
InversionView: A General-Purpose Method for
Reading Information from Neural Activations

Xinting Huang 1 Madhur Panwar 2 Navin Goyal 2 Michael Hahn 1

Abstract
The inner workings of neural networks can be
better understood if we can fully decipher the in-
formation encoded in neural activations. In this
paper, we argue that this information is embod-
ied by the subset of inputs that give rise to sim-
ilar activations. Computing such subsets is non-
trivial as the input space is exponentially large.
We propose InversionView, which allows us to
practically inspect this subset by sampling from
a trained decoder model conditioned on activa-
tions. This helps uncover the information content
of activation vectors, and facilitates understand-
ing of the algorithms implemented by transformer
models. We present four case studies where we
investigate models ranging from small transform-
ers to GPT-2. In these studies, we demonstrate the
characteristics of our method, show the distinctive
advantages it offers, and provide causally verified
circuits.1

1. Introduction
Despite their huge success, neural networks are still widely
considered black boxes. One of the most important rea-
sons is that the continuous vector representations in these
models pose a significant challenge for interpretation. If
we could understand what information is encoded in the
activations of a neural model, significant progress might
be achieved in fully deciphering the inner workings of neu-
ral networks, which would make modern AI systems safer
and more controllable. Toward this goal, various methods
have been proposed for understanding the inner activations
of neural language models. They range from supervised
probes (Alain and Bengio, 2016; Belinkov and Glass, 2019;

1Saarland Informatics Campus, Saarland University, Saar-
brücken, Germany 2Microsoft Research India, Bengaluru, In-
dia. Correspondence to: Xinting Huang <xhuang@lst.uni-
saarland.de>.

1Code is available at https://github.com/
huangxt39/InversionView

Belinkov, 2022; Wang et al., 2023b) to projecting to model’s
vocabulary space (nostalgebraist, 2020; Belrose et al., 2023)
to causal intervention (Geiger et al., 2021; Wang et al.,
2023a; Goldowsky-Dill et al., 2023; Conmy et al., 2023) on
model’s inner states. However, to this date, decoding the
information present in neural network activations in human-
understandable form remains a major challenge. Supervised
probing classifiers require the researcher to decide which
specific information to probe for, and does not scale when
the space of possible outputs is very large. Projecting to the
vocabulary space is restricted in scope, as it only produces
individual tokens. Causal interventions uncover information
flow, but do not provide direct insight into the information
present in activations.

Here, we introduce InversionView as a principled general-
purpose method for generating hypotheses about the infor-
mation present in activations in neural models on language
and discrete sequences, which in turn helps us put together
the algorithm implemented by the model. InversionView
aims at providing a direct way of reading out the informa-
tion encoded in an activation. The technique starts from
the intuition that the information encoded in an activation
can be formalized as its preimage, the set of inputs giving
rise to this particular activation under the given model. In
order to explore this preimage, given an activation, we train
a decoder to sample from this preimage. Inspection of the
preimage, across different inputs, makes it easy to identify
which information is passed along, and which information is
forgotten. It accounts for the geometry of the representation,
and can identify which information is reinforced or down-
weighted at different model components. InversionView
facilitates the interpretation workflow, and provides output
that is in principle amenable to automated interpretation via
LLMs (we present a proof of concept in Section 4).

We showcase the usefulness of the method in three thor-
ough case studies: a character counting task, Indirect Object
Identification, and 3-digit addition. We also present prelim-
inary results on the factual recall task, demonstrating the
applicability of our method to larger models. The character
counting task illustrates how the method uncovers how infor-
mation is processed and forgotten in a small transformer. In
Indirect Object Identification in GPT2-Small (Wang et al.,

1

https://github.com/huangxt39/InversionView
https://github.com/huangxt39/InversionView

InversionView: Reading Information from Neural Activations

Figure 1. Illustration of the geometry at two different activation sites, encoding different information about the input. On the left, the
semantics of being on leave are encoded. On the right, the information that the subject of the input sentence is John is encoded.

2023a), we use InversionView to easily interpret the in-
formation encoded in the components identified by (Wang
et al., 2023a), substantially simplifying the interpretability
workflow. For 3-digit addition, we use InversionView to
provide for the first time a fully verified circuit sufficient for
performing the task. Across the case studies, InversionView
allows us to rapidly generate hypotheses about the informa-
tion encoded in each activation site. Coupled with attention
patterns or patching methods, we reverse-engineer the flow
of information, which we verify using causal interventions.

2. Methodology
2.1. Interpretation Framework

What information is encoded by an activation in a neural
network? InversionView answers this in terms of the inputs
that give rise to a given activation (Figure 1). For instance, if
a certain activation encodes solely that “the subject is John”
(Figure 1, right), then it will remain unchanged when other
parts in the sentence change while preserving this aspect
(e.g., “John is on leave today.” ⇒ “John has a cute dog.”).
Building on this intuition, given an activation, Inversion-
View aims to find those inputs that give rise to the same ac-
tivation, and examine what’s common among them to infer
what information it encodes. In realistic networks, different
inputs will rarely give rise to exactly the same activation.
Rather, different changes to an input will change the acti-
vation to different degrees. The sensitivity of an activation
to different changes reflects the representational geometry:
larger changes make it easier for downstream components
to read out information than very small changes. This moti-
vates a threshold-based definition of preimages, where we
consider information as present in an activation when the
activation is sufficiently sensitive to it. Formally speaking,
given a space X of valid inputs, a query input xq ∈ X ,
a function f that represents the activation of interest as a
function of the input, and a query activation zq = f(xq),
define the ϵ-preimage:2

Bzq,f,ϵ = {x ∈ X : D(f(x), zq) ≤ ϵ}, (1)

where ϵ > 0 is a threshold and D(·, ·) is a distance metric.
Both ϵ and D(·, ·) are chosen by the researcher based on

representation geometry; we will define these later in case
studies. In practice, in all our three case studies, we vary
ϵ and set it so we can read out coherent concepts from
the ϵ-preimage (Appendix A.4). With a threshold-based
definition, we consider only those pieces of information
that have substantial impact on the activation. See more
discussion in Appendix A.1.

2.2. Conditional Decoder Model

In this paper, we study the setting where xq is a sequence.
Directly enumerating Bzq,f,ϵ is in general not scalable,
as the input space grows exponentially with the sequence
length. To efficiently inspect Bzq,f,ϵ, we train a conditional
decoder that takes the activation zq and generates inputs x
giving rise to similar activations in the model under inves-
tigation. In the following, we refer to the original model
that we are interpreting as the probed model, the conditional
decoder as the decoder, the place in the probed model from
which we take the activation as the activation site (e.g., the
output of ith layer), the inputs generated by the decoder
as samples, and the index of a token in the sequence as
position.

We implement the decoder as an autoregressive language
model conditioned on zq, decoding input samples x. As
the decoder’s training objective corresponds to recovering x
exactly, sampling at temperature 1 will typically not cover
the full ϵ-preimage. Thus, for generating elements of the
ϵ-preimage, we increase diversity by drawing samples at
higher temperatures and with noise added to zq (details in
Appendix A.2). Note that the activation f(x) will depend
on the position in the input sequence; hence, we separately
evaluate D(f(x), zq) at each position i in each sample x,
and select the position i minimizing D(f(x), zq),3 deter-
mine membership in Bzq,f,ϵ, and subsample in-ϵ-preimage

2Strictly speaking, when xq is a sequence, we study the vector
zq corresponding to a specific position t in this sequence, i.e.
zq = f(xq)t where f(xq)t represents taking the activation from
the site of interest (abstracted by f) at position t in input sequence
xq . In this case, the preimage can more rigorously be defined as
Bzq,f,ϵ = {x : x ∈ X , ∃t ∈ [1, |x|] : D(f(x)t, z

q) ≤ ϵ}.
3In some cases, including Figure 2b 3b, we fix a particular

position for interpretation. See Appendix A.3.

2

InversionView: Reading Information from Neural Activations

and out-of-ϵ-preimage samples for inspection.

An important question is whether this method, relying on
a black-box decoder, produces valid ϵ-preimages. We can
approach this question from two perspectives, namely cor-
rectness (are all generated samples in the ϵ-preimage?)
and completeness (are the samples representative of the ϵ-
preimage?). As we evaluate D(f(x), zq) for each generated
samples, correctness is ensured by design, thus we avoid
making conclusion based on wrong samples. As for com-
pleteness, we ask whether all elements of the ϵ-preimage can
be output by the method at reasonable probability. If some
groups of inputs in ϵ-preimage are systematically missing
from the generations, one may overestimate the informa-
tion contained in activations. But this behavior would be
punished by the training objective, since the loss on these
examples would be high. We explicitly verify completeness
by enumerating inputs in one of our case studies (Appendix
B). Another approach is to design counter-examples x not
satisfying a hypothesis about the content of Bzq,f,ϵ, and
checking if they in fact are outside of it. In our experi-
ments, we found that these examples were always outside
of Bzq,f,ϵ.

3. Discovering the Underlying Algorithm by
InversionView

3.1. Setup and Background

Notation. In the transformer architecture, outputs from
each layer are added to their inputs due to residual connec-
tion. The representations of each token are only updated by
additive updates, forming a residual stream (Elhage et al.,
2021). Using notation based on (Elhage et al., 2021) and
(Nanda and Bloom, 2022), we denote the residual stream
as xi,{pre,mid,post} ∈ RN×d, where i is the layer (an at-
tention (sub)layer + an MLP (sub)layer) index, N is the
number of input tokens, d is the model dimension, pre,
mid, post stand for the residual stream before the atten-
tion layer, between attention and MLP layer, and after the
MLP layer. For example, x0,pre is the sum of token and
position embedding, x0,mid is the sum of the output of the
first attention layer and x0,pre, and x0,post is the sum of
the output of the first MLP layer and x0,mid. Note that
xi,post = xi+1,pre. We use subscript t to refer to the acti-
vation at token position t, e.g., xi,mid

t ∈ Rd. The attention
layer output decomposes into outputs of individual heads
hi,j(·), i.e., xi,mid = xi,pre +

∑
j h

i,j(LN(xi,pre)), where
LN(·) represents layer normalization (GPT style/pre-layer-
norm). We denote the attention head’s output as ai,j , i.e.,
ai,j = hi,j(LN(xi,pre)).

Decoder Architecture. We train a single two-layer trans-
former decoder across all activation sites of interest; we
chose this architecture for simplicity. The query activa-

tion zq is concatenated with an activation site embedding e,
a learned embedding layer indicating where the activation
comes from, passed through multiple MLP layers with resid-
ual connections, and then made available to the attention
heads in each layer of the decoder, alongside the already
present tokens from the input, so that each attention head
can also attend to the post-processed query activation in
addition to the context tokens. Each training example is a
triple consisting of an activation vector zq ∈ Rd, the ac-
tivation site index, and the input, on which the decoder is
trained with a language modeling objective. Appendix C
has technical details.

3.2. Character Counting

We train a transformer (2 layers, 1 head) on inputs such
as “vvzccvczvvvzvcvc|v:8” to predict the last token “8”,
the frequency of the target character (here, “v”) before the
separator “|”. For each input, three distinct characters are
sampled from the set of lowercase characters, and each char-
acter’s frequency is sampled uniformly from 1–9. The input
length varies between 7 and 31. We created 1.56M instances
and applied a 75%-25% train-test split; test set accuracy is
99.53%. See details in Appendix D. For InversionView,
we use D(z, zq) = ∥z−zq∥2

∥zq∥2
(i.e., normalized euclidean dis-

tance), as the magnitude of activations varies between layers,
and the threshold ϵ = 0.1.

Interpreting via InversionView and attention. In layer
0, the target character consistently attends to the same char-
acter in the previous context, suggesting that counting hap-
pens here. In Figure 2a, we show the ϵ-preimage of x0,mid

tc

and x0,post
tc , where the subscript tc denotes the target charac-

ter. We show ≈ 10 random samples at a single query input,
but our hypotheses are based on—and easily confirmed by—
rapid visual inspection of dozens of inputs across different
query inputs.4 On the left (before the MLP), the activation
encodes the target character, as all samples have “g” as the
target character. Count information is not sharply encoded:
while the closest activation corresponds to “g” occurring 3
times, two activations corresponding to a count-4 input (“g”
occurring 4 times) are also close, even closer than a count-3
input. On the other hand, on the right (after the MLP), only
count-3 inputs are inside the ϵ-preimage, and count-4 inputs
become much more distant than before. Comparing the
ϵ-preimage before and after the MLP in layer 0, we find that
the MLP makes the count information more prominent in
the representational geometry of the activation. The exam-
ples are not cherry-picked; count information is generally
reinforced by the MLP across query inputs.

4Besides representative examples given in the Appendix,
the reader can check generations conveniently at https://
inversion-view.streamlit.app.

3

https://inversion-view.streamlit.app
https://inversion-view.streamlit.app

InversionView: Reading Information from Neural Activations

(a) (b)

Figure 2. InversionView on Character Counting Task. The model counts how often the target character (after ’|’) occurs in the prefix
(before ’|’). B (E) denote beginning (end) of sequence tokens. The query activation conditions the decoder to generate samples jointly
capturing its information content. We show non-cherrypicked samples inside and outside the ϵ-preimage (ϵ = 0.1) at three activation sites
on the same query input. Distances are calculated between activations corresponding to the parenthesized characters in the query input
and the sample. “True count” indicates the correct count of the target character in the samples (decoder may generate incorrect counts).
(a) MLP layer amplifies count information. By comparing the distances before (left) and after (right) the MLP, we can see samples with
diverging counts become much more distant from the query activation. (b) In the next layer (when information is copied from residual
stream of target character to the residual stream of “:” via attention, since “:” exclusively attends to target character), the count is retained
but the identity of the target character is no longer encoded (“c”, “m”, etc. instead of “g”), as it is no longer relevant for predicting the
count. Therefore, observing generations informs us of the activations’ content and how it changes across activation sites.

In the next layer, the colon consistently attends to the target
character, and InversionView confirms that count informa-
tion is moved to the colon’s residual stream (Figure 2b).
More importantly, this illustrates how information is ab-
stracted: We previously found that x0,post

tc encodes identity
and frequency of the target character. However, the colon
obtains only an abstracted version of the information, in
which count information remains while the target charac-
ter is largely (though not completely) removed. Inversion-
View makes this process visible, by showing that the target
character becomes interchangeable with little change to the
activation. See more examples in Appendix D.2. Overall,
with InversionView, we have found a simple algorithm by
which the model makes the right prediction: In layer 0, the
target character attends to all its occurrences and obtains
the counts. In layer 1, the colon moves the results from the
target character to its residual stream and then produces the
correct prediction. Accounting for other activation sites, we
find that the model implements a somewhat more nuanced
algorithm, investigated in Appendix D.4. Overall, Inversion-
View shows how certain information is amplified, providing
an understanding of the effect of the MLP layer. More
importantly, InversionView also shows how information is
abstracted or forgotten.

