite-range floating-point numbers (Yang & Hu, 2021, Section 3). Yet despite
numerical stability being central to the theory underlying µP, this is not leveraged to ensure that µP
models can actually be trained in low-precision. Indeed, for the LLM runs in Tensor Programs V
the SP model trains successfully in FP16, while the µP model diverges (attributed to underflow of
gradients). We remedy this with u-µP.

D A GUIDE TO USING U-µP

We bring together our u-µP scheme presented in Section 3 to form a simple recipe for applying it to a
model. The u-µP scheme is designed and validated on a Llama-style architecture, so it may not be
applicable or effective on other models, particularly those with substantially different architectures.
Exploring this question is an important avenue for future work.

Before applying our scheme, users are encouraged to apply the following pre-requisites to their
training setup, based on our analysis of effective µTransfer in Appendix C.1:

• Remove trainable parameters from normalization layers

• Use the independent form of AdamW

• Ensure training is in the under-fitting regime (i.e. avoid excessive data repetition)

Having done this, our recipe for using u-µP is as follows:

1. Replace operations & optimizers with u-µP versions: Each operation should be replaced
by a unit-scaled version (these wrap the existing operations, with added static scales in the
forward and backward passes). We have pre-calculated scales for common operations in
Appendix B. Parameters should be initialized with unit variance, and Adam(W) adjusted
to use the scaling rules defined in Section 3.4 (we refer to the optimizer as Adam in this
section, but AdamW should be used if weight decay is required. Other optimizer scaling
rules can be determined by the same process we outline).

2. Choose a set of HPs to sweep: From the set of HPs outlined in Table 3, select those to be
swept. We recommend the extended set, though a basic LR sweep can be effective.

3. Decide on proxy model config: The cost of proxy model training should be such that the
sweeping process is much less than target model training, while still being as representative
as possible. We base our recommendations on the results in Figure 4. In general, width is
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the most reliable feature to transfer. Training steps and batch size also give good transfer, so
moderate changes here are permissible. Depth is the least reliable feature for transfer, so we
only recommend modest changes in depth. We keep the number of warmup steps constant,
but always decay to the same final LR when varying the number of steps.

4. Perform independent HP search: Following the process outlined in Section 4.1 and
Appendix A.5.

5. Train the target model: This can be done in FP8 simply by placing casts on matmul inputs
(though for our large-scale experiments we found the scales of two operations drifted enough
over time that some lightweight dynamic re-scaling was required).

E ADDITIONAL BACKGROUND MATERIAL

E.1 THE MAXIMAL UPDATE PARAMETRIZATION

Theoretical background We do not cover the theory underpinning µP in this paper, presenting
only its resulting scaling rules (Table 1). For readers interested in this theory, the extensive Tensor
Programs series (Yang, 2019; 2020a; Yang & Littwin, 2021; Yang, 2020b; Yang & Littwin, 2023)
builds up a framework from which µP is derived (Yang & Hu, 2021). For those requiring a more
accessible introduction, Yang et al. (2023a) show that µP can be derived in a simpler and more general
way by placing a spectral scaling condition on the norm of weights and their updates.

Approaches to HP sweeping in the literature Table 9 outlines the ways in which users of µP in
the literature have approached HP sweeping. These all follow the approach used in Tensor Programs
V of a random sweep, sampling combinations from the joint space of all HPs. The authors of Tensor
Programs V note that other more complex methods may be more efficient, but these are considered
beyond the scope of their work and have not been used widely. A Bayesian search method was used
for the development of MiniCPM (Hu et al., 2024), but the authors give no further details—as they
use 400 runs in their sweep it is not clear that this approach makes HP search easier.

Table 9: Sweeping configurations used for a selection of µP models from the literature. The
sweeping process is similar across models, the only differences being the choice of discrete or
continuous distributions and their ranges. Model references: T.P.V WMT14 (Yang et al., 2022),
T.P.V BERTlarge (Yang et al., 2022), T.P.V GPT-3 (Yang et al., 2022), MiniCPM (Hu et al., 2024),
Cerebras-GPT (Dey et al., 2023a), SµPar (Dey et al., 2024).

Model proxy/target
tokens used

proxy/target
model size

sweep
size

base
width HPs swept

T.P.V WMT14 100% 7.1% 64
?

η, αout, αattn
T.P.V BERTlarge 10% 3.7% 256 η, ηemb, αout, αattn, αLN, αbias

T.P.V GPT-3 1.3% 0.6% 350 η, σ, αemb, αout, αattn, αpos
MiniCPM 0.008% 0.45% 400 256 η, σ, αemb, αresidual

Cerebras-GPT 1.1% 1.5% 200 256 η, σ, αemb
SµPar 6.6% 6.4% 350 256 η, σ, αemb

E.2 UNIT SCALING

An example: the unit-scaled matmul op Here we outline the procedure for calculating the scaling
factor of a matmul op, which practitioners can use as a guide for scaling new ops that we do not cover
in this paper (see Appendix B).