Quantitative verification. We causally verified our hy-
pothesis using activation patching (Vig et al., 2020; Geiger
et al., 2021) on (position, head output) pairs. As the at-
tention head in layer 1 attends almost entirely to the target
character, only head outputs a0,0tc , a0,0: , and a1,0: can possi-
bly play a role in routing count information. We patch their
outputs with activations from a contrast example flipping
a single character before “|”. We patch activations cumu-
latively, starting either at the lowest or highest layer, with
some fixed ordering within each layer. For example, we
patch a0,0: and observe how final logits change compared
to the clean run, then we patch both a0,0: and a0,0tc and do
the same, and so forth. By the end of patching, the model
prediction will be flipped. When adding an activation to the
patched set, we attribute to it the increment in the difference
of LD before and after patching, where LD denotes the
logit difference between original count and the count in the
contrast example. Cumulative patching allows us to observe
dependencies: For instance, as we hypothesize that a1,0: is
completely dependent on a0,0tc , we expect that, when a0,0tc is
already patched, patching a1,0: will have no further effect,
whereas when a0,0tc is not patched, patching a1,0: will have a
significant effect. Results (Figure 3a) match our prediction:
Patching either of the activation in the hypothesized path
(a0,0tc and a1,0:) is sufficient to absorb the entire effect on
logit differences, confirming the hypothesis. See Appendix

4

InversionView: Reading Information from Neural Activations

(a) (b)

Figure 3. (a) Character Counting. Activation patching results show that a0,0
tc and a1,0

: play crucial roles in prediction, as hypothesized
based on Figure 2 and Sec. 3.4. In contrast examples, only one character differs. Top: We patch activations cumulatively from left to
right. We can see patching a0,0

tc accounts for the whole effect, and when a0,0
tc is already patched, patching a1,0

: has almost no effect.
Bottom: On the other hand, if we patch cumulatively from right to left, a1,0

: accounts for the whole effect while patching a0,0
tc has no

effect if a1,0
: has been patched. So we verified that a1,0

: solely relies on a0,0
tc and this path is the one by which the model performs precise

counting. The patching effect is averaged across the whole test set. (b) IOI. InversionView applied to Name Mover Head 9.9 at “to”; we
fix the compared position to “to”. Throughout the ϵ-preimage, “Justin” appears as the IO, revealing that the head encodes this name. This
interpretation is confirmed across query inputs.

D.3 for further details and D.4 for further experiments.

3.3. IOI circuit in GPT-2 small

To test the applicability of InversionView to transformers
pretrained on real-world data, we apply our method to the
activations in the indirect object identification (IOI) circuit
in GPT-2 small (Radford et al., 2019) discovered by Wang
et al. (2023a). We apply InversionView to the components
of the circuit, read out the information, and compare it with
the information or function that Wang et al. (2023a) had in-
geniously inferred using a variety of tailored methods, such
as patching and investigating effects on logits and attention.
We show that InversionView unveils the information con-
tained in the attention heads’ outputs, with results agreeing
with those of Wang et al. (2023a).

The IOI task consists of examples such as “When Mary
and John went to the store, John gave a drink to”, which
should be completed with “Mary”. We use S for the subject
“John” in the main clause, IO for the indirect object “Mary”
introduced in the initial subclause, S1 and S2 for the first
and second occurrences of the subject, and END for the “to”
after which IO should be predicted. To facilitate comparison,
we denote attention heads as in Wang et al. (2023a) with i.j
denoting hi,j . Wang et al. (2023a) discover a circuit of 26
attention heads in GPT-2 small and categorize them by their
function. In short, GPT-2 small makes correct predictions
by copying the name that occurs only once in the previous
context. For InversionView, we train the decoder on the IOI
examples (Details in E.1). Despite the size of the probed
model, we find the same 2-layer decoder architecture as in

Section 3.2 to be sufficient. We use D(z, zq) = 1− z·zq

||z||·||zq||
(i.e., cosine distance), and ϵ = 0.1. Euclidean distance leads
to similar results, but cosine distance is a better choice for
this case (Appendix E.4).

We start with the Name Mover Head 9.9, which Wang et al.
(2023a) found moves the IO name to the residual stream
of END. 3b shows the ϵ-preimage at “to”. The samples
in the ϵ-preimage share the name “Justin” as the IO. The
head also shows similar activity at some other positions
(Appendix A.3). Results are consistent across query in-
puts. Therefore, the result of InversionView is consistent
with the conclusions of Wang et al. (2023a) on head 9.9.
Applying the same analysis to other heads (Table 2), we
recovered information in high agreement with the infor-
mation that (Wang et al., 2023a) had inferred using mul-
tiple tailored methods. For example, Wang et al. (2023a)
found S-Inhibition heads were outputting both token sig-
nals (value of S) and position signals (position of S1) by
patching these heads’ outputs from a series of counterfac-
tual datasets. These datasets are designed to disentangle
the two effects, in which token and/or position information
are ablated or inverted. On the other hand, these two kinds
of information can be directly read out by InversionView
(Figure 18 shows an example for one of the S-Inhibition
heads that contains position information), and there is no
need to guess the possible information to design patching
experiments. Overall, among the 26 attention heads that
Wang et al. (2023a) identified, InversionView indicates a
different interpretation in only 3 cases; these (0.1, 0.10, 5.9)
were challenging for the methods used before (Appendix

5

InversionView: Reading Information from Neural Activations

Figure 4. InversionView applied to 3-digit addition: Visually inspecting sample inputs inside and outside the ϵ-preimage of the query
allows us to understand what information is contained in an activation. The color on each token in generated samples denotes the
difference in the token’s likelihood between a conditional or unconditional decoder (Appendix G). The shade thus denotes how much
the generation of the token is caused by the query activation (darker shade means a stronger dependence). In (a–c), the colored tokens
are most relevant to the interpretation. We interpret two attention heads (a,b) and the output of the corresponding residual stream after
attention (c). In (a), what’s common throughout the ϵ-preimage is that the digits in the hundreds places are 6 and 8. Inputs outside the
ϵ-preimage don’t have this property. In (b), what’s common is that the digits in tens places are 1, 6, or numerically close. Hence, we
can infer that the activation sites a0,0 and a0,3 encode hundreds and tens place in the input operands respectively; the latter is needed to
provide carry to A1. Also, the samples show that the activations encode commutativity since the digits at hundreds and tens place are
swapped between the two operands. In (c), the output of the attention layer after residual connection combining information from the sites
in (a) and (b) encodes “6” and “8” in hundreds place, and the carry from tens place. Note that a0,1 and a0,2 contains similar information
as a0,0. These observations are confirmed across inputs. Taken together, InversionView reveals how information is aggregated and passed
on by different model components.

(a) (b)

Figure 5. 3-Digit Addition Task: (a) Information flow diagram for predicting A1 inferred via InversionView. The colors denote which
places are routed; alternating colors indicate two places are routed. This is a subfigure of Figure 30. (b) Validation of (a) via activation
patching for the prediction of A1. Like Figure 3a, → (←) means cumulatively patching activation from left to right (right to left)
on the horizontal axis. Left: Patching with activation containing modified F1 and S1 information. Right: Patching with activation
containing modified F2 and S2 information. As we can see, components from (a) show a substantial increment if and only if they have a
not-yet-patched connection to output (when patching right to left) or input (patching left to right), verifying that (a) causally describes the
flow of information. Therefore, InversionView helps us uncover both information flow and content of activations.

6

InversionView: Reading Information from Neural Activations

E.3). In summary, InversionView scales to larger models.

3.4. 3-Digit Addition

We next applied InversionView to the problem of adding
3-digit numbers, between 100 and 999. Input strings have
the form “B362+405=767E” or “B824+692=1516E”, and
are tokenized at the character level. We use F1, F2, F3 to
denote the three digits of the first operand and S1, S2, S3
for the digits of the second operand, and A1, A2, A3, A4
(if it exists) for the three or four digits of the answer, and
C2, C3 for the carry from tens place and ones place (i.e.,
C2: whether F2+S2≥10, C3: whether F3+S3≥10). Unlike
(Quirke and Barez, 2024), we do not left-pad answers to
have all the same length; hence, positional information is
insufficient to determine the place value of each digit.

The probed model is a decoder-only transformer (2 layers,
4 attention heads, dimension 32). We set attention dropout
to 0. Other aspects are identical to GPT-2. The model is
trained for autoregressive next-token prediction on the full
input, in analogy to real-world language models. In testing,
the model receives tokens up to and including “=”, and
greedily generates up to “E”. Predictions count as correct
if all generated tokens match the ground truth. The same
train-test ratio as in Section 3.2 is used. The test accuracy is
98.01%. For other training details see Appendix F.1.

Interpreting via InversionView and attention. As Sec-
tion 3.2 we use normalized Euclidean distance for D(·, ·)
and the threshold ϵ = 0.1. We first trace how the model
generates the first answer digit, A1, by understanding the
activations at the preceding token, “=”. We first examine
the attention heads at “=” in the 0-th layer (Figure 4). As
for the first head (a0,0), only F1 and S1 matter in the sam-
ples – indeed, changing other digits, or swapping their order,
has a negligible effect on the activation (Figure 4). Across
different inputs, each of the three heads a0,0, a0,1, a0,2 en-
code either one or both of F1 and S1 (Figure 25); taken
together, they always encode both. This is in agreement
with attention focusing on these tokens. The fourth and
remaining head in layer 0 (a0,3) encodes F2 and S2, which
provide the carry from the tens place to the hundreds place.
Combining the information from these four heads, x0,mid

consistently encodes F1 and S1; and approximately repre-
sents F2, S2—only the carry to A1 (whether F2+S2≥10)
matters here (Figure 4c). Other examples are in Figure 26.
We can summarize the function of layer 0 at “=”: Three
heads route F1 and S1 to the residual stream of “=” x=.
The fourth head routes the carry resulting from F2 and S2.
Layer 1 mainly forwards information already obtained in
layer 0, and does not consistently add further information
for A1. See more examples in Appendix F.2.

Figure 5a shows the circuit predicting A1. InversionView

allows us to diagnose an important deficiency of this cir-
cuit: even though the ones place sometimes receives some
attention in layer 1, the circuit does not consistently provide
the carry from the ones place to the hundreds place, which
matters on certain inputs—we find that this deficiency in
the circuit accounts for all mistakes made by the model
(Appendix F.3). Taken together, we have provided a circuit
allowing the model to predict A1 while also understanding
its occasional failure in doing so correctly. Corresponding
findings for A2, A3, and A4 are in Table 3 and Figure 30.
From A2 onwards, InversionView allows us to uncover how
the model exhibits two different algorithms depending on
whether the resulting output will have 3 or 4 digits. In par-
ticular, when predicting A3, the layer 0 circuit is the same
across both cases, while the layer 1 circuit varies, since this
determines whether A3 will be a tens place or ones place.
Beyond figures in the Appendix, we also encourage readers
to verify our claims in our interactive web application.

Quantitative verification. We used causal interventions
to verify that information about the digits in hundreds and
tens place is routed to the prediction of A1 only through the
paths determined in Figure 5a, and none else. Like before,
we cumulatively patch the head output on “=” preceding the
target token A1, with an activation produced at the same
activation site by a contrast example changing both digits
in a certain place. Results shown in Figure 5b strongly
support our previous conclusions. For example, a0,3 and
a1,2 are not relevant to F1 and S1. Important heads detected
by activation patching, a0,0, a0,1, a0,2, a1,1, all contain F1
and S1 according to Figure 5a. Furthermore, we can also
confirm that a1,1 relies on the output of layer 0 as depicted
in sub-figure (a): When heads in layer 0 are already patched,
patching a1.1 has no further effect (value corresponding to
→ is zero), but it has an effect when patching in the opposite
direction. On the contrary, a1,0 shows little dependence on
layer 0, consistent with Figure 5a. On the right of Figure
5b, we can confirm that a0,3 is important for routing F2
and S2, and the downstream heads in layer 1 rely on it.
Findings for other answer digits are similar (See Appendix
F.5). Overall, the full algorithm obtained by InversionView
is well-supported by causal interventions.

InversionView reveals granularity of information.
Heads often read from both digits of the same place. Only
the sum matters for addition – raising the question whether
the digits are represented separately, or only as their sum.
Unlike traditional probing, InversionView answers this ques-
tion without designing any tailored probing tasks. In Figure
6 (left), a0,2 exactly represents F2 and S2 (here, 2 and 5).
Other inputs where F1+S1=5+2 have high D. In contrast,
on the right, F2 and S2 are represented only by their sum:
throughout the ϵ-preimage, F2+S2=9. In fact, we find such
sum-only encoding only when F2+S2=9—a special case

7

InversionView: Reading Information from Neural Activations

Figure 6. 3-Digit Addition Task: InversionView uncovers differ-
ent ways in which digits are encoded in activations. Left: Digits in
the hundreds place are encoded separately and hence generations
denote them as separate entities. Manually constructed counter-
examples varying the digits while keeping their sum constant lead
to high D. Right: The digits in the tens place are encoded as a sum
(9 in this case) and the generations represent different 2-partitions
(7+2, 6+3, 1+8, 5+4, etc.) of that sum.

where the ones place of operands affects the hundreds place
of the answer via cascading carry. We hypothesize that the
model encodes them similarly because these inputs require
special treatment. Therefore, even though encoding number
pairs by their sum is a good strategy for the addition task
from a human perspective, the model only does it as needed.
We also observe intermediate cases (Figure 28).

3.5. Factual Recall

To test whether InversionView can be applied to larger lan-
guage models, we explore how GPT-2 XL (1.5B parameters)
performs the task of recalling factual associations. In this
case study, our intention is not to provide a full interpreta-
tion of the computations performed to solve this task, which
we deem out of scope for this paper. Instead, we show
that InversionView produces interpretable results on larger
models by focusing on a relatively small set of important
attention heads in upper layers. The decoder model in this
case study is based on GPT-2 Medium, because we expect
a more complex inverse mapping from activation to inputs
to be learned. We observe the resulting ϵ-preimage can ex-
press high-level knowledge (Figure 38-42), and sometimes
can predict the failure of the model (Appendix H.6). Us-
ing InversionView, we again shed light on the underlying
mechanism of the model. We present detailed findings in
Appendix H.

4. Discussion
Traditional probing (e.g. Alain and Bengio, 2016; Belinkov
et al., 2017) trains a supervised classifier to assess how
much information about a variable of interest is encoded
in an activation site. It requires a hypothesis in advance
and is thus inherently limited to hypotheses conceived a
priori by the researcher. InversionView, on the other hand,
helps researchers form hypotheses without any need for
prior guesses, and allows fine-grained per-activation inter-
pretation. Inspecting attention patterns (e.g. Clark et al.,
2019) is a traditional approach to inferring information flow,
and we have drawn on it in our analyses. More recently,
path patching (Wang et al., 2023a; Goldowsky-Dill et al.,
2023) causally identifies paths along which information
flows. In contrast to these approaches, InversionView aims
at aiding generation of hypotheses about what information
is contained in activations and passed along. While the
information flow provides an upper bound on the informa-
tion passed along by tracing back to the input token, it is
insufficient for determining how information is processed
and abstracted. For instance, in Section 3.2, occurrences of
the target character are causally connected to a0,0tc , which
then connects to a1,0: (direct or mediated by MLP layer 0).
Without looking at encoded information, we only know that
the information in these paths is related to the occurrences
of the target character, but not whether it is their identity, po-
sitions, count, etc. More generally, when a component reads
a component that itself has read from multiple components,
connectivity does not tell us which pieces of information
are passed on. In addition, Direct Logit Attribution (DLA)
(Wang et al., 2023a; Geva et al., 2022; nostalgebraist, 2020)
is also frequently used for inspecting the output information
of transformer’s components. We argue that DLA is only
suitable for studying model components that directly affect
model’s final output. For those components whose effect
is mediated by other components, their output information
is meant to be read by a downstream component, thus not
necessarily visible when projecting to the vocabulary space.
We provide further discussion in Appendix I.

The samples produced by InversionView can be easily fed
into LLMs for automated interpretation. We show a proof
of concept by using Claude 3 to interpret the model trained
for 3-digit addition (Table 5). Overall, we find that the inter-
pretation given by the LLM reflects the main information in
almost all cases of the addition task. Despite some flaws, the
outcome is informative, suggesting a promising direction
for further speeding up hypothesis generation.

InversionView offers distinctive advantages and makes anal-
yses feasible that are otherwise very hard to do with other
methods. It can also improve the interpretability workflow
in coordination with other methods. For example, one may
first use methods such as path patching or attribution (Syed

8

InversionView: Reading Information from Neural Activations

et al., 2023; Ferrando and Voita, 2024) to localize activity
to specific components, and then understand the function
of these components using InversionView. In sum, Inver-
sionView is worth adding to the toolbox of interpretability
research.

Limitations. InversionView relies on a black-box decoder,
which needs to be trained using relevant inputs and whose
completeness needs to be validated by counter-examples.
Also, InversionView, while easing the human’s task, is still
not automated, and interpretation can be laborious when
there are many activation sites. We focus on models up to
1.5B parameters; scaling the technique to large models is
an interesting problem for future work, which will likely
require advances in localizing behavior to a tractable number
of components of interest. Fourth, interpretation uses a
metric D(·, ·). The geometry, however, in general could be
nonisotropic and treating each dimension equally could be
sub-optimal. We leave the exploration of this to future work.

5. Related Work
Trained probing classifiers are arguably the most common
method for uncovering information from activations (e.g.
Alain and Bengio, 2016; Belinkov and Glass, 2019; Be-
linkov, 2022; Wang et al., 2023b; Tenney et al., 2019; Li
et al., 2021; 2022). More recent methods by project repre-
sentations into the vocabulary space (nostalgebraist, 2020;
Belrose et al., 2023; Pal et al., 2023; Katz and Belinkov,
2023; Geva et al., 2023), patching them into an LLM (Ghan-
deharioun et al., 2024), or by decomposing them into inter-
pretable sparse feature vectors (Bricken et al., 2023; Tamkin
et al., 2023; Cunningham et al., 2023). Another important
area of research is uncovering information flow. Geva et al.
(2023) intervene on attention weights to study information
flow. Activation patching, a causal intervention method, can
be used to study the causal effect of an activation on the
output, and can help localize where information is stored
(Meng et al., 2022; Stolfo et al., 2023), or find alignment be-
tween a high-level causal model and inner states of a neural
model (Geiger et al., 2021; 2023; Wu et al., 2024). While ac-
tivation patching affects all downstream computation in the
model, path patching (Wang et al., 2023a; Goldowsky-Dill
et al., 2023) restricts effects for downstream components
in order to identify the path along which information flows
(Wang et al., 2023a; Conmy et al., 2023; Hanna et al., 2024a;
Lieberum et al., 2023). Recent work has started using LLMs
to generate interpretations (Bills et al., 2023; Bricken et al.,
2023). Related to Section 3.4, Quirke and Barez (2023)
interpret the algorithm implemented by a 1-layer 3-head
transformer for n-digit addition (n ∈ {5, 10, 15}), finding
that the model implements the usual addition algorithm with
restrictions on carry propagation. In their one-layer setup,
attention patterns are sufficient for generating hypotheses.

Lengths of operands and results are fixed by prepending 0.
Our results, in contrast, elucidate a more complex algorithm
computed by a two-layer transformer on a more realistic
version without padding, which requires the model to de-
termine which place it is predicting. We also contribute by
providing a detailed interpretation, including how digits are
represented in activations.

6. Conclusion
We present InversionView, an effective method for decod-
ing information from neural activations. By applying it in
four case studies—character counting, IOI, 3-digit addition,
and factual recall—we showcase how it can reveal various
types of information, thus facilitating reverse-engineering
of algorithm implemented by neural networks. Moreover,
we compare it with other interpretability methods and show
its unique advantages. We also show that the results given
by InversionView can in principle be interpreted automat-
ically by LLMs, which opens up possibilities for a more
automated workflow. This paper only explores a fraction
of the opportunities this method offers. Future work could
apply it to subspaces of residual stream (which can probably
produce more insights), to larger models, or to different
modalities such as vision.

7. Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 232722074 –
SFB 1102. We thank anonymous reviewers for their encour-
aging and constructive feedback.

References
J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,

F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

G. Alain and Y. Bengio. Understanding intermediate
layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

Anthropic. Introducing the next generation of claude,
2024. https://www.anthropic.com/news/
claude-3-family.

Y. Belinkov. Probing classifiers: Promises, shortcomings,
and advances. Comput. Linguistics, 48(1):207–219, 2022.
doi: 10.1162/COLI_A_00422. URL https://doi.
org/10.1162/coli_a_00422.

Y. Belinkov and J. Glass. Analysis methods in neural lan-
guage processing: A survey. Transactions of the Associa-
tion for Computational Linguistics, 7:49–72, 2019.

9

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422

InversionView: Reading Information from Neural Activations

Y. Belinkov, N. Durrani, F. Dalvi, H. Sajjad, and J. Glass.
What do neural machine translation models learn about
morphology? In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pages 861–872, 2017.

N. Belrose, Z. Furman, L. Smith, D. Halawi, I. Ostrovsky,
L. McKinney, S. Biderman, and J. Steinhardt. Eliciting
latent predictions from transformers with the tuned lens,
2023.

S. Bills, N. Cammarata, D. Mossing, H. Tillman, L. Gao,
G. Goh, I. Sutskever, J. Leike, J. Wu, and W. Saun-
ders. Language models can explain neurons in language
models. URL https://openaipublic. blob. core. windows.
net/neuron-explainer/paper/index. html.(Date accessed:
14.05. 2023), 2023.

S. Bird and E. Loper. NLTK: The natural language toolkit.
In Proceedings of the ACL Interactive Poster and Demon-
stration Sessions, pages 214–217, Barcelona, Spain, July
2004. Association for Computational Linguistics. URL
https://aclanthology.org/P04-3031.

T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn,
T. Conerly, N. Turner, C. Anil, C. Denison, A. Askell,
et al. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits
Thread, page 2, 2023.

B. Chughtai, A. Cooney, and N. Nanda. Summing up the
facts: Additive mechanisms behind factual recall in llms.
arXiv preprint arXiv:2402.07321, 2024.

K. Clark, U. Khandelwal, O. Levy, and C. D. Manning.
What does bert look at? an analysis of bert’s attention. In
Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, 2019.

A. Conmy, A. Mavor-Parker, A. Lynch, S. Heimersheim,
and A. Garriga-Alonso. Towards automated circuit dis-
covery for mechanistic interpretability. Advances in Neu-
ral Information Processing Systems, 36:16318–16352,
2023.

H. Cunningham, A. Ewart, L. Riggs, R. Huben, and
L. Sharkey. Sparse autoencoders find highly inter-
pretable features in language models. arXiv preprint
arXiv:2309.08600, 2023.

J. Dao, Y.-T. Lao, C. Rager, and J. Janiak. An adversarial
example for direct logit attribution: Memory management
in gelu-4l. arXiv preprint arXiv:2310.07325, 2023.

G. Dar, M. Geva, A. Gupta, and J. Berant. Analyzing trans-
formers in embedding space. In The 61st Annual Meeting
Of The Association For Computational Linguistics, 2023.

N. Elhage, N. Nanda, C. O. T. Henighan, N. Joseph,
B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly,
N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-
Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt,
K. Ndousse, D. Amodei, T. Brown, J. Clark,
J. Kaplan, S. McCandlish, and C. Olah. A
mathematical framework for transformer circuits,
2021. https://transformer-circuits.pub/
2021/framework/index.html.

J. Ferrando and E. Voita. Information flow routes: Automat-
ically interpreting language models at scale, 2024.

J. Ferrando, G. I. Gállego, I. Tsiamas, and M. R. Costa-jussà.
Explaining how transformers use context to build predic-
tions. In A. Rogers, J. Boyd-Graber, and N. Okazaki,
editors, Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 5486–5513, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.301. URL https:
//aclanthology.org/2023.acl-long.301.

J. Ferrando, G. Sarti, A. Bisazza, and M. R. Costa-jussà. A
primer on the inner workings of transformer-based lan-
guage models. arXiv preprint arXiv:2405.00208, 2024.

A. Geiger, H. Lu, T. Icard, and C. Potts. Causal
abstractions of neural networks. In M. Ranzato,
A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W.
Vaughan, editors, Advances in Neural Information
Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 9574–
9586, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/
4f5c422f4d49a5a807eda27434231040-Abstract.
html.

A. Geiger, C. Potts, and T. Icard. Causal abstrac-
tion for faithful model interpretation. arXiv preprint
arXiv:2301.04709, 2023.

M. Geva, A. Caciularu, K. Wang, and Y. Goldberg. Trans-
former feed-forward layers build predictions by promot-
ing concepts in the vocabulary space. In Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 30–45, 2022.

M. Geva, J. Bastings, K. Filippova, and A. Globerson. Dis-
secting recall of factual associations in auto-regressive
language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pages 12216–12235, 2023.

A. Ghandeharioun, A. Caciularu, A. Pearce, L. Dixon, and
M. Geva. Patchscope: A unifying framework for inspect-

10

https://aclanthology.org/P04-3031
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://aclanthology.org/2023.acl-long.301
https://aclanthology.org/2023.acl-long.301
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html

InversionView: Reading Information from Neural Activations

ing hidden representations of language models. arXiv
preprint arXiv:2401.06102, 2024.

N. Goldowsky-Dill, C. MacLeod, L. Sato, and A. Arora.
Localizing model behavior with path patching. arXiv
preprint arXiv:2304.05969, 2023.

M. Hanna, O. Liu, and A. Variengien. How does gpt-2
compute greater-than?: Interpreting mathematical abili-
ties in a pre-trained language model. Advances in Neural
Information Processing Systems, 36, 2024a.

M. Hanna, S. Pezzelle, and Y. Belinkov. Have faith in
faithfulness: Going beyond circuit overlap when finding
model mechanisms. arXiv preprint arXiv:2403.17806,
2024b.

J. Kaddour. The minipile challenge for data-efficient lan-
guage models. arXiv preprint arXiv:2304.08442, 2023.

S. Katz and Y. Belinkov. Visit: Visualizing and interpreting
the semantic information flow of transformers. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 14094–14113, 2023.

G. Kobayashi, T. Kuribayashi, S. Yokoi, and K. Inui. Atten-
tion is not only a weight: Analyzing transformers with
vector norms. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 7057–7075, 2020.

B. Z. Li, M. Nye, and J. Andreas. Implicit representations
of meaning in neural language models. In Proceedings
of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1813–1827, 2021.

K. Li, A. K. Hopkins, D. Bau, F. Viégas, H. Pfister, and
M. Wattenberg. Emergent world representations: Explor-
ing a sequence model trained on a synthetic task. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

T. Lieberum, M. Rahtz, J. Kramár, G. Irving, R. Shah, and
V. Mikulik. Does circuit analysis interpretability scale?
evidence from multiple choice capabilities in chinchilla.
arXiv preprint arXiv:2307.09458, 2023.

I. Loshchilov and F. Hutter. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2018.

K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating
and editing factual associations in gpt. Advances in Neu-
ral Information Processing Systems, 35:17359–17372,
2022.

P. Michel, O. Levy, and G. Neubig. Are sixteen heads
really better than one? Advances in neural information
processing systems, 32, 2019.

N. Nanda. Attribution patching: Activa-
tion patching at industrial scale, 2023.
URL https://www.neelnanda.io/
mechanistic-interpretability/
attribution-patching.

N. Nanda and J. Bloom. Transformerlens. https:
//github.com/TransformerLensOrg/
TransformerLens, 2022.

nostalgebraist. interpreting gpt: the logit lens. LESS-
WRONG, 2020. https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.

K. Pal, J. Sun, A. Yuan, B. C. Wallace, and D. Bau. Future
lens: Anticipating subsequent tokens from a single hidden
state. In Proceedings of the 27th Conference on Com-
putational Natural Language Learning (CoNLL), pages
548–560, 2023.

P. Quirke and F. Barez. Understanding addition in transform-
ers. In The Twelfth International Conference on Learning
Representations, 2023.

P. Quirke and F. Barez. Understanding addition in transform-
ers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=rIx1YXVWZb.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

A. Stolfo, Y. Belinkov, and M. Sachan. A mechanistic in-
terpretation of arithmetic reasoning in language models
using causal mediation analysis. In H. Bouamor, J. Pino,
and K. Bali, editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pages 7035–7052, Singapore, Dec. 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.435. URL https://aclanthology.
org/2023.emnlp-main.435.

A. Syed, C. Rager, and A. Conmy. Attribution patching
outperforms automated circuit discovery. arXiv preprint
arXiv:2310.10348, 2023.

A. Tamkin, M. Taufeeque, and N. D. Goodman. Codebook
features: Sparse and discrete interpretability for neural
networks. arXiv preprint arXiv:2310.17230, 2023.

I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the
classical nlp pipeline. In Proceedings of the 57th Annual

11

https://www.neelnanda.io/mechanistic-interpretability/ attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/ attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/ attribution-patching
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://openreview.net/forum?id=rIx1YXVWZb
https://openreview.net/forum?id=rIx1YXVWZb
https://aclanthology.org/2023.emnlp-main.435
https://aclanthology.org/2023.emnlp-main.435

InversionView: Reading Information from Neural Activations

Meeting of the Association for Computational Linguistics,
pages 4593–4601, 2019.

J. Vig, S. Gehrmann, Y. Belinkov, S. Qian, D. Nevo,
Y. Singer, and S. Shieber. Investigating gender bias in
language models using causal mediation analysis. Ad-
vances in neural information processing systems, 33:
12388–12401, 2020.

K. R. Wang, A. Variengien, A. Conmy, B. Shlegeris,
and J. Steinhardt. Interpretability in the wild: a cir-
cuit for indirect object identification in GPT-2 small.
2023a. URL https://openreview.net/forum?
id=NpsVSN6o4ul.

Z. Wang, A. Ku, J. M. Baldridge, T. L. Griffiths, and
B. Kim. Gaussian process probes (gpp) for uncertainty-
aware probing. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b.

J. Wiland, M. Ploner, and A. Akbik. BEAR: A Uni-
fied Framework for Evaluating Relational Knowledge
in Causal and Masked Language Models, 2024. URL
http://arxiv.org/abs/2404.04113.

Z. Wu, A. Geiger, T. Icard, C. Potts, and N. Goodman.
Interpretability at scale: Identifying causal mechanisms
in alpaca. Advances in Neural Information Processing
Systems, 36, 2024.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le. Xlnet: Generalized autoregressive pre-
training for language understanding. Advances in neural
information processing systems, 32, 2019.