There are two potential approaches here. The first is to derive scaling factors from an analysis of an
op’s dynamics. Specifically, given the assumption of unit-scaled inputs, the appropriate scaling factor
is the reciprocal of the expected output scale. For a basic matrix-matrix matmul we have,

matmul(X,W ) = XW, X ∈ Rdbatch×dfan-in , W ∈ Rdfan-in×dfan-out ,
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where weights and activations are sampled i.i.d. from a centered Gaussian:

Xij ∼ N (0, σ2
X), Wjk ∼ N (0, σ2

W ).

From this we can derive the expected output scale (i.e. σ(matmul)):

matmul(X,W )ik =

dfan-in∑
j=1

XijWjk,

σ (matmul(X,W )ik) =
√

dfan-in σW σX .

Under Unit Scaling we have σW = σX = 1, and hence the scaling factor required to ensure a
unit-scaled output is 1/

√
dfan-in. This gives our final unit-scaled matmul:

u-matmul(X,W ) = matmul(X,W )/
√
dfan-in

The distributional assumptions made here hold at initialization, but do not over training. A more
precise model for the asymptotic behavior of neural networks under training is given by the Tensor
Programs framework, but for the purposes of numerics this precise treatment of scale at initialization
appears to be sufficient.

The second, less ideal approach to calculating scaling factors is to use experimentation to infer this
relationship empirically. In this case, one would sample random initializations and compute the
output scale over a range of dfan-in values (or whatever HPs one expects the output scale to depend
on), fitting a curve to the observed data.

Applying unit scaling To apply Unit Scaling to a model and train in low-precision, the following
steps are required:

1. Scale parameter initializations to have zero-mean and unit variance.
2. Replace operations with their unit-scaled equivalents (including and especially the loss,

matmuls and residual-adds).
3. Constrain the scales of operations which are required to have the same forward and backward

factors.
4. Place a simple .to(fp8) cast on the inputs to matmuls.

Step 3 relates to the problem of conflicting scales in the forward and backward passes. A single
linear layer in a differentiated model requires 3 matmul ops in the forward and backward passes, each
requiring a different scaling factor ( 1√

dfan-in
, 1√

dfan-out
, 1√

dbatch-size
). However, using these directly

would give invalid gradients. The compromise here is that the activations and activation gradients
have their scaling factors constrained such that they are equal (the Unit Scaling paper recommends
taking the geometric mean; we modify this for u-µP in Appendix B to simply use the forward scale
everywhere). Weight gradients can still be given their own scaling factor due to the cut-edge rule (as
explained in Appendix H).

Step 4 reflects the key benefit of Unit Scaling. Unlike other methods it changes the learning dynamics
of a model, but the advantage is that unit-scaled models then ‘naturally’ generate well-scaled tensors.
This means that low-precision arithmetic ideally becomes as simple as placing a cast operation before
matmuls as outlined.

F UNIT-SCALED PRE-NORM RESIDUAL LAYERS

The popular pre-norm residual network architecture is simple to implement, but problematic to
combine with Unit Scaling. It exhibits scale-growth in the skip-stream at initialization, due to the
repeated addition of residual connections without subsequent normalization. Here we present a
surprising and useful finding: that for any pre-norm model there exists a mathematically-equivalent
model where this scale-growth is eliminated, through the careful re-scaling of residual connections.

Note that this section focuses on applying Unit Scaling to standard pre-norm models. Only once we
have addressed this problem are we able to do the same for u-µP models, as shown in Appendix G.2.
Readers only interested in our final u-µP residual implementation may skip ahead to Appendix G.2.2.
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F.1 SCALE GROWTH IN PRE-NORM RESIDUAL NETWORKS

Let’s consider a pre-norm residual network of depth L:

R0(x) = r0x, (4)
Rl(x) = rlfl(Rl−1(x)) +Rl−1(x), l = 1, .., L (5)

RL+1(x) = fL+1(RL(x)) (6)

with embedding multiplier r0 and residual branch multipliers rl for l = 1, .., L. To satisfy pre-norm,
all fl are zero-homogeneous functions, i.e. fl(λx) = fl(x).

The scale of the skip-stream at initialization as a result of Equation (5) is

σ(Rl) =
√
r2l σ(fl)

2 + σ(Rl−1)2 > σ(Rl−1), l = 1, .., L (7)

assuming r2l σ(fl)
2 > 0. This shows that scale inevitably grows with the addition of each residual

layer.

This scale-growth is clearly incompatible with unit scaling, which aims for σ(Rl) = 1 for all
l = 0, .., L + 1. In the following we present an elegant solution to this problem making use of a
symmetry transformation available in pre-norm residual architectures.