Y. Yao, N. Zhang, Z. Xi, M. Wang, Z. Xu, S. Deng, and
H. Chen. Knowledge circuits in pretrained transformers.
arXiv preprint arXiv:2405.17969, 2024.

Q. Yu, J. Merullo, and E. Pavlick. Characterizing mecha-
nisms for factual recall in language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 9924–9959, 2023.

Figure 7. Addition Task: Inspecting ϵ-preimage avoids pitfall of
inspecting simple top-k similar activations. Generation based on
query activation x0,post

+ of a random example. Contents after “+”
is omitted since they do not affect the activation due to causal
masking.

A. Practical Guidelines
A.1. Observing Larger Neighborhoods is Important

Here, we illustrate the importance of inspecting ϵ-preimages
up to the threshold ϵ, rather than just top-k nearest neighbors
of the query activation. In Figure 7, an initial glance at the
samples on the left may suggest that the residual stream
of “+” encodes F1 and F2. However, observing a broader
neighborhood (as depicted on the right) reveals that this
conclusion is not even robust to tiny perturbations of the
activation. Indeed, after a more comprehensive calculation
over all possible x0,post

+ , we find that the maximum possible
metric value between any pair of x0,post

+ is 0.0184. So
for any ϵ ≥ 0.0184 the ϵ-preimage covers the entire input
space. Hence, the activation is unlikely to contain usable
information.

We further prove this by causal intervention. We found that
x0,post
+ has no effect on the model’s output. Concretely we

patch x0,post
+ with its mean on the test set (mean ablation

(Wang et al., 2023a)) and for each prediction target (A1, A2
etc.), we compare 1) the KL divergence between the distri-
bution before and after patching. 2) logit decrement rate,
which is the difference between the maximum logit value
before patching and the logit value of the same target token
after patching, divided by the former. E.g., 1.0 means the
logit is reduced to zero (assuming it is originally positive).
The results are shown in Table 1. We can see the effect of

12

https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
http://arxiv.org/abs/2404.04113

InversionView: Reading Information from Neural Activations

A1 A2 A3 A4/E
KL divergence 8.1× 10−8 5.4× 10−7 2.5× 10−8 3.6× 10−9

Logit decrement rate −2.3× 10−5 8.7× 10−7 1.4× 10−5 2.8× 10−7

Table 1. Activation patching results for x0,post
+ .

x0,post
+ is negligible.

A.2. Sampling with Decoder Model

In Section 2.2, we mentioned that the distribution p(x|zq)
is modeled by the decoder. Strictly speaking, p(x|zq) rep-
resents the data distribution in the ϵ-preimage defined by
ϵ = 0. For example, when the probed model is using causal
masking, and a certain activation is relevant to all previous
context (by non-zero attention weights), then p(x|zq) is the
distribution over those inputs that share the same previous
context (i.e., they have same prefix). This requires that the
decoder can distinguish any tiny difference in activation
and decode the full information (imagine a token attended
with 0.0001 attention weight). Such a decoder must be very
powerful and perhaps trained without any regularization.
But in practice, the decoder is a continuous function of ac-
tivation and tiny changes in activation are not perceivable
by the decoder. We observe that the decoder rarely gener-
ates the sample that lies at the same point (producing the
same activation) as the query input in vector space, instead
it usually generates samples that are in the neighborhood
of the query input. Because we need to observe the whole
neighborhood of the query input and prevent samples from
being too concentrated, we adjust the sampling temperature
to control how concentrated they are. Importantly, even
if the decoder is too powerful and can always recover the
same activation, we can still obtain the neighborhood by
adding random noise to the query activation before giving it
to the decoder. This motivates decoding with temperature
and noise, as described in the next paragraph.

Increasing Coverage by Temperature and Noise. In our
experiments, we use both ways to control the generation, i.e.,
by adjusting the temperature and adding random noise to
the query activation. We denote temperature as τ and noise
coefficient as η. The noise vector consists of independent
random variables sampled from the standard normal distri-
bution and then multiplied by std(zq) ·η where std(·) stands
for standard deviation. In our web application, we provide
multiple sampling configurations: four configurations in
which τ = {0.5, 1.0, 2.0, 4.0} and η = 0.0 (only for addi-
tion task); one figuration named “Auto" which is sampled
by following procedure: we iterate over a few predefined
τ (ranging from 0.5 to 2.0) and η (0.0 or 0.1) and sample a
certain amount of inputs (e.g., 250) for each parameter com-
bination. We then calculate the metric value for all inputs
collected from different sampling configurations. We then

randomly choose a small part of them (100) with different
probability for in-ϵ-preimage inputs and out-of-ϵ-preimage
inputs. We dynamically adjust the probability such that the
in-ϵ-preimage inputs account for 60%-80% of the chosen set
of inputs (when this is possible). Note that we use different
noise in factual recall task, which will be described later in
Appendix H.4.

When inspecting the samples, we choose a configuration
for which the distances D(·, ·) to the query activation best
cover the interval [0, ϵ]. The choice is usually specific to the
activation site that we are inspecting and can be performed
manually in the web application.

A.3. Selecting Position in Samples

As the decoder outputs an input but not the position of the
activation, we then assign the position minimizing D(·, ·)
to the query activation. Usually, there is only one posi-
tion with a small D(·, ·), matching the structural position
(not necessarily the absolute position) of the position the
query activation was taken from (e.g., the target character
in Figure 2a). In certain cases, we visualize D(·, ·) for an
activation from a position not minimizing D(·, ·) for ex-
pository purposes. For example, in Figure 2b, because the
target character exclusively attends to itself in layer 1, re-
sulting a1,0tc ≈ a1,0: , so sometimes the metric value of a1,0tc

is smaller than a1,0: . Throughout the appendix and our web
application, we use italic font and rounded bars to visualize
D(·, ·) in such cases.

We also find that selecting the position minimizing D(·, ·)
can reveal that components are active in similar ways at
other positions than the one originally investigated. For
example, in Figure 8, we can see sometimes “gave” is se-
lected. This is reasonable, because the IO is also likely to
appear right after “gave” and the head needs to move the
IO name for this prediction. We can see that activation at
the period “.” can also be somewhat similar to the query
activation, this is not surprising. Because the model needs
to predict the subject for the next sentence and copying a
name from the previous context is helpful. In summary, the
copying mechanism can be triggered in circumstances differ-
ent from IOI, selecting position minimizing D(·, ·) reveals
more information about this.

13

InversionView: Reading Information from Neural Activations

Figure 8. IOI: InversionView applied to Name Mover Head 9.9 at “to”; Unlike Figure 3b, here the position minimizing D(·, ·) is in
parentheses. The head also copies the name “Justin” in other circumstances, e.g., at “gave”. The name “Justin” is always contained

A.4. Threshold-Dependence of Claims about Activations

One question people may have is whether our conclusion
about the information in activation depends significantly on
the threshold we choose. To address this potential concern,
we show more details about the geometry of the vector space
in Figure 9. On the one hand, we can see that with different
thresholds ϵ we can make different conclusions about the
query activation. On the other hand, the conclusions made
with different thresholds are “in alignment”. In other words,
the conclusions do not differ fundamentally, instead, the
difference between them is about granularity or the amount
of details being ignored.

Specifically, in Figure 9a, ϵ1 results in the conclusion that
the count is 5, the target character is either ’t’ or ’m’, and
also approximate sequence length is retained. ϵ2 results in a
conclusion only about the count and the sequence length. In
Figure 9b, if we set the threshold to ϵ1 (i.e., a value between
0.000 and 0.009), the obtained information will be F1=5,
S1=7. If we set the threshold to ϵ2, the information will be
5 and 7 are in the hundreds place. If we set the threshold to
ϵ3 the information will be "5 is in the hundreds place". In
Figure 9c, ϵ1 results in conclusion that 9, 8 are in hundreds
place and 2, 7 are in tens place; ϵ2 results in conclusion
that 9, 8 are in hundreds place and F2+S2=9; ϵ3 results
in conclusion that F1+S1≈17 and F2+S2≈9. Therefore,
changing the threshold value will not lead us in a different
direction, because the ϵ-preimage is based on the same
underlying geometry.

In practice, rather than selecting a threshold first and treat-
ing inputs in a black-and-white manner, we first observe the
geometry of the vector space and obtain a broad understand-
ing of the encoded information, then choose a reasonable
threshold that best summarizes our findings. In other words,

the threshold value is used to simplify our findings so that
we can focus more on the big picture of the model’s overall
algorithm, and it should also be set according to the dif-
ference that is likely to be readable for the model. As the
interpretation progresses, one can see if the chosen threshold
leads to a plausible algorithm and can adjust it if necessary.
Finally, verification experiments are conducted to verify the
hypothesis.

B. Experimental Verification of Completeness
In Section 2.2, we described that an ideal strategy for ob-
taining samples in the ϵ-preimage satisfies two desiderata: it
only provides samples that are indeed within the ϵ-preimage
(Correctness), and it provides all such samples at reasonable
probability (Completeness). As further described there, we
can directly ensure Correctness by evaluating D(·) for every
sample. Ensuring completeness is more challenging, due
to the exponential size of the input space; the most general
approach is to design counterexamples not satisfying a hy-
pothesis about the content of the ϵ-preimage, and verifying
that D(·) is indeed large.

Here, we provide a direct test of completeness in one domain
(3-digit addition). The primary concern with completeness
is that, if some groups of inputs in Bzq,f,ϵ are systematically
missing from the generated samples, one may overestimate
the information contained in activations. To see if may hap-
pen in reality, we plotted log-probability against distance,
each of which includes all inputs in 3 digit addition task, as
shown in Figure 10. We next evaluated the sampling proba-
bility for different sampling configurations, as described in
Appendix A.2. When adding noise, we calculate probability
of an input using a Monte Carlo estimate: Concretely, be-
cause the probability of inputs is conditioned on the noise

14

InversionView: Reading Information from Neural Activations

(a) (b) (c)

Figure 9. (a) Activation site a1,0. (b) Activation site a0,2. (c) Activation site a1,3. In all three cases, we use normalized Euclidean distance
as the distance metric. We use ϵ1, ϵ2, · · · to mark varying threshold values by which different interpretations will be made.

15

InversionView: Reading Information from Neural Activations

(a)

(b)

(c)

Figure 10. Addition Task: Exhaustive verification of the decoder’s completeness for 8 random query activation. Failure of completeness
would mean that some inputs result in an activation very close to the query activation but nonetheless are assigned very small probability.
Here, we show that this does not happen, by verifying that all inputs within the ϵ-preimage are assigned higher probability by the decoder
than most other inputs. We also show that by increasing the temperature and adding random noise, we can increase the probability of
inputs near the boundary of ϵ-preimage. Each sub-figure – (a), (b), (c) – contains 8 scatter plots, each of which contains 810000 dots
representing all input sequences in the 3-digit addition task. The y-axis of scatter plots is the log-probability of the input sequence given
by the decoder (which reads the query activation), the x-axis is the distance between the query input and the input sequence. As before,
distance is measured by the normalized Euclidean distance between the query activation (the activation site, query input, and selected
position are shown in the scatter plot title) and the most similar activation along the sequence axis. In addition, the red vertical line
represents the threshold ϵ, which is 0.1 in the case study. (a) Temperature τ = 1.0, no noise is added. (b) Temperature τ = 2.0, no noise
is added. (c) Temperature τ = 1.0, noise coefficient η = 0.1 (See Appendix A.2 for explanation of η).

16

InversionView: Reading Information from Neural Activations

Figure 11. The decoder model architecture used in this paper. The query activation is processed by a stack of MLP layers before being
available as part of the context in attention layers. We use transparent blocks to represent model components inherited from original
decoder-only transformer model.

vector added to the query activation, we randomly sample
500 noise vectors from the normal distribution (with the
standard deviation described in Appendix A.2) and calcu-
late input probability given these noise vectors, then average
to obtain the estimated probability, and then compute the
logarithm.

Across setups, we can see that there is a triangular blank
area in the bottom left corner, i.e., the bottom left frontier
stretches from the upper left towards the lower right. In all
sub-figures, not a single input close to the query input is
assigned disproportionately low probability. All inputs in
the ϵ-preimage (the dots on the left of the red vertical line)
are reasonably likely to be sampled from the decoder, with
probability decreasing as the input becomes more distant,
alleviating concerns about completeness for these query
activations. On the other hand, some inputs distant from the
query input are also likely to appear in samples, but this is
not a problem for our approach, as we can easily tell that
they are not in the ϵ-preimage by calculating the distance
(correctness is ensured).

We can see that sometimes the distribution of the decoder
itself (at temperature 1 and no noise) is quite sharp, and in-
ϵ-preimage inputs can have low probability as they are near
the boundary of preimage. By comparing the sub-figures,
we can see both increasing the temperature and adding noise
substantially smooth the distribution within the ϵ-preimage,
lowering the difference of the probability of inputs that are
at similar distance.

C. Decoder Model
The decoder model is basically a decoder-only transformer
combined with some additional MLP layers. In order to
condition the decoder on the query activation, the query
activation is first passed through a stack of MLP layers to
decode information depending on the activation sites and
then made available to each attention layer of the trans-
former part of the decoder, as depicted in Figure 11.

Processing Query Activation. The query activation zq ∈
Rd is first concatenated with a trainable activation site em-
bedding eact ∈ Rdsite , producing the intermediate represen-
tation z(0) = [zq; eact]. We chose dsite to be the number of
possible activation sites in the training set. The result z(0) is
then fed through multiple MLP layers (each layer indexed
by p ∈ {0, 1, · · · , P − 1}) with residual connections:

z(p+1) = MLP(LN(z(p))) + z(p) (2)

where LN represents layer normalization. For each MLP
layer, the input, hidden and output dimensions are d+ dsite,
d, and d + dsite, respectively. The activation function is
ReLU. There is also a final layer normalization, z(fn) =
LN(z(P)).

Integrating Query Activation. As we want to make the
query activation available to each attention layer of the de-
coder, we separately customize it to the needs of each layer
using a linear layer. That is, for each layer of the transformer
part of the decoder (indexed by ℓ, so ℓ ∈ {0, 1, · · · , L−1}),
we define a linear layer Linear(ℓ) : Rd+dsite → Rddecoder

and a layer normalization LN(ℓ), where ddecoder is the

17

InversionView: Reading Information from Neural Activations

model dimension of the decoder model:

ẑ(ℓ) = LN(ℓ)(Linear(ℓ)(z(fn))) (3)

We add superscript (ℓ) to the model components to em-
phasize they are layer-specific. In the ℓ-th layer of the
transformer part, ẑ(ℓ) is concatenated with the input of the
attention layer along the length axis before computing keys
and values, so that each attention head can also attend to
ẑ(ℓ) in addition to the context tokens. This means that each
head in the ℓ-th layer, instead of attending to x

(ℓ)
1 , x

(ℓ)
2 , ...,

now computes its attention weights over ẑ(l), x(ℓ)
1 , x

(ℓ)
2 ,

Here x
(ℓ)
t is the residual stream corresponding to the t-th

token input into the ℓ-th layer.

Motivation for Architecture Design. At the beginning,
we train separate decoders for each activation site, but this
is not very scalable when there are many activation sites.
In the architecture above mentioned, we use activation site
embedding eact as a signal to trigger different processing,
and functions or model components that are needed for all
activation sites are shared. Similar reason applies to the
linear layer Linear(ℓ), we expect the zq should be trans-
formed differently for each transformer layer, but having
separate MLP stacks to process zq for each layer would
largely increase the number of parameters. In preliminary
experiments, we also try “encoder-decoder” attention layer.
That is, instead of providing query activation in self atten-
tion layer, we add new attention layers that analogous to
the encoder-decoder attention layer in original transformer
architecture, where each token can attend to the processed
query activation as well as a blank representation (simi-
lar to the function of “BOS", so that “no-op" is possible).
However, we do not find significant difference between this
design and the aforementioned one. Therefore, other than
adding components for processing zq, we do not modify
the decoder-only transformer architecture, so that we can
also choose to use pretrained models. We note that there are
other possible choices for conditioning the generation on the
activation, and we didn’t optimize this choice thoroughly.

Decoder Hyperparameters. Regarding processing query
activation, the decoder has 6 MLP layers, i.e., P = 6. The
decoder model has 2 transformer layers (L = 2), 4 heads per
layer, and a model dimension of 256. The attention dropout
rate is 0. Other settings are the same as the GPT-2. We use
the this architecture for the 3 tasks—character counting, IOI,
and 3-digit addition— in the paper. Regarding the factual
recall task, we use the same architecture for processing
query activation, i.e. P = 6, and use pretrained GPT-2
Medium (24 layers) as the transformer part of the decoder.

Training Details. We construct the training dataset by
feeding in-domain inputs to the probed model, and collect

activations from random activation sites and random posi-
tion as query activations (the choice of activation sites and
position is specific to each task and is described later), we
also record the activation site they come from. For each
input, we could obtain many possible training examples
because of many choices of activation sites and position. So
we do not iterate over all possible training examples. We
sample certain amount of examples to train the decoder for
1 epoch, using constant learning rate of 0.0001 and AdamW
optimizer with weight decay of 0.01. Other details (e.g.,
amount of examples, training steps) are task-specific, and
can be found later in their own section.

During training, we regularly calculate the in-preimage rate,
which serves as a proxy for generation quality. Concretely,
for a fixed set of query activations used for testing, the
decoder generates samples with temperature=1, we then
compute the fraction of samples inside of ϵ-preimage (with
ϵ = 0.1, D as normalized Euclidean distance). The rate
is calculated for each activation site. We usually observe
difference between the ratios for each activation site, indi-
cating some inverse mappings are easier to learn (we also
observe these activation sites tend to have clearer informa-
tion). Overall, we usually see a continuous improvement on
the average rate during training.

D. Character Counting: More Details and
Examples

D.1. Implementation Details

To construct the dataset, we enumerate all the 3-
combinations from the set of lowercase characters defined
in ASCII. For each combination, we generate 600 distinct
data points by varying the occurrence of each character and
the order of the string. The occurrences are sampled uni-
formly from 1-9 (both inclusive). So the length of the part
before the pipe symbol (“|”) lies in [3, 27] (not considering
“B”). Like 3-digit addition, we split the dataset into train
and test sets, which account for 75% and 25% of all data
respectively. The input is tokenized on the character level.

The model is a two-layer transformer with one head in each
layer, the model dimension is 64. All dropout rates are set to
0. The model is trained with cross-entropy loss on the last
token, the answer of the counting task. The model is trained
with a batch size of 128 for 100 epochs, using a constant
learning rate of 0.0005, weight decay of 0.01, and AdamW
(Loshchilov and Hutter, 2018) optimizer. The training loss
is shown in Figure 13, we can see the stair-like pattern. An
interesting future direction is to investigate what happens
when the loss rapidly decreases using InversionView.

With regard to the decoder model, the architecture is de-
scribed in C. We select x0,pre, xi,mid, xi,post, ai,j ,mi as
the set of activation sites we are interested in, where

18

InversionView: Reading Information from Neural Activations

Figure 12. ϵ-preimage showing function of MLP layer 0

Figure 13. Training loss of the Character Counting task. Each data
point is the averaged loss over an epoch.

i ∈ {0, 1}, j ∈ {0}, and m denotes MLP layer output.
The query activation is sampled from those activations cor-
responding to only the target character and colon. We sam-
ple 100 million training examples (all activation sites are
included) and train the decoder with batch size of 512, result-
ing in roughly 200K steps. During training, as we mentioned
before in C, we test the generation quality by measuring
in-preimage rate. For those activation sites for which the
decoder has a low generation quality, we increase their prob-
ability of being sampled in the training data. The final
in-preimage rate averaged across activation sites is 67.7%.

D.2. More Examples of InversionView

See Figures 12 and 14. Here, we show results similar to
Figure 2 for other query inputs.

D.3. Causal Intervention Details

For an input example xorig with torig as the count (final
token), we construct a contrast example xcon with a different
count tcon by changing a random character before “|”. The
contrast example is a valid input (the count token is the count
of the target character). We also ensure that the contrast
example is within the dataset distribution (the count is in the
range [1-9] and there are 3 distinct characters in the input).

We run three forward passes. 1) The model takes as input
xorig and produces logit values for count prediction, we
record the logit difference LDorig between torig and tcon
(former minus latter). 2) We feed the model with xcon and
store all activations. 3) We run a forward pass using xorig,
replacing the interested activations (e.g, {a0,0: , a0,0tc }) with
the stored activation in the same position and activation sites,
and record the new logit difference LDpch. Because the
model can make the right prediction in most cases, we can
see that average LDpch changes from positive to negative
values as we patch more and more activations. We do the
same for all inputs in the test set and report the average
results.

Figure 15 shows the LDorig and LDpch. We cumulatively
patch the activations we study. For example, on the top of
the figure, we patch {a0,0: }, {a0,0: , a0,0tc }, {a0,0: , a0,0tc , a1,0: }
respectively. Patching more activation results in increases of
LDorig − LDpch, we attribute the increment to the newly
patched activation. Hence, the causal effect of each activa-
tion is measured conditioned on some activations already
being patched.

We sort the activations according to their layer indices and
show the results of patching from bottom to top (→) and
from top to bottom (←). In this way, we can verify the
dependence between activations in the top and bottom layer.

19

InversionView: Reading Information from Neural Activations

Figure 14. ϵ-preimage of a1,0
: . As we mentioned, we hypothesize that the attention head is reading the subspace where the count

information is stored. One can presumably find this “count subspace” by optimizing a projection matrix such that after projecting the
activation there is only pure count information in the ϵ-preimage, and compare it with the subspace read by the value matrix of the
attention head. Therefore, InversionView can be potentially useful for subspace study.

Figure 15. Results of activation patching for model trained on char-
acter counting task. Same figure as 3a with intermediate steps
of calculation shown using line plot. Note that the gray lines
correspond to the y-axis on the right. In contrast examples, only
one character differs. LD stands for logit difference between the
original count and the count in the contrast example. LDpch and
LDorig correspond to the LD with and without patching, respec-
tively. Top: We patch activations cumulatively from left to right,
flipping the sign of LD. The “none” on the left end of x-axis
denotes the starting point, i.e., nothing is patched. Bottom: We
patch from right to left. Similarly, “none” on the right end of x-axis
denotes the starting point.

For example, at the top of Figure 15, when a0,0tc is already
patched, patching a1,0: has almost no effect. On the bot-
tom, we also see patching a0,0tc has no effect if a1,0: has been
patched. So we verified that a0,0tc is the only upstream acti-
vation that a1,0: relies on, and a1,0: is the only downstream
activation that reads a0,0tc .

D.4. Extended Algorithm with Positional Cues

In Section 3.2, we verified the information flow by an activa-
tion patching experiment in which the contrast example only
differs by one character. These experiments verified that
the algorithm we described is complete in distinguishing be-
tween such minimally different contrast examples. We now
show that the model implements a somewhat more complex
algorithm that combines this algorithm with position-based
cues, which become visible once we consider contrast ex-
ample that differ in more than one character, in particular,
those that differ in length.

To show this, we conduct another activation patching exper-
iment in which the contrast example is a random example in
the dataset with a different count. In other words, everything
can be different in contrast examples, including the sequence
length and the target character. Thus, we cumulatively patch
four places:

1. epostc and epos: , where epos stands for position embed-
ding, because the final count correlates with positional
signal, so the model may utilize it. They are patched
together because the attention pattern of the colon in

20

InversionView: Reading Information from Neural Activations

Figure 16. Results of activation patching for model trained on character counting task. → and← means the same as previously. Left:
Patching with activation from examples with different counts. Right: Patching with activation from examples in which only one character
differs.

layer 1 relies on their adjacency.

2. a0,0tc (as before) and etkntc , where etkn stands for to-
ken embedding. They are patched together because
patching only one of them would result in a conflict
between character information in the patched and the
un-patched activation;

3. 3) a0,0: ; (as before)

4. a1,0: (as before).

The result is shown on the left of Figure 16. We can see that,
besides the components we had detected previously based
on minimal contrast examples (a0,0tc , a1,0:), some other signal
also contributes notably to the final logits. We compare with
patching experiments for the same set of activations on
contrast examples that differ in one character, shown on the
right of Figure 16.

Overall, besides the algorithm identified in Section 3.2, we
find other 3 sources of information influencing the model’s
output. 1) The position embedding, epostc and epos: . This is
observable on the left of Figure 16, from which we can also
know a1,0: contains the position information (because the
bars of epostc and epos: are not symmetric). This is confirmed
by InversionView. As shown in Figure 17, we see the inputs
in ϵ-preimage roughly follow the query input length, being
independent of the count. Therefore, the model is also
utilizing the correlation between the count and the sequence
length. 2) Attention output of colon, a0,0: , which attends
to all previous token equally. From InversionView, we
observe it contains fuzzy information about the length (same
as position signal), and the characters that occur in the

context, as well as their approximate count. Our causal
experiment also shows that it does not contain a precise
count. Therefore, it contributes to the model’s prediction in
manner similar to the position signal. 3) Attention output of
the pipe sign, a0,0| . From the attention pattern we observe
sometimes in layer 0, pipe sign attends selectively to one
type of character, e.g. “x”, “k”, or “j”. InversionView
shows that it indeed contains the approximate count in that
case (though the decoder has not been trained on activation
corresponding to pipe sign). In next layer, the colon also
attends to the pipe sign if target character is the same as the
character attended by pipe sign in layer 0. This explains why
we can observe nonzero effect of patching a1,0: when other
activation is already patched (the red bar corresponding to
a1,0: on both sub-figures of Figure 16).

Whereas patching with minimally different contrast exam-
ples allowed us to extract an algorithm sufficient for solving
the task in Section 3.2, patching with arbitrarily different
contrast examples allowed us to uncover that the model com-
bines this algorithm with position-based cues. The model
performs precise counting using the algorithm we found
earlier in Section 3.2, while it also makes use of simple
mechanisms such as correlation to obtain a coarse-grained
distribution over counts. Overall, we have found the full
algorithm by alternating between different methods – Inver-
sionView, traditional inspection of attention patterns, and
causal interventions, and confirming results from one with
others.

21

InversionView: Reading Information from Neural Activations

Figure 17. ϵ-preimage of a1,0
: to show the position information is also encoded and is independent of count information.

Figure 18. ϵ-preimage of S-Inhibition Head 7.3. The relative position of S1–but not its identity–is contained in the head output (together
with some template information). That means, in the samples within the ϵ-preimage, S1 always appears before the IO. While the relative
position is encoded, the absolute position can vary, as can the identities of the names.

22

InversionView: Reading Information from Neural Activations

Figure 19. ϵ-preimage of Duplicate Token Head 0.1. Here, S name is contained in head output.

E. IOI Task: Details and Qualitative Results
E.1. Implementation Details

In order to train a decoder model, we construct a dataset
that consists of IOI examples. We used the templates of IOI
examples from ACDC (Conmy et al., 2023) implementa-
tion. For example, “Then, [B] and [A] went to the [PLACE].
[B] gave a [OBJECT] to [A]”, in which “[B]” and “[A]”
will be replaced by two random names (one token name),
“[PLACE]” and “[OBJECT]” will also be replaced by ran-
dom item from the predefined set. Besides “BABA” tem-
plate (i.e., S is before IO) we also use “ABBA” templates
(S is after IO) by swapping the first “[B]” and “[A]”. We
generate 250k data points.

The architecture of the decoder model is the same as before,
as described in Appendix C. The set of activation sites the
decoder is trained on consists of the output of all attention
heads and MLP layers (no residual stream). Note that when
producing query activation using GPT-2, we always add the
“< |endoftext| >” token as the BOS token. We do so as
during the training of GPT-2 this or multiple such tokens
that usually appear in the previous context can be used as
a BOS token, which is possibly important to the model’s
functioning. We use a new token “[EOS]” as the EOS token
when training the decoder. The query activation is sampled
uniformly from all positions excluding EOS and padding
tokens, and uniformly from all activation sites the decoder
is trained for. We sample 20 million training examples (all
activation sites are included) and train the decoder with
batch size of 256, resulting in roughly 80K steps. The final
average in-preimage rate is 58.0%, despite that the decoder
is trained for 157 activation sites.

E.2. More Examples of InversionView

See Figures 18, 19, 20.

E.3. Qualitative Examination Results

The qualitative examination results is shown in Table 2. We
summarize the description in (Wang et al., 2023a) of each
head category to facilitate comparison. Figure 21 shows the
IOI circuit in GPT-2 small, which is taken from their paper.
For more details, please refer to (Wang et al., 2023a).

There are some heads for which InversionView indicates
a different interpretation. First, Head 0.1 and 0.10: Wang
et al. (2023a) only shows that they usually attend to the
previous occurrence of a duplicate token and validates the
attention pattern on different datasets. However, there is no
evidence for the information moved by these heads. Thus
they only hypothesize that the position of previous occur-
rence is copied. Second, Head 5.9: The path patching
experiments in Wang et al. (2023a) show that head 5.9 influ-
ences the final logits notably via S-Inhibition Heads’ keys.
But there are no further experiments to explain the concrete
function of this head. While the authors refer to it as a
Fuzzy Induction Head, the induction score (measured by
the attention weight from a token T to the token after T ’s
last occurrence) of this head shows a very weak induction
pattern. Even if such pattern occurs, it cannot tell us what
information is captured by this head. Interpretation with
InversionView suggests that the head barely contains any
information, within the input space of IOI-like patterns. One
possibility is that head 5.9 recognizes the IOI pattern (i.e.,
there are two names and one is duplicated in the previous
context), so that if an IOI-like pattern exists, S2 should be
attended to by S-Inhibition heads. As the decoder model is

23

InversionView: Reading Information from Neural Activations

Figure 20. ϵ-preimage of Induction Head 5.5. Here, position – but not identity – of the current token (token in parenthesis)’s last occurrence
is contained in head output

Figure 21. IOI circuit in GPT-2 small. Figure 2 from (Wang et al., 2023a)

24

InversionView: Reading Information from Neural Activations

Head
Category

Function
According to (Wang et al.,
2023a)

Position Observation
from InversionView

Whether
Consis-
tent

Name Mover
Heads

Copy whatever it attends to (in-
crease its logit). It will always
attend to IO because of previous
components.