F.2 RESIDUAL SYMMETRY IN PRE-NORM ARCHITECTURES

To resolve the problem of scale shift in residual networks demonstrated by Equation (7), we try a
slightly more general ansatz:

R̂0(x) = x, (8)

R̂l(x) = alfl(R̂l−1(x)) + blR̂l−1(x), (9)

R̂L+1(x) = fL+1(R̂L(x)) (10)

with coefficients al, bl. We want to choose these coefficients so that the outputs of R̂l are unit-scaled
if the outputs fl, R̂l−1 are. A similar calculation as in Equation (7) leads to the sufficient condition

a2l + b2l = 1, (11)

which can be easily satisfied. Having restored Unit Scale, we are faced with another issue. It seems
that Equations (8) to (10) describe a different network than Equations (4) to (6), whereas ideally the
relation from input to final output should be unchanged when converting the network to Unit Scaling.

Note that the coefficients al, bl are not uniquely defined yet, so our mathematical intuition tells us that
we should find an additional constraint to get a unique solution. To find this constraint, let us consider
our original residual network in Equations (4) to (6) and analyze how the variance propagates through
the network if we assume all the fl satisfy Unit Scaling and σ(x) = 1. Let σ2

l−1 denote the variance
of Rl−1. Then a simple inductive calculation shows that

σ2
l−1 =

l−1∑
i=0

r2i .

By Equation (5) the output of Rl adds a quantity of scale rl from the residual connection and a
quantity of scale σl−1 from the skip connection. Intuitively, the ratio of these scales should be more
important for the overall network dynamics than their absolute values. Thus our constraint becomes
preserving the ratio of scales from the original model, through our choice of al, bl:

al
bl

=
σ(rlfl)

σl−1
=

rl√∑l−1
i=0 r

2
i

=: τl,

which, recalling Equation (11), (up to sign) uniquely defines our multipliers al, bl as

al =
τl√
τ2l + 1

, bl =
1√

τ2l + 1
(12)
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In summary, we propose the modified residual network
R̂0(x) = x, (13)

R̂l(x) =
τl√
τ2l + 1

fl(R̂l−1(x)) +
1√

τ2l + 1
R̂l−1(x), (14)

R̂L+1(x) = fL+1(R̂L(x)), (15)

τ2l =
r2l∑l−1
i=0 r

2
i

. (16)

Our main result of this section is that this network is indeed mathematically equivalent to the network
defined in Equations (4) to (6), under a simple additional structural assumption:
Lemma F.1. Consider Rl, R̂l defined as in Equations (5) and (14) respectively. Then R̂l =

Rl/
√∑l

i=0 r
2
i for all l = 0, .., L.

Remarkably, this result does not assume the individual network operations fl actually satisfy Unit
Scaling. It is purely a consequence of the pre-norm residual structure. However, only under Unit
Scaling can the factors τl be interpreted as the ratio of scales between skip and residual branch.

As a consequence of the lemma, the final residual output RL(x) is the same as in our original
network up to a fixed multiplier. Due to the zero-homogeneity of the final output function fL+1 this

gives R̂L+1 = fL+1

(
RL(x)/

√∑l
i=0 r

2
i

)
= fL+1(RL(x)) = RL+1, proving the mathematical

equivalence of our residual scheme. Modern LLM architectures like Llama (Touvron et al., 2023a) are
pre-norm residual networks of this kind. Hence they admit a faithful unit-scaled reparametrization.

F.3 PROOF OF LEMMA F.1

Proof. This is proved by induction. For the base-case l = 1, we have τ1 = r1/r0, giving

R̂1(x) =
τl√
τ2l + 1

f1(x) +
1√

τ2l + 1
x

= (r1f1(x) + r0x)/
√

r20 + r21

= R1/
√

r20 + r21.

Then if the statement holds for l − 1 we have

R̂l(x) =
τl√
τ2l + 1

fl(R̂l−1(x)) +
1√

τ2l + 1
R̂l−1(x)

=
rl√∑l
i=0 r

2
i

fl(R̂l−1(x)) +

√∑l−1
i=0 r

2
i√∑l

i=0 r
2
i

R̂l−1(x)

=

rlfl(R̂l−1(x)) +

√√√√ l−1∑
i=0

r2i R̂l−1(x)

 /

√√√√ l∑
i=0

r2i

=

rlfl(Rl−1(x)) +

√√√√ l−1∑
i=0

r2i
Rl−1(x)√∑l−1

i=0 r
2
i

 /

√√√√ l∑
i=0

r2i

= (rlfl(Rl−1(x)) +Rl−1(x)) /

√√√√ l∑
i=0

r2i

= Rl(x)/

√√√√ l∑
i=0

r2i
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F.4 UNIT SCALING FOR TRANSFORMER RESIDUALS

The above scheme describes Unit Scaling for arbitrary pre-norm residual networks. We now apply it
to the case of pre-norm transformer residual layers.

We can describe a transformer in terms of the residual network given in Equations (4) to (6). Our fl
functions alternate between self-attention layers and feed-forward layers. Implementations differ in
the handling of how residual multipliers rl correspond to HPs. In many cases practitioners simply
ignore these rl, but for the sake of expressivity we assume the two types of residual layer each have
their own HP, as well as the embedding. In other words,

rl =


αemb l = 0

αattn-residual l is odd
αffn-residual l is even, and l > 0.