END 9.9 9.6 10.0: IO name Yes

Negative Name
Mover Heads

Copy whatever it attends to (de-
crease its logit), it attends to IO END 10.7 11.10: IO name Yes

S-Inhibition
Heads

Move info about S and cause
Name Mover Heads to attend
less to S. They attend to S2.
They adds two signals to resid-
ual stream, one is token value
of S, the other is position of S1,
and position signal has a greater
effect.

END

7.3 8.6: Position of S1 (relative
position to IO, same for the fol-
lowing part when we say posi-
tion)
7.9: S name; Position of S1
8.10: S name; Position of S1
(most of the time)

Yes

Duplicate To-
ken Heads

Attend from S2 to S1, more gen-
erally, attend to previous dupli-
cate token, and copy the position
of this previous occurrence.

S2

0.1 0.10: S name (instead of
position)
3.0: Position of the duplicated
name

Partly

Previous Token
Heads

Attend the previous token, move
the token (name) to S1+1, then
this information is used as key
of S1+1 in Induction Heads

S1+1

2.2: S name (most of the time,
sometimes attend to “and” when
S1 is after IO and make S name
less important)
4.11: S name; Position of the
previous token (relative to the
other name)

Yes

Induction
Heads

Attend to S1+1 and move posi-
tion signal (similar to the func-
tion of Duplicate Token Heads,
while different from normal in-
duction heads)

S2

5.5 6.9: Position of the current
token’s last occurrence
5.8: Position of the current to-
ken’s last occurrence (most of
the time)
5.9: Almost no info, possibly
some info about the template.

Partly

Backup Name
Mover Heads

Do not move IO normally, but
act as Name Mover Heads when
they are knocked out.
There are 4 categories:
9.0, 10.1, 10.10, 10.6: similar to
Name Mover
10.2, 11.9: attend to both S1 and
IO, and move both
11.2: attends to S1 and move S
9.7: attends to S2 and writes
negatively

END

9.0 10.1 10.10: IO name
10.6 : S and/or IO name (Most
of the time: IO, sometimes: IO
and S, occasionally: S)
10.2: S and IO name (most of
the time), S or IO name (some-
times)
11.9: S and/or IO name (no ob-
vious difference in frequency)
11.2: S and IO name (most of
the time), S name (sometimes)
9.7: S name

Yes

Table 2. Column “Position” means the query activation is taken from that position. “S1+1” means the token right after S1. Rows are
ordered according to the narration in the original paper. When we say “S name”, it means the the name of S in the query input, but the
name is not necessarily S in the samples. This also applies to “IO name”. The information learned by InversionView which is different
from the information suggested by Wang et al. (2023a) is in bold.

25

InversionView: Reading Information from Neural Activations

Figure 22. ϵ-preimage of the same activation as Figure 3b using normalized Euclidean distance instead of cosine similarity (Appendix E.4).
The line shown in the figure still represents threshold of 0.1. While at ϵ = 0.1, some query inputs do result in a substantial number of
in-ϵ-preimage samples, many cases result in very small or even empty (as here) sample sets, suggesting that the ϵ-preimage at 0.1 – at
least as accessible to the decoder – is extremely small in this model, which we speculate is related to the models higher dimensionality
compared to the other tasks (768 vs 32/64), which tends to make Euclidean distances large except for extremely similar vectors (see
Appendix E.4 for more discussion). We find it more convenient and natural to use similar thresholds (ϵ = 0.1) across tasks and account
for the different geometries using different distance metrics. What is key, however, is that for an appropriately higher ϵ (e.g., ϵ = 0.4)
we again always obtain a substantial number of samples, and – most importantly – these samples lead to the same interpretation as we
obtained in our main experiments with the cosine similarity. Here, for example, we can obtain the same interpretation by setting ϵ = 0.4,
i.e., the IO name is encoded in the activation.

Figure 23. ϵ-preimage of the same activation as Figure 18 using normalized Euclidean distance. The line shown in the figure still represents
the threshold of 0.1. As explained in Figure 22, due to the representation geometry, normalized Euclidean distance tends to require a
much higher threshold to obtain a sufficient sample size for interpretation. Importantly, as also explained there, we still obtain the same
interpretation as in our main experiments if we use normalized Euclidean distance but take a higher threshold (e..g, ϵ = 0.4): here, the
relative position of S1 is encoded in the activation.

26

InversionView: Reading Information from Neural Activations

Figure 24. Training loss of the 3-digit addition task. Each data
point is the averaged loss over an epoch. The final loss is still big
since the two operands of the addition is unpredictable.

trained on IOI examples and generates mostly IOI examples
– that is, the input space X in (1) consists of IOI-like inputs,
this information is by definition not visible. Expanding the
input space to arbitrary language modeling would allow
capturing such information; we leave this to future work.

E.4. Choice of Distance Metric in IOI

As described in Section 3.3, we used cosine distance for the
IOI task, while for the other two tasks, we use normalized
Euclidean distance. In this section, we show that both dis-
tance metrics produce similar interpretations while cosine
distance makes the meaningful patterns easier to identify.

In Figure 22 and 23 we show two examples of using normal-
ized Euclidean distance as the distance metric. Readers can
see more examples on our web application. We see that the
samples generated by the decoder tend to have larger dis-
tances under normalized Euclidean distance. Nonetheless,
we can still see the top-ranked samples show meaningful
commonalities – indeed if we set ϵ = 0.4, we obtain the
same interpretation as the one we obtain based on Figure 3b
and 18.

While normalized Euclidean distance can produce a sim-
ilar interpretation, we have to set a much larger ϵ, which
we find less intuitive. We believe this to be because of the
differences in the activation dimensionality, which is 768
in the IOI task, much larger than in character counting (64)
and addition (32) tasks: Under Euclidean distance, the ratio
of all close samples to all possible samples becomes lower
and lower when the dimension becomes higher. In other
words, the volume of the ϵ-preimage accounts for a very tiny
proportion of the whole space in the high-dimensional case.
By using cosine similarity, we allow more input samples
to lie in a close distance with the query input, as cosine
similarity ignores the magnitude difference. This suggests

cosine similarity may overall be more suitable when apply-
ing InversionView in high-dimensional activations.

F. 3-Digit Addition: More Details and
Examples

F.1. Implementation Details

We constructed 810,000 instances and applied a random
75%-25% train-test split. The probed model is trained with
a constant learning rate of 0.0001, a batch size of 512, for
50 epochs (59350 steps). We save the last checkpoint as the
trained model, and test it on the test set. We use the AdamW
(Loshchilov and Hutter, 2018) optimizer with weight decay
of 0.01. The training loss is shown in Figure 24.

With regard to the decoder model, we select
x0,pre, xi,mid, xi,postai,j as the set of activation sites
we are interested, where i ∈ {0, 1}, j ∈ {0, 1, 2, 3}. When
sampling training data, we select an activation site and a
token position uniformly at random. We sample 100 million
training examples (all activation sites are included) and
train the decoder with batch size of 512, resulting in roughly
200K steps. The final average in-preimage rate is 88.6%.

F.2. More Examples of InversionView

See Figures 25 to 28.5

F.3. Model Deficiency

In Section 3.4, we mention that there is no firm and clear
path of obtaining the carry from ones to tens, so the model
may make wrong prediction. We examine those instances
for which the model makes wrong prediction and find they
all satisfy one condition: F2+S2=9. In other words, it fails
to make the right prediction because the ones place mat-
ters. This is consistent with our interpretation of the model.
Furthermore, we check the model’s accuracy on this spe-
cial subset where F2+S2=9, and find that it is significantly
higher than chance level. The accuracy on training subset
(training data where F2+S2=9) is 80.45%, and on test subset
is 80.06%, while chance level is 50%. So, we can infer
that the probed model obtains some information about the
ones place by means other than memorization. Indeed, we
observe fuzzy information about ones place in a1,0 and a1,1

occasionally (See Figure 29).

F.4. Qualitative Examination Results

We present our overall qualitative results in Figure 30 and
Table 3. We have found that the model obtains required dig-

5We have also tried value-weighted attention pattern
(Kobayashi et al., 2020); it makes a negligible difference, so we
always show the original attention pattern in our paper.

27

InversionView: Reading Information from Neural Activations

Figure 25. The ϵ-preimage of a0,1
= , a0,2

= and x0,post
= for the same query input as Figure 4.

Figure 26. The ϵ-preimage of x0,mid
= of different examples.

28

InversionView: Reading Information from Neural Activations

Figure 27. ϵ-preimage of more examples

Figure 28. Some examples where we can see intermediate states between representing digits separately and representing digits as their
sum. In these examples, we see in the ϵ-preimage the digits in hundreds place are either (2,8) or (3,7), while the digits in tens place are
mostly encoded as their sum.

29

InversionView: Reading Information from Neural Activations

Figure 29. Some examples where information about ones place is also encoded.

Figure 30. The information flow diagrams for predicting the digits in answer. F1 and S1 are aligned, F2 and S2 are aligned, and so forth.
Color of the lines represents the information being routed, and alternating color represents a mixture of information. The computation is
done from left to right (or simultaneously during training), and from bottom to top in each sub-figure. Note that the figure represents
what information we find in activation, rather than the information being used by the model. Also note that the graphs are based on our
qualitative examination using InversionView and attention pattern, and are an approximate representation of reality. We keep those stable
paths that almost always occur. Inconsistently present paths such as routing the ones place when predicting A1 are not shown.

30

InversionView: Reading Information from Neural Activations

Pred
Target A1 A2 A3 A4 / E

a0,0 1-2 digits from F1
and S1

whether A1=1
whether A1=1, so the
model knows A3 is in
tens or ones place

whether A1=1, so the
model knows the next
token is A4 or E

a0,1

If A1=1: Almost no
info
Else: 1-2 digits from
F2 and S2

1-2 digits from F2
and S2 1-2 digits from F3

and S3

a0,2

If A=1: both F1 and
S1
Else: 1-2 digits from
F2 and S2

a0,3
1-2 digits from F2
and S2; C2

If A=1: 1-2 digits
from F1 and S1
Else: 1-2 digits from
F3 and S3; C3

1 digit from F3 and
S3 (2 when F3=S3);
C3

x0,mid F1 and S1; C2
A1
If A1=1: F1 and S1
Else: F2 and S2; C3

A2; F2 and S2; C3;
whether A1=1

A3; F3 and S3;
whether A1=1

x0,post same as x0,mid same as x0,mid same as x0,mid same as x0,mid

a1,0

Fuzzy info about F1,
S1 and C2;
Fuzzy info about F3
and S3 (sometimes)

If A1=1: F1 and S1
(sometimes fuzzy);
C2 (sometimes)
Else: 1-2 digits from
F2 and S2;

If A1=1: 1-2 digits
from F2 and S2; C3
(sometimes);
For a1,2, also 1-2
digits from F1 and S1
(fuzzy);
Else: 1-2 digits from
F3 and S3

1-2 digits from F3
and S3;
For a1,0 and a1,1,
they also contain info
about whether next
token should be E

a1,1

If A1=1 (likely to be):
1-2 digit from F1 and
S1 (sometimes their
sum); C2;
Else: Fuzzy info,
including some info
about F3 and S3
(sometimes)

If A1=1: Uncertain.
F1 and S1 (some-
times); 1 digit from
F3 and S3 (some-
times)
Else: F2 and S2

a1,2
Fuzzy info about F2
and S2 (sometimes)

1-2 digits from F1
and S1 (sometimes
fuzzy); 1-2 digits
from F2 and S2
(sometimes fuzzy);

a1,3
1-2 digits from F1
and S1 (sometimes
fuzzy)

If A1=1: F1 and S1
(sometimes fuzzy);
C2
Else: F2 and S2

x1,mid same as x0,mid
If A1=1: info from
x0,mid + C2
Else: same as x0,mid

If A1=1: same as
x0,mid

Else: info from
x0,mid + F3 and S3

same as x0,mid

x1,post same as x0,mid

same as x1,mid except
that current input to-
ken A1 is less impor-
tant

same as x1,mid except
that current input to-
ken A2 is less impor-
tant

same as x0,mid except
that current input to-
ken A3 is blurred

Table 3. Summary of our observations for each activation site and position. “same as” denotes that there is no obvious difference between
the two sites for indicated position.

31

InversionView: Reading Information from Neural Activations

Figure 31. Causal verification results for the information flow in sub-figure (b) in Figure 30: predicting A2 when A1=1. We only
consider data in xorig where A1=1. The constructed contrast data xcon also satisfies this constraint. Left: Tchg = {F1, S1}. Right:
Tchg = {F2, S2}. Note that the included data from xorig all satisfy F1+S1≥10, because, if F1+S1=9 and A1=1, no contrast example
obtained by changing F2 and S2 would satisfy the constraint. The results confirm that information about the digits in hundreds and tens
places is routed through the paths that we hypothesized based on InversionView in Figure 30b.

its by attention, and primary digits are assigned more heads
than secondary digits, e.g., a0,0, a0,1, a0,2 for hundreds and
a0,3 for tens when predicting A1. More importantly, the
primary digits are encoded precisely while the secondary
digits are encoded approximately in the residual stream. In
addition, the model routes the information differently based
on whether A1=1, i.e., the length of the answer is 3 or 4.
When predicting A2, this information is known before layer
0, thus paths differ from the start. On the contrary, when pre-
dicting A3, the information is obtained in layer 0, thus paths
differ only in layer 1. Furthermore, in Figure 30, sub-figure
(c) and (d) are very similar, indicating model uses almost
the same algorithm to predict digit in tens place. While sub-
figure (e) shares the layer 0 with (d), its layer 1 is similar to
(f).

F.5. Causal Intervention: Details and Full Results

We use similar activation patching method as character
counting task, described in D.3. In Figure 30, we split
the overall algorithm into individual ones for digits in the
answer, under different condition. Each algorithm predict
target token based on multiple types of information (digits
in hundreds/tens/ones place).

In order to verify the paths responsible for routing each type
of information, we construct contrast examples as follows:
Given a prediction target (e.g., A1), a set of tokens that can
be changed Tchg (corresponds to a certain type informa-
tion, e.g., F1 and S1), we construct a contrast example xcon
that contains a different token tcon as prediction target by
changing tokens in Tchg. Note that the contrast example
still follows the rule that the answer is the sum of the two

operands.

We now give a detailed explanation for Figure 5b shown
in the main paper, in which prediction target is A1 and we
patch head output corresponding to the preceding token “=”.
On the left of Figure 5b, Tchg = {F1,S1}. So in the con-
trast examples the F1 and S1 are changed and other digits
in operands remains the same. In the third run where we
calculate LDpch, activations are replaced by new activa-
tions from contrast example, so the new activations contain
modified F1 and S1 information. Therefore, for activations
that contributes to routing F1 and S1 (e.g., a0,0=), patching
them with new activations can effect model’s prediction. On
the contrary, patching a0,3= has no effect because it contains
information about F2 and S2, which are the same in contrast
examples. On the right of Figure 5b, Tchg = {F2,S2}, so
we are verifying the activations that plays a role in routing
F2 and S2. Note that we exclude those data in xorig where
F1+S1≥10, because changing F2 and S2 cannot change A1
in those cases.

Activation patching results for other cases are shown in
Figures 31 to 35.

Overall, among all the intervention experiments and their
corresponding information flow diagrams in Figure 30, the
activation with the highest increment not included in the
information flow diagram is a1,1A1 in Figure 31 (right), ac-
counting for only 5.92% of the cumulative increment. In
this sense, the information flow diagrams coupled with in-
terpretations present an almost exhaustive characterization
of the algorithm used by the model to predict the answer
digits.

32

InversionView: Reading Information from Neural Activations

Figure 32. Causal verification results for the information flow in sub-figure (c) in Figure 30: predicting A2 when A1 ̸= 1. We exclude
those data in xorig where A1=1. The constructed contrast data xcon also satisfies this constraint. Left: Tchg = {F2, S2}. Right:
Tchg = {F3, S3}. We further exclude those data in xorig where F1+S1=9 and F2+S2=9 because we cannot find a contrast example
in those cases. The results confirm that information about the digits in hundreds and tens places is routed through the paths that we
hypothesized based on InversionView in Figure 30c.

Figure 33. Causal verification results for the information flow in sub-figure (d) in Figure 30: predicting A3 when A1 = 1. We exclude
those data in xorig where A1 ̸=1. The constructed contrast data xcon also satisfies this constraint. Left: Tchg = {F2, S2}. Right:
Tchg = {F3, S3}. We further exclude those data in xorig where F1+S1=9 and F2+S2=9 because we cannot find a contrast example in
those cases.

33

InversionView: Reading Information from Neural Activations

Figure 34. Causal verification results for the information flow in sub-figure (e) in Figure 30: predicting A3 when A1 ̸= 1. Tchg = {F3, S3}.
We exclude those data in xorig where A1=1. The constructed contrast data xcon also satisfies this constraint.

Figure 35. Causal verification results for the information flow in sub-figure (f) in Figure 30: predicting A4/E. Left: Tchg = {F3, S3}.
We exclude those data in xorig where A1̸=1, since in that case the prediction the target position is almost always E (end of the text).
Changing F3 and S3 will not change E. Even when it does, i.e., when F1+S1=9 and F2+S2=9 and F3+S3<9, changing F3 and S3 will
cause A1 to change. But we need to keep other variables the same. Based on the same reason, the contrast examples should also satisfy
the constraint A1=1. Right: Tchg = {F1, S1}. We change F1 and S1 in order to change A1, thus changing A4 to E or vise versa. There is
no constraint in this case, since we can always find contrast examples.

34

InversionView: Reading Information from Neural Activations

Figure 36. The ϵ-preimage of x0,pre. Here the information contained is A1, A2, A3 respectively, while the decoder likelihood difference
highlights digits in operands. Because given the first operand and the final sum, the digits in second operand can be inferred.

G. Decoder Likelihood Difference
In figures of addition task, we also show the decoder like-
lihood difference for each token in generated samples. It
indicates what might be relevant to the activation. It is cal-
culated as follows: During generation, we sample the next
token from the distribution produced by the decoder model,
and we record the probability of the sampled token in that
distribution. We denote it as pact. Then, we run the decoder
again with the same input tokens, but this time it is fed
with a “blank” activation (the activation corresponding to
BOS token from the same activation site: because of the
causal masking of the probed model, this activation does not
contain any information). Therefore, it produces a different
distribution. The probability of the same token (the token
already sampled in the normal run) in the new distribution is
pblank. The difference pact−pblank indicates if the decoder
model can be more confident about a token when it receives
the information from the activation. If pact − pblank > 0,
the color is blue, and if pact − pblank < 0 it is red. The
depth of color is proportional to the magnitude of the value.
Therefore, it highlights what can be learned from the query
activation, in addition to what is in the context.

Note that the decoder has learned how to handle the activa-
tion of BOS, since it also appears in the training set because
we sample uniformly at random among all tokens in the
input (as in IOI and addition task).

Importantly, unlike the distance metric value, the decoder
likelihood difference depends on the capability of the de-
coder model, and we should bear in mind that it might be
inaccurate. We caution that this difference does not nec-
essarily highlight the directly relevant part, complicating

its interpretation. As shown in Figure 36, the color high-
lights digits in the second operand, which does not reflect
the actual flow of information. In these examples the query
activation corresponds to digits in answer. For example,
in the left most sub-figure, x0,pre contains the information
“6 is at the position of A1”, but the color does not high-
light A1. This is because, on one hand, decoder predicts S1
conditioned on F1, so knowing their sum will significantly
increase the confidence of S1, and S1 is highlighted. On the
other hand, when predicting A1, the previous digits can al-
ready determine the answer. There is a high confidence even
without knowing A1, thus it is not highlighted. In essence,
the information contained in a query activation may mani-
fest itself early, and the decoder likelihood difference does
not necessarily align with the part of the input from which
the information has actually been obtained.

An interesting direction for future work could be develop-
ing decoders that generate samples in a permuted order,
and generate most confident tokens first, possibly based on
architectures like XLNet (Yang et al., 2019).

H. Factual Recall: Detailed Findings
H.1. Background

We use InversionView to investigate how GPT-2 XL (1.5B
parameters) performs the task of recalling factual associa-
tions. In recent research (Geva et al., 2023; Chughtai et al.,
2024; Ferrando et al., 2024), the task has been formalized in
terms of triples (s, r, a), where s, r, a are subject, relation,
attribute respectively. The model should predict a based on
input containing s and r in natural language. E.g., given the

35

InversionView: Reading Information from Neural Activations

prompt: “LGA 775 is created by", the model is expected
to predict “Intel". In this section of the paper, we refer the
last token as END, and the last subject token as SUBJ. In
the above example, END is “by" and SUBJ is “75". Geva
et al. (2023) found a high-level pattern that GPT-2 XL uses
in solving this task: Early-middle MLP layers at SUBJ inte-
grate information about the subject into its residual stream.
Meanwhile, the relation information is incorporated into
END’s residual stream through early attention layers. In
upper layers, the correct attribute is moved from SUBJ to
END’s residual stream by attention layers.

H.2. Selecting Activation Sites

As we mentioned earlier, our goal here is not to provide a
full interpretation of the computations performed to solve
this task; rather, it is to test whether InversionView can suc-
cessfully produce interpretable results on larger models. As
the factual recall task is complex and involves many model
components (Yao et al., 2024; Chughtai et al., 2024), we
decide to focus on 25 attention heads in the upper part of the
model (layer 24-47) that contribute most frequently to the
final prediction. We select these activation sites because the
attribute retrieval tends to happen there (Geva et al., 2023)
and we expect more abstract information in ϵ-preimage.
Here, we note that preliminary experiments revealed that it
is necessary to restrict the number of activation sites that
the decoder is trained for, given a limited compute budget,
as more activation sites require the decoder to learn more
a complex overall inverse mapping from activations to in-
puts. Scaling the approach to apply to many activation sites
simultaneously is left to future work.

Concretely, we use the attribution method introduced in
(Ferrando and Voita, 2024) to estimate the head importance
at END position. Formally, given y = z1 + · · · zm, the
importance of each term zj to the sum y is estimated as
follows:

importance(zj , y) =
proximity(zj , y)∑
k proximity(zk, y)

, (4)

proximity(zj , y) = max(−∥zj − y∥1 + ∥y∥1, 0). (5)

Regarding the intuition and estimation quality of this
method, please refer to (Ferrando and Voita, 2024). In
our case, xi,mid

END = xi,pre
END +

∑
j a

i,j
END, we calculate

importance(ai,jEND, x
i,mid
END) on each example on a subset of

COUNTERFACT (Meng et al., 2022). The subset contains
around 1,000 factual prompts known by GPT-2 XL (we
used the same subset as described in (Meng et al., 2022)
Appendix B.1). We consider an attention head activated
on a certain input prompt if its importance is higher than
the threshold of 0.02, and calculate the frequency of being

activated over the subset. Finally we select top 25 most
frequent heads in model’s upper layers.6

There are multiple methods that can be used to find impor-
tant attention heads (Michel et al., 2019; Nanda, 2023; Syed
et al., 2023; Hanna et al., 2024b), because we do not have
strict requirements for finding the most important heads, we
choose this one because of its simplicity.

H.3. Decoder Training

To train the decoder model, we collect text from 3 datasets,
including the factual statements from COUNTERFACT
(Meng et al., 2022)7 and BEAR (Wiland et al., 2024) 8,
as well as general text from MiniPile (Kaddour, 2023). The
factual statements we used are complete sentences contain-
ing the final attribute. Note that in COUNTERFACT, for each
attribute, there are always multiple different subjects asso-
ciated with it. So if the information contained is solely the
attribute, a well-trained decoder should generate different
subjects. Regarding MiniPile, we randomly select 10% of
it, and split the text into sentences (Bird and Loper, 2004)
and remove sentences longer than 100 characters.

Importantly, for each head we selected, we extract a separate
subset of sentences from the collected data on which the
head is “activated". By being “activated" we mean the
attention weight on BOS token is less than 0.69. We find
this is important based on preliminary experiments, because
in many cases attention heads in higher layers execute “no-
op" by exclusively attending to BOS, resulting in attention
output containing no information. Training decoder on these
activations discourages it to learn to read information from
the query activation. So each head correspond to a subset
of text, on which the head output will be captured to create
training data. The number of sentences in subsets ranges
from 0.6 to 2.6 million.

The training data for decoder consists of two parts, each
of which accounts for 50%. In one part, the activations
are taken from GPT-2 XL when processing factual state-
ments from COUNTERFACT and BEAR, and activations
correspond to the END position (the sentence structure is
provided in these datasets). In the other part, the activations
correspond to text from all 3 datasets (thus mainly composed
of MiniPile text), and correspond to the position with least

6h31,0, h33,0, h38,22, h29,9, h37,7, h32,12, h31,8, h24,24, h28,3,
h25,7, h28,21, h27,16, h42,24, h31,4, h34,20, h30,23, h24,8, h30,8,
h25,10, h33,9, h32,15, h30,1, h29,20, h36,17, h35,19, ordered by
frequency, last one is the most frequent

7We make use of all prompts of each data point. Besides
the "prompt", we also include "paraphrase_prompts", "neighbor-
hood_prompts", and "attribute_prompts" concatenated with their
corresponding answer.

8We use BEARbig
9we do not experiment with other values

36

InversionView: Reading Information from Neural Activations

attention weight on BOS token. By doing so, we emphasize
the importance of factual statements domain while covering
a large variety of text.

We use GPT-2 Medium as the backbone model for decoder.
Concretely, the newly added components in the decoder ar-
chitecture (e.g. those parts responsible for processing query
activation as shown in Figure 11) are trained from scratch,
but the transformer layers in the decoder are equipped with
pretrained weights. In this way, we also make use of the ex-
isting capacity of language models. Note that in other case
studies, we use a small 2 layer transformer as decoder. The
reason why we use a much larger decoder for this task is we
expect a much more complex inverse mapping to be learned.
Specifically, we expect ϵ-preimage for some activation sites
to contain multiple different subjects sharing a certain at-
tribute, the decoder needs to generate these subjects given
the attribute. So it needs enough capacity to memorize the
knowledge.

Similar as before, we always add the “< |endoftext| >” to-
ken as the BOS token when capturing query activation from
GPT-2 XL. We again use a new token “[EOS]” as the EOS
token when training the decoder. We sample query activa-
tion with equal probability of activation sites. We sample 32
million training examples (all activation sites are included)
and train the decoder with batch size of 512, resulting in
roughly 60K steps. The final average in-preimage rate is
36.0%.

H.4. Sampling from Decoder

Similar as before, when using decoder to generate samples,
we perturb the query activation before feeding it to the de-
coder in order to cover the neighbourhood around the query.
In this larger model with high-dimensional activations, we
found it useful to craft this process more carefully and use
different disturbance. In preliminary experiments, we found
that cosine similarity usually produces more interpretable
ϵ-preimages, therefore, we randomly sample activations that
have a certain angle θ to the query activations, and then ran-
domly scale it so that its magnitude ranges from e−1 · ∥zq∥2
to e · ∥zq∥2. We repeat this process for different θ values
with in the range cos θ ∈ [0.75, 0.9]. To further encourage
diversity, we lower the probability of tokens that have al-
ready appeared too many times in the generated samples.10

We use the first 200 examples of the aforementioned subset
of COUNTERFACT (the subset containing examples known
by GPT-2 XL) as query inputs and generate samples. The
results are also available in our web application.

10We chose a simple and heuristic approach, without any attempt
at optimizing it: Any token that has appeared > 5 times in the
same position, while appearing less than 50K times in the miniPile
training set, has its probability set to zero at this position.

H.5. Observation

Choice of Threshold. We use the same distance metric
as in IOI task, and we set the threshold ϵ = 0.25. As we
mentioned earlier, larger threshold produces more coarse-
grained information. Because we observe that the trained
decoder in many cases does not generate enough and diverse
samples within a close distance (e.g., 0.1), we increase the
threshold in order to draw more reliable conclusions.

A priori, the sparsity of sampled ϵ-preimages at smaller
thresholds may reflect multiple possibilities. One is that
there indeed are no close neighbors for the query input.
For example, if the subject’s text is copied, then only sam-
ples containing the same subject or the same token will lie
in ϵ-preimage. Such a phenomenon may generally reflect
the high-dimensional geometry of larger models. Another
one is that the decoder is not complete; and that it would
either require more training or more capacity, or more train-
ing data.11 Training larger decoders on more data would
mitigate this problem, which can be done in future work.
Nevertheless, in some cases, we do observe a substantial
number of diverse samples even within ϵ = 0.1, allowing us
to infer information at a higher level of granularity in these
cases.

Some heads have fixed behavior We observe that some
heads’ outputs almost always contain only relation infor-
mation, if they contain any information at all (being “acti-
vated”).12 In Figure 37, we show two examples for one of
these heads. We can see that samples in ϵ-preimage share
the same relation. The results are consistent across query
inputs. We can infer that the these heads move the relation
information to END’s residual stream.

On the other hand, some other heads almost always move
information about the subject, when they are “activated”.13.
Figure 38 shows one of these heads. We can see that the in-
formation is only about the subject – so the function of these
heads can be summarized as moving information about sub-
ject. Interestingly, while a head can move certain attribute
about the subject (e.g., nationality, or profession, etc), the
attributes it moves for different subjects are diverse. For
instance, while a head might, on a certain input, move infor-
mation that the subject plays certain kind of sports, it may,
on another input, move information that the subject is an
electronic product. One head, 31.0 tends to usually show
nationality or language information about the subject, but
usually the heads we studied show no clear preference for a
type of attribute. In addition, these is no obvious correlation

11For example, if the query activation contains information
“related to Amazon and related to audio”, there are only a few satis-
factory subjects in the dataset (“Audible.com", “Amazon Music").

12h24,24, h25,7, h27,16, h28,21, h29,20, h33,9

13h29,9, h30.8, h32,12, h33,0, h37.7

37

InversionView: Reading Information from Neural Activations

Figure 37. ϵ-preimage for head output a24,24, showing encoded information is the relation. On the left, the relation “developed by"
appears throughout the ϵ-preimage. On the right, the relation “domain of work is" is consistent ϵ-preimage.