To convert this to a Unit Scaled network we apply Equations (13) to (16), from which can derive the
following closed-form expression for τl:

τ2l =


α2
attn-residual

α2
emb + ℓα2

attn-residual + ℓα2
ffn-residual

l is odd

α2
ffn-residual

α2
emb + (ℓ+ 1)α2

attn-residual + ℓα2
ffn-residual

l is even.

where ℓ = ⌊ l−1
2 ⌋.

This gives us a unit-scaled pre-norm residual implementation for a standard transformer, which is
mathematically equivalent to a non-unit-scaled version. In the next section we augment this by adding
in two HPs, in a carefully-designed manner that satisfies our criteria for u-µP HPs, giving us our full
residual implementation.

G JUSTIFYING THE U-µP HYPERPARAMETER SCHEME

Here we justify our particular choice of u-µP HP, as given in Table 3 (with their placement defined in
Table 7). We discuss this topic briefly in Section 3.3, stating that all our HPs (excepting the LR) are
α HPs, and under u-µP they are now associated with operations instead of weights. All operations
have an α HPs, unless they are unary and k-homogeneous for k ≥ 0.

We begin this section by explaining why we apply this rule to the model and how it results in three of
our u-µP HPs. We then consider how best to hyperparametrize our residual layers, building on our
criteria for HPs given in Section 3.3 and the unit-scaled pre-norm residual scheme in Appendix F.

G.1 MULTIPLIERS FOR NON-HOMOGENEOUS OPS: αattn-softmax, αffn-act, αloss-softmax

In this section we derive the rest of our u-µP multipliers. We want to identify the minimal set
that can still express all different choices of pre-op scales in the model. The crucial observation
is that every pre-scale multiplier α of a unary operation h 7→ f(αh) can be propagated through
the network if f is k-homogeneous for some k > 0, i.e. f(αx) = αkf(x), leaving the model and
its optimization unchanged. We can iterate this along the computational path until either the next
operation is non-homogeneous, non-unary (we are at the end of a residual path), or the next operation
is 0-homogeneous (e.g. a norm).

In the first case the accumulated scales are absorbed in the pre-op scale of the non-homogeneous
operation (where we introduce a multiplier), in the second case they are absorbed in the residual
addition for that branch (where we again introduce a multiplier), and in the final case the scale
disappears (so we start over). We now go through the Llama forward computation and follow this
paradigm to identify our multipliers in Table 10.
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Table 10: A walkthrough of the Llama architecture, showing how our αattn-softmax, αffn-act and
αloss-softmax multipliers are derived via an analysis of scale-propagation.

Op Scale propagation behavior

Embedding We show in Appendix G.2.1 that the embedding multiplier can be
absorbed in the residual multipliers, meaning one is not required here.

Attention RMSNorm This operation is 0-homogeneous and thus we start over.
Query & key projection Both are linear, meaning their scale is propagated. Multipliers are

therefore not required.
Query-key matmul Again linear. As query & key are both generated from the same

input, this operation is 2-homogeneous wrt. that input. Hence it also
propagates scale.

Softmax The softmax operation is non-homogeneous. Thus the pre-op scale of
the softmax becomes our first multiplier: αattn-softmax.

Value The value layer is linear and hence propagates scale.
Softmax-value matmul Again linear and hence propagates scale.
Attention projection This operation is linear and lies at the end of the attention residual path.

Hence there are no more multipliers in the attention block.
Residual add This operation is non-unary and hence receives our second (and third)

multipliers: αres, αres-attn-ratio. The manner and motivation for using
two multipliers here is justified in the next section.

FFN RMSNorm This operation is 0-homogeneous and thus we start over.
FFN input scale The input layer is linear, hence it propagates scale.
Sigmoid input This function is non-homogeneous and thus we have our fourth multi-

plier: αffn-act.
SiLU weight This layer is also linear and propagates scale.
Product The entry-wise multiplication of the outputs of sigmoid, input layer

and SiLU weight is homogeneous and thus propagates scale.
FFN output This layer is linear and at the end of the residual path. Hence there are

no more multipliers in the FFN residual block.
Residual add See above.

Output RMSNorm This operation is 0-homogeneous and thus we start over.
Output head This layer is linear, hence it propagates scale.
Loss The cross-entropy loss is non-homogeneous and leads to our final

multiplier: αloss-softmax.

G.2 RESIDUAL BRANCH MULTIPLIERS: αres, αres-attn-ratio

In this section we derive our two u-µP residual HPs. We start with the basic, non-unit scaled model
we began with in the previous section, outlined in Equations (4) to (6). We described a set of
αemb, αattn-residual, αffn-residual HPs associated with this model in Appendix F.4. However these
HPs poorly satisfy our cardinality, independence and interpretability criteria from Section 3.3, so
in the Appendix G.2.1 we present a re-parametrization of these HPs designed to better satisfy these
points. In Appendix G.2.2 we then combine these HPs with the final unit-scaled pre-norm residual
scheme we derived in Appendix F, resulting in our complete u-µP residual scheme.
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G.2.1 IMPROVED HYPERPARAMETERS FOR TRANSFORMER RESIDUALS

To avoid cluttered notation, in this section we rename

αres = αr, αres-attn-ratio = αρ

αemb = αe, αattn-residual = αa αffn-residual = αf .

To make the presentation more clear, we derive our new HPs using the standard residual scheme from
Equations (4) to (6). For the actual unit scaled implementation one needs to transform the multipliers
following Equations (13) to (16), which we do in Section G.2.2.

To facilitate our analysis, we can view the transformer residual output as the sum of three terms:

RL = R
(e)
L +R

(a)
L +R

(f)
L ,

R
(e)
L := αex,

R
(a)
L :=

L/2∑
l=1

αa√
L/2

f2l−1(R2l−1(x)),

R
(f)
L :=

L/2∑
l=1

αf√
L/2

f2l(R2l(x)),

and define the average residual scale,

σ(R
(a,f)
L )2 :=

σ(R
(a)
L )2 + σ(R

(f)
L )2

2
.

Note that we have added in the depth-µP multipliers here, though a similar analysis can be performed
for non-depth-µP models. As above, fl functions alternate between self-attention layers and feed-
forward layers.

With respect to our interpretability criterion, we propose two new multipliers that correspond to
dynamics in the network which we suggest are important to control at initialization. The first
is the ratio of the average scale of the residuals’ contributions to those of the embedding, αr =

σ(R
(a,f)
L )/σ(R

(e)
L ). The second is the ratio of the scale of the attention-residuals’ contributions to

those of the feed-forward-residuals, αρ = σ(R
(a)
L )/σ(R

(f)
L ). Not only do these two ratios control

key dynamics of our model, but we can use them to replace our existing (αe, αa, αf ) multipliers.

Let us first examine these two quantities for a standard (non-unit-scaled model). Residual functions
of the same kind have the same expected output scale at initialization in pre-norm networks, meaning
we can denote the output scale σ(fl(Rl)) of all self-attention functions as σa, and of all feed-forward
functions as σf . We thus have the following scales at the output:

σ(R
(e)
L ) = αeσ(x),

σ(R
(a)
L ) =

αa√
L/2

σ

L/2∑
i=1

f2l−1(R2l−1)
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σ(R
(f)
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σ
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f2l(R2l)

 = αfσf ,
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√
(αaσa)2 + (αfσf )2

2
.
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Recalling our definitions of αr, αρ above, this gives us:

αρ =
αa

αf

σa

σf
,

αr =

√
(αaσa)2 + (αfσf )2

2 (αeσ(x))2
,

=

√
α2
ρ + 1

2

σf

σ(x)

αf

αe
.

The original αa, αf multipliers can then be written in terms of αr, αρ:

αa = αραf
σf

σa

αf = αrαe
σ(x)

σf

√
2

α2
ρ + 1

We have replaced two of the three original multipliers, but still have a dependence on αe here in our
expressions for αf and R

(e)
L , which we now remove by dividing it out of our residual branches and

embedding. We use the hat (̂·) symbol to denote terms that have been divided-through by αe. This
new system of equations is equivalent to our old one thanks to the zero-homogeneity of the final
post-residual layer:

RL+1(x) = fL+1(R
(e)
L +R

(a)
L +R

(f)
L )

= fL+1((R
(e)
L +R

(a)
L +R

(f)
L )/αe)

= fL+1(R̂
(e)
L + R̂

(a)
L + R̂

(f)
L )

This gives R̂(e)
L = αex/αe = x, removing our first occurrence of αe. Following the division through

R̂
(a)
L and R̂

(f)
L , we obtain:

R̂
(a)
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L/2∑
l=1

α̂a√
L/2

f2l−1(R2l−1),

R̂
(f)
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L/2∑
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α̂a = αρα̂f
σf

σa
,

α̂f = αr
σ(x)

σf

√
2

α2
ρ + 1

.

This system of equations is the same as the original, but with the two αe terms dropped, meaning our
model’s multipliers can be expressed in terms of only αr and αρ. Using the above equations, any
pair of values for (αr, αρ) can be translated back into an equivalent set of values for (αe, αa, αf )
such that the output RL+1(x) is the same, meaning that our multipliers are no less expressive than
the original set. This satisfies our desired criteria of minimizing the number of multipliers while
maintaining expressivity.

We can simplify further in the case of unit-scaled models, which are designed such that σ(x), σa, σf

are all 1 at initialization. In this case our re-parametrization becomes:

α̂a = αρα̂f , (17)

α̂f = αr

√
2

α2
ρ + 1

, (18)

α̂e = 1. (19)
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This is the basis of our claim that Unit Scaling is what enables a more intuitive set of multipliers. Not
only do the multipliers αr and αρ represent important dynamics in the network at initialization (the
ratio of residual-to-embedding scales, and the ratio of attention-to-feed-forward scales), but it’s only
via unit scaling that these equations become simple enough to implement in practice. Using equations
Equations (17) to (19) for a non-unit scaled network may still be effective, but the interpretation
we’ve given to αr and αρ no longer hold.

Our final desired property is an empirical one: that the most effective choice of one multiplier depends
as little as possible on the choice of the other multiplier(s). We demonstrate that our multipliers
satisfy this property better than the standard set of residual multipliers in Section 4.1.

G.2.2 THE FULL U-µP RESIDUAL SCHEME

Here we give the full definition of our u-µP residual scheme, summarizing the results of previous
sections. A general pre-norm transformer is implemented as:

R0(x) = c x, (20)
Rl(x) = alfl(Rl−1(x)) + blRl−1(x), l = 1, .., L (21)

RL+1(x) = fL+1(RL(x)), (22)
where al, bl and c are scalar multipliers, and the fl alternate between self-attention and feed-forward
layers. We consider our baseline set of µP residual HPs here to be (αemb, αattn-residual, αffn-residual),
which we implement (assuming depth-µP branch scaling) as:

al =


αattn-residual√

L/2
l is odd (self-attention)

αffn-residual√
L/2

l is even (feed-forward)

bl = 1

c = αemb.

The corresponding u-µP set of residual HPs is (αres, αres-attn-ratio), which we implement as:

a2l =
τ2l

τ2l + 1
(23)

b2l =
1

τ2l + 1
(24)

c = 1, (25)
(26)

τ2l =


α̂2
a

L
2 + ℓα̂2

a + ℓα̂2
f

l is odd

α̂2
f

L
2 + (ℓ+ 1)α̂2

a + ℓα̂2
f

l is even

, ℓ =

⌊
l − 1

2

⌋
(27)

α̂2
a = α2

res-attn-ratio α̂
2
f (28)

α̂2
f =

2

α2
res-attn-ratio + 1

α2
res . (29)

This is the u-µP residual scheme. It satisfies the three properties that we initially set out to achieve:
the variance at initialization of our Rl(x) is always 1, our HPs have a clear and useful interpretation,
and our scheme is as expressive as the baseline (which is neither unit-scaled or has interpretable HPs).

H THE CUT-EDGE RULE

In the section we review the notion of constraints used for scaling operations in a computational
graph. For a more thorough, generalized treatment, please refer to Section 5.1 and Appendix E.4 of
the Unit Scaling paper (Blake et al., 2023).
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For simplicity, we will only discuss the cut-edge rule in the context of a typical neural network. For
each operation f , parametrized by θ taking input x and emitting output y, a user must choose how to
scale y,∇x and∇θ (gradient of loss w.r.t. x and θ respectively). In the simplest case, where there are
no further data dependencies, we can simply choose factors that preserve unit scale. In more complex
scenarios, we must balance the need for each tensor to be unit-scaled and for gradients to be correct
up to a constant factor.

In particular, a problem emerges in the presence of residual blocks in which y = x + f(x; θ). In
these circumstances,∇x is computed as the sum of residual gradient∇f

∂f
∂x and skip gradient∇y . If

we choose not to insert scaling factors into our graph, ∇f
∂f
∂x and ∇y will have some ratio of scale r.

However, if we have chosen to rescale the gradient of operations in f , then ∇f
∂f
∂x will have been

rescaled by some s. This means the new ratio of∇f
∂f
∂x and∇y will be r · s. Therefore, when adding

these together, ∇x is no longer a correct gradient up to a constant factor.

How do you remedy this? If we can ensure that the scaling factors are the same for both the input
gradients and outputs of an op, we will have s = 1. This ensures that gradients for inputs to residual
blocks are correct up to a constant factor.

How do you decide when you are free to preserve unit scale, and when to constrain scaling factors to
be the same? We previously define the cut-edge rule (Blake et al., 2023) for computational graphs
where nodes represent forward pass operations and edges represent operation outputs. If an input
edge is a cut-edge, i.e., the number of connected components in the graph would increase upon
deletion (examples in a typical transformer model: output of embedding gather, output of a residual
add, output of final norm, output token logits, weights), there is no need to constrain the scales of
the operation’s output edge and the input edge gradient. For all other input edges (e.g., inputs to a
residual add, intermediates computed along a residual branch), the scales of gradients and outputs
should be constrained.

I FROM µP TO U-µP

Here we outline additional details to help readers follow the process of deriving u-µP from the
combination of Unit Scaling and µP. Our first step of dropping σW and base-fan-in, and moving
αW s to functions, results in Table 11. This intermediate scheme does not yet satisfy Unit Scaling, but
simplifies the HP rules in preparation for further changes. Note that we have also removed η̂emb as
we don’t include this HP in our u-µP extended HP set. We have included residual scaling rules here,
in accordance with depth-µP, which we intend u-µP to satisfy, though our standard µP implementation
doesn’t use it.

Table 11: An intermediate scheme resulting from dropping those HPs from µP which are not needed
under u-µP.

ABC-multiplier
Weight Type

Residual
Input Hidden Output

parameter (AW ) 1 1 1
fan-in

1√
depth

*

initialization (BW ) 1 1√
fan-in

1 —

Adam LR (CW ) η η 1
fan-in η 1√

depth

J LOW-PRECISION AND ITS TRADE-OFFS

Number formats for deep learning The standard numerical representations used in deep learning
are the set of formats defined by the IEEE 754 floating-point standard (IEEE Computer Society,
2019). IEEE floats comprise three elements: a sign bit, exponent bits, and mantissa bits. The number
of exponent bits determines the range of a format, while the mantissa determines the precision5.
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We refer readers to Blake et al. (2023), Section 3.1 for a comprehensive overview of floating-point
representations.

The default format used for training is the single-precision floating-point format, commonly known as
FP32, with some hardware providers automatically casting it to the smaller TF32 compute mode for
accelerated arithmetic. The 16-bit FP16 and BF16 formats were later introduced, and more recently
the FP8 E5 & E4 formats (Sun et al., 2019; Noune et al., 2022; Micikevicius et al., 2022). The higher
range of E5 has typically been used for gradients, while the higher precision of E4 has been seen
as necessary for weights and activations. Other aspects of training such as the optimizer state and
cross-device communication have also been put into FP8 (Peng et al., 2023), though not all tensors
are amenable to being run in the lowest precision (Dettmers et al., 2022) without degradation. The
use of multiple formats is known as mixed precision (Micikevicius et al., 2018). A comparison of
these formats is given in Table 12.

Table 12: A comparison of deep learning formats. E indicates exponent bits, and M mantissa bits.
The smaller formats typically give more FLOPS, at the expense of reduced range and/or precision.

Format E M | max | | min normal | | min subnormal | FLOPS (vs TF32)

FP32 8 23 3.4× 1038 1.2× 10−38 1.4× 10−45 < 1×
TF32 8 10 3.4× 1038 1.2× 10−38 1.1× 10−41 1×
BF16 8 7 3.4× 1038 1.2× 10−38 9.2× 10−41 2×
FP16 5 10 65504 6.1× 10−5 6.0× 10−8 2×
FP8 E5 5 2 57344 6.1× 10−5 1.5× 10−5 4×
FP8 E4 4 3 448 1.6× 10−2 2.0× 10−3 4×

The benefits of low-precision Using numerical representations with fewer bits facilitates the design
of more efficient arithmetic in hardware, typically leading to a linear increase in peak FLOPS (as
shown in Table 12). As large-scale training efforts are typically compute-bound due to the size of
matmuls (Narayanan et al., 2021), putting the inputs to these operations in low-precision formats
has a substantial impact on training efficiency. Low-precision formats also reduce the other two
common performance constraints: for memory-bandwidth-bound models they require fewer bits to
be transmitted, and for memory-size-bound models they require fewer bits to be stored.

The challenges of low-precision Unfortunately, moving to low-precision formats also increases
quantization error. For values within the representable range this takes the form of rounding error,
and for values outside it, clipping error (both overflow and underflow). Rounding error tends to be an
intrinsic problem: the number of mantissa bits dictates the expected accuracy of representations and
this cannot easily be changed. In contrast, clipping error is often eliminated by scaling a tensor so
that its values lie within the range of a format. Note that a multiplicative change in values of this kind
doesn’t affect the (relative) rounding error, due to the exponential spacing of values. Most research
into making low-precision work has focused on the problem of scaling tensors in this way.

Simply casting all tensors to FP16 or FP8 tends to impair training, largely due to clipping error. For
FP16, this primarily affects gradients. Micikevicius et al. (2018) address this by introducing a fixed
global loss-scale HP, which multiplies the loss value in the backward pass, artificially up-scaling
gradients to lie within FP16 range. Automatic loss scaling (Kuchaiev et al., 2018) builds upon this
idea, making the loss-scale a dynamic value that is tuned during training.

The later BF16 format has the same range as FP32, making loss scaling unnecessary. For FP8 no
such range-equivalent format can exist, so the problem of clipping error must be addressed. Most
FP8 implementations have done so by moving from a global loss-scale to a local scale for each FP8
tensor. In pseudo-code, this takes the form:

a = scale(A)
b = scale(B)
A = to_fp8(A / a)

5 Confusingly, the term low-precision tends to indicate using <32 bit-width formats, so in this context precision
also reflects the number of exponent bits as well as the usual mantissa bits.
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B = to_fp8(B / b)
C = (a * b) * matmul(A, B)

where we assume that matmul takes inputs in FP8 and directly produces the output in higher
precision.

The result of the scale() operation can either be a fixed scale determined before training (Noune
et al., 2022), or in the case of Transformer Engine (NVIDIA, 2024a), computed dynamically as a
function of the ‘absmax’ of the input tensor (though they introduce a delay across time-steps, to
facilitate an efficient fused kernel). Increasing granularity and computing scales dynamically using
this kind of method inevitably adds complexity (from both a logical and implementation perspective),
as well the potential for computational overhead. Unit Scaling generally avoids the need for matmul
input scaling.

K BENCHMARKING SCALED MATRIX MULTIPLICATION IMPLEMENTATION IN
PYTORCH

Given that the end-goal of leveraging u-mup’s low-precision properties is to speed up training and
reduce memory usage, it’s reasonable to ask why we don’t investigate this experimentally. The answer
relates to the relative immaturity of the FP8 training software stack - a lack of open, efficient FP8
kernels for compute and communication mean significant additional engineering effort is required to
attain expected speedups over the full model.

Here we show that u-µP’s static scaling factors add no overhead to matmuls in FP8, and hence ought
to be able to reach close to the maximal FP8 throughput attainable for the full model.
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Figure 22: Square matrix multiplication throughput in TFLOPs with and without scaling factors
applied to the output across 32-, 16-, and 8-bit float dtypes on NVIDIA H100 PCIe. Naive implemen-
tation in PyTorch.

Standard strategies for FP8 training require expensive statistics gathering (e.g., amax) per tensor. A
key benefit of u-µP for FP8 training is that it instead provides us with static scaling factors to rescale
operation outputs. Even a naive implementation in pytorch can achieve a minimal drop in hardware
utilization.

Figure 22 demonstrates hardware utilization for FP8, FP16, and FP32 matrix multiplications
on a single NVIDIA H100 PCIe card. For FP16 and FP32, torch.matmul is used, whereas
torch._scaled_mm is used for FP8. Comparing "scaled" to "unscaled" matrix multiplication
demonstrates a 30%, 20%, and 10% drop in hardware utilization for each data type respectively. In
the case of FP8, where the drop in utilization is most pronounced, utilization can be recovered by
passing the scaling factor as a scale associated with one of the two input tensors.

It should be noted that as of PyTorch version 2.3, torch._scaled_mm always computes amax as
well as the matrix multiplication. The performance of FP8 matrix multiplications could be higher
without this overhead.
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The above analysis focuses on throughput; significant memory savings are also possible through
the use of FP8, though how this affects the total memory footprint depends on various additional
variables and the overall distributed training setup. The following factors are play a significant role:
typically the main memory bottlenecks are the optimizer states, which are kept in full precision. This
footprint can be reduced by applying ZeRO sharding (Rajbhandari et al., 2020), though for significant
gains the number of data parallel processes needs to be sufficiently large and ZeRO stage 2 or 3 are
required. In these settings the memory footprint of activations and gradients becomes significant,
and quantizing these to lower precision promises further memory savings, though may be non-trivial
(Peng et al., 2023).
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Figure 23: Scale of intermediate tensors grows with depth at initialization. Top left: Intermediate
activation tensor RMS along the residual branch. Only the attention outputs after the first layer are
not unit-scaled. Bottom left: Skip activation tensor RMS. Scale growth in attention outputs drives
growth in skip activation scales. Note that layer_idx= 0 corresponds to the embedding output,
and layer_idx= 4 corresponds to the final layer outputs. Top right: Intermediate gradient tensor
RMS along the residual branch. Growth in the attention output scale drives growth in attention qkv
gradient scales. Bottom Right: Skip gradient tensor RMS. The scale of output activations induces a
global rescaling of the gradients.
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A core assumption in deriving per-op scaling factors is that each input to an operation has zero
mean, unit-variance, and uncorrelated elements at initialization. This is trivially true for weights
and by extension the token embeddings taken as input to the transformer trunk. However, this is not
guaranteed for intermediate results and gradients if an operation in the computational graph induces
correlation in the elements. In such a scenario our scaling factors will not return unit-variance outputs
as we will not have corrected for these correlations in the inputs. As we then increase the depth of the
network, where the same operation is left to amplify correlations, we can end up with variance in
intermediate results and gradients scaling with depth

Figure 23 illustrates this phenomenon in a unit-scaled four-layer Llama model with width=256. All
activation tensors in the residual branches are unit-scaled, except for the output of the attention layers.
We also see that the variance of attention outputs grows with depth. Since Llama models use pre-norm
on the residual-branch, residual-branch inputs will revert to unit-scale again until they reach another
instance of the correlation-inducing operation. As we add under-scaled attention layer results back to
the skip-branch, our skip tensor variances grow with depth as our residual-add assumes unit-variance
inputs. This has a knock-on effect on the global scaling of the gradients since the Jacobian of the
final norm will scale the gradient by the inverse of the final skip tensor variance.

So which operation induces correlation in the attention output at initialization? For the default case
where all multipliers are set to 1, our 1/d scaling of attention logits results in a sufficiently high
temperature that attention probabilities are effectively uniform. With causal masking, we effectively
take a running mean across the value tensor along the sequence dimension. As a result, each
subsequent token representation is correlated with the last. Since we derive appropriate scaling factors
for the first layer, we do not see scale growth emerging until the second layer, where correlations
accumulate during the next effective running mean.

We leave it to future work to offer a solution to scale growth created by correlation in intermediate
tensors. We note that this is scale growth emergent at initialization, but we also see scale growth in
other intermediate tensors during training. Whether scale growth during training is related to the
phenomenon outlined here remains to be seen.
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