Figure 38. ϵ-preimage for head output a29,9, which contains information about the subject. On the left, Czech-related words are common
throughout the ϵ-preimage, e.g., “Czech", “Prague", “Bohem...", so the information contained is the subject is “Czech-related". On the
right, “Nokia" is shared in ϵ-preimage, so the information is simply “Nokia".

38

InversionView: Reading Information from Neural Activations

Figure 39. ϵ-preimage for head output a35,19, which exhibit different information on different inputs. On the left, Philippines-related
words are common throughout the ϵ-preimage. For example, “Cebu": a city in Philippines, “TV Patrol Southern Tagalog": a TV program
in Philipines, “Enrile": A municipality of Philippines and a surname of many famous Filipinos, “GMA": a Philippine television channel /
broadcasting company. So the information contained is the subject is “Philippines-related". Note that because the samples are generated,
the fact stated in sample is not true in many cases. On the right, the relation “performs on" is encoded.

between the subject attributes encoded by such heads and
the attribute queried by the relation.

Other heads exhibit a mix of behaviors The other heads
among the 25 heads we inspect, when “activated”, move
information about subject or relation (in some cases, both).
Which behavior is exhibited varies between inputs. Figure
39 shows one of these heads. On the left of the figure, the
head moves information about subject, while on the right it
moves information about the relation.

Relation-agnostic retrieval In the factual recall task, only
one specific attribute is sought. Geva et al. (2023) found
evidence that the model “queries” the residual stream at
SUBJ for the specific attribute asked by the relation part of
the prompt, and the representation at END can be viewed as
such a relation query. In other words, the attribute extracted
from the subject representation depends on the relation.
However, we do not observe reliable evidence for this phe-
nomenon among the 25 heads we inspect. In the figures
we have shown so far, we can see the commonality shared
between samples in ϵ-preimage is not the attribute requested
in the prompt. This still holds if one reduces the threshold.
Figure 40 shows two more examples showing this character-
istic. In general, we find that the information moved by the
25 attention heads tends to be the most important attribute
or the “main” attribute about the subject. On the left of
Figure 40, the most important attribute coincides with the
requested attribute. We know this is a coincidence because
the closest sample in ϵ-preimage has a different relation.
Note that other attributes about the subject could be moved
by heads that we have not studied.

In addition, while heads that attend to subject usually move
the most important attribute, we do observe sometimes dif-
ferent attributes are moved by different heads. In Figure 41,
we show that information about profession and information
about language/nationality of the subject are extracted by
two heads. In fact, we observe that head h31,0 tends to ex-
tract language/nationality information in general. But we do
not find other obvious pattern of attribute category extracted
by other heads.

Our findings echo those from (Chughtai et al., 2024), who
argue that the primary mechanism for the factual recall task
is additive. With our running example “LGA 775 is created
by”, simply speaking, some heads promote attributes asso-
ciated with the subject (chip, hardware, Intel, etc.), some
heads promote attributes associated with the relation (Apple,
Nintendo, Intel, etc). When the results from these inde-
pendent mechanisms are added together, the intersection
(Intel) will stand out. Therefore, the model can solve the
task by adding two simple circuits, while humans find Q-
composition (Elhage et al., 2021) (i.e., relation information
is used as queries in attention heads) more intuitive. From
another perspective, this mechanism implies vector arith-
metic. Instead of vector addition in vocabulary space, we
can think of it as first summing two vectors (e.g., the output
of subject heads and the output of relation heads) and then
projecting them to vocabulary space.

The evidence found by Geva et al. (2023) can also be ex-
plained by this mechanism. They use DLA to inspect atten-
tion layers’ updates to END’s residual stream, and find that
the token most strongly promoted by each update usually
matches the attribute predicted at the final layer. In other

39

InversionView: Reading Information from Neural Activations

Figure 40. Examples showing relation-agnostic retrieval. On the left, the information encoded is “soccer", which is indeed the requested
attribute. However, the first sample shows this is not dependent on the relation, since the “soccer" is still retrieved when relation is “speaks
language". On the right, the information “audio-related" is encoded, while the relation in the query input is “owned by".

Figure 41. Examples showing different attributes of the same subject are extracted by different heads. In the query input, “Joseph
Schumpeter" is an Austrian political economist. On the left, the information encoded is “economist". On the right, the information is
about language/nationality (areas around Austria). Again, we emphasize that the facts stated in the sample are not necessarily true.

40

InversionView: Reading Information from Neural Activations

Figure 42. ϵ-preimage showing different information of subject is moved by different head. On the left, the information is superficial text
content “York" and/or “University". Samples containing these words are in ϵ-preimage, such as “University of York", even though it
is a different university located in England. This can be confirmed by the fact that “Wellington, Ontario" is far away. On the right, the
information is “Canada-related", which is more high-level. We can also see “University of York" is outside of the preimage.

words, after projecting attention layer’s output to vocabu-
lary space, the top-1 token is usually the exact requested
attribute. Because their experiments study attention layer’s
output as a whole, instead of individual heads, an alternative
explanation is the additive mechanism mentioned above.
Importantly, because we only inspect 25 heads, other mech-
anisms including Q-composition are also possible. More-
over, different mechanism can exist in other models, readers
should not draw strong conclusions.

H.6. More Examples of InversionView

See Figure 42, Figure 43. Interestingly, when inspecting
the ϵ-preimage shown on the right of Figure 42, we also
find an example showing InversionView can detect a flaw of
the model. Our interpretation for this activation is “Canada-
related", and we can see “York University” (which is in
Canada) inside the preimage, while “University of York"
(a different university, located in England) is outside of the
preimage. However, we find that the “U of York" is inside
the preimage.

Checking the model’s prediction about “U of York", we find
that the model indeed believes “U of York" is in Canada.
More specifically, given the prompt “U of York is located in",
the top-12 predictions for the next token are: the, Toronto,
York, downtown, a, one, New, central, Canada, North, Scar-
borough, London. On the contrary, with the prompt “Univer-
sity of York is located in" the model’s top-12 predictions are:
the, York, North, East, central, Yorkshire, north, a, northeast,
London, England, northwest.

I. Notes on Attention, Path Patching and DLA
I.1. InversionView Reveals Information from

Un-attended Tokens

In Section 4, we mention that attention pattern is not suf-
ficient to form hypothesis when the model has more than
one layer. Because unlike in layer 0 each residual stream
contains information only about the corresponding token, in
higher layers each residual stream contains a mixture of to-
kens from the context, making it difficult to determine what
information is routed by attention. Besides this point, we
also find that sometimes attention pattern can be misleading
even in layer 0.

InversionView reveals how components can know more than
what they attend to. At the top of Figure 44, we show the
attention weights of head h0,3. Here, “=” attends almost
solely to S2, so the head output a0,3 should only contain
information that there is an “8” in tens place. The generated
ϵ-preimage, however, shows that it contains information
about F2: The number in tens place other than “8” is always
in a certain range (≥ 4), resulting in a carry to the hundreds
place. To verify this, we manually constructed examples
(rightmost column in Figure 44) where the other number is
outside of the range, and found that, for these, the activation
distance is indeed very large, confirming the information
suggested by the decoder. In layer 0, how does the model
obtain information about a token without attending it? At
the bottom of Figure 44, we show the attention weights
of those manually inserted examples. So the answer is: a
different attention pattern would arise if F2 is not in that
range. Information can be passed not only by values, but

41

InversionView: Reading Information from Neural Activations

Figure 43. ϵ-preimage showing information about the subject moved by the attention head. On the left, the information is “cpu/computer-
hardware-related". On the right, the information is “island country". Note that some statements are not correct.

Figure 44. For activation site a0,3, InversionView reveals how activations can encode information without an attention edge: (a) Even
though, on this input, h0,3 attends only to one tens place digit, it also encodes the approximate identity (range 4–8) of another tens place
digit. It encodes that the sum of tens places is greater than ten. (b) We verify our hypothesis by manually create some samples and
calculate D. (c) Attention patterns for manually created inputs outside of the ϵ-preimage. The attention pattern differs from that of the
query input. In the query input, the attention head infers information about the second tens place digit from the absence of an attention
edge.

42

InversionView: Reading Information from Neural Activations

Attn Head,
position

Info by
InversionView
(See Table 2)

Top 30
promoted

rate

Top 30
promoted &
1st name rate

Top 30
suppressed

rate

Top 30
suppressed &
1st name rate

9.9, END IO name 99.5% 98.8% 0% 0%

7.9, END S name;
Position of ... 0% 0% 3.2% 3.2%

8.10, END
S name;

Position of ...
(most of time)

0% 0% 27.4% 7.5%

0.1, S2 S name 0% 0% 0% 0%
0.10, S2 S name 0% 0% 0% 0%

2.2, S1+1 S name
(most of time) 0% 0% 0% 0%

4.11, S1+1 S name;
Position of ... 0% 0% 0% 0%

Table 4. Applying DLA to the heads in IOI circuit. Except the first row, all heads do not directly connect to final output according to the
IOI circuit, the results show DLA cannot decode their information. We do not include those heads in which only position information is
encoded. “Top 30 promoted (suppressed) rate" means the fraction of input examples where the expected name (IO name for the first row,
S name for other rows) is inside the top 30 tokens promoted (suppressed) by the head’s output. “Top 30 promoted (suppressed) & 1st
name rate" means the expected name is not only inside the top 30 promoted (suppressed) tokens, but also the most promoted (suppressed)
name among a list of common and single-token names, so it does not count when another name is ranked higher. Note that a name can be
associated with two tokens (with and without a space before it), when calculating the rate, either of them satisfying the condition will
count. The rate is calculated over 1000 random IOI examples. As we can see, except for the first row, the expected name is not observable
most of the time.

also by queries and keys. InversionView successfully shows
this hidden information, even without comparing across
different examples.

I.2. Additional Discussion about Path Patching

Besides our argument in Section 4, another important aspect
of circuit discovery methods is that, in many tasks (includ-
ing our character counting task), the computational nodes
do not correspond to fixed positions, and directly applying
path patching is problematic. It’s not really clear how to
apply path patching when varying input positions matter, as
the literature on circuit discovery defines circuits in terms
of components, not in terms of input positions. In the case
of Character Counting Task, such an interpretation would
just define a circuit linking the embeddings, attention heads,
and MLPs, without capturing the role of different positions,
and the fact that characters from varying positions feed into
the computation. Such a view would not provide any non-
trivial information about the mechanics of the implemented
algorithm. This reflects a more general conceptual chal-
lenge of circuit discovery: When different input positions
are relevant on different inputs, as in the Character Counting
Task, one could either define a single circuit across inputs in
which every input position is connected to a single node that
performs a potentially complex computation, or define per-
input circuits where the wiring is input-dependent; however,
per-sample path patching is not very scalable, and result-
ing per-input circuits would require further interpretation to
understand how they are formed across inputs.

I.3. Additional Discussion about DLA

Direct Logit Attribution (DLA) extends the logit lens
method to study individual model components. Specifi-
cally, it projects the output of a model component (thus an
update on the residual stream) into vocabulary space, and
interpret the component by inspecting the tokens it promotes
or suppresses. This method has gained popularity in recent
years (Geva et al., 2022; Wang et al., 2023a; Dar et al., 2023;
Ferrando et al., 2023), especially in the research of interpret-
ing factual recall in language models (Geva et al., 2023; Yu
et al., 2023; Chughtai et al., 2024; Yao et al., 2024). How-
ever, in this section, we argue that DLA is only suitable for
studying model components that directly affect the model’s
final output, and is not well-suited for components whose ef-
fect is mediated by other components. In the circuits found
by path patching (Wang et al., 2023a; Conmy et al., 2023),
we can see many components that do not connect to the final
output directly, which suggests a substantial part of their
effect on the final predictions is mediated by further com-
ponents. DLA shows their direct effect, which may even
be non-causal “side effects". Intuitively speaking, some
information is meant to be read by a downstream compo-
nent, e.g., the S-Inhibition Heads’ output in IOI circuit is
meant to be read by the query matrix of Name Mover Heads,
and such information may not necessarily be visible when
projecting to the vocabulary space. Dao et al. (2023) also
point out such limitations of DLA.

In Table 4 we show the results of applying DLA to attention
heads’ output in IOI circuit. We can see that the expected

43

InversionView: Reading Information from Neural Activations

information is not visible in most cases. The best result
comes from the S-Inhibition head 8.10, with only 7.5% of
cases where the expected name is in the top-30 tokens and
there is no other name being suppressed more than it. The
rare cases where the expected name is visible can also be
explained by the small direct effect on the final output as
depicted by Figure 3(b) in (Wang et al., 2023a).

Therefore, researchers should be cautious when using DLA
and should be aware of its limitations. A good usage ex-
ample is the IOI circuit (Wang et al., 2023a), where the
authors first identify those attention heads directly affecting
the final logits, and only apply DLA to them and design
other experiments to interpret other components. Impor-
tantly, in the context of factual recall task, we find that the
information given by InversionView about the upper layer
attention heads is often visible via DLA, indicating these
heads contribute to model’s output directly. Thus, our re-
sults can serve as confirmation that prior results relying on
DLA in this task are generally reliable.

J. Automated Interpretability
We further explore whether the process of obtaining the
common information from a collection of inputs can be
automated by LLMs. We use Claude 314 (Anthropic, 2024)
In preliminary experiments we also try GPT-4 (Achiam
et al., 2023) but we find Claude 3 works better in our case.
In the prompt given to Claude 3, we first describe the task it
needs to perform, the terminology we are using (e.g., F1, F2,
etc.), the rules (e.g., the pattern it finds should be applicable
to each inputs in the ϵ-preimage), input and output form,
and the crucial steps it should follow. In addition, we also
provide it with 3 demonstrating examples in conjunction
with the correct answers. Each example corresponds to a
specific activation site and token position (e.g., a0,0, A1). In
each example, there are 2-3 specific query inputs, each query
input is accompanied with 20 (sometimes less) samples that
are inside the ϵ-preimage. Claude 3 needs to find the pattern
for each query input, and summarize its findings across
several query inputs, which is the information contained
in general in that activation. In addition to the content
described above (the common part shared between prompts),
we give it a questioning example, which is the content we
would like it to interpret. The questioning example shares
the same form as the demonstrating example, except that it
contains 5 query inputs and their corresponding samples. In
addition, when two separate interpretations are needed based
on different A1 value, we run the generation twice with
examples of different A1 value, instead of giving the model
a mixture of two cases and resorting to its own capacity.

We think the following findings from our experiments are

14Version: claude-3-opus-20240229

worth mentioning: 1) It’s hard for the model to align digits
of the same place (e.g., comparing all F1 digits), because
the samples are presented as a single flattened string instead
of a 2-dimensional table. We find that explicitly adding the
variable name can largely mitigate this problem, they may
serve as certain kind of keys. For example, “7(F1) 1(F2)
1(F3) + 9(S1) 9(S2) 4(S3)”. 2) The generated interpreta-
tion is sometimes not consistent. The model may generate
different conclusion even with the same prompt, but this
usually only happens to less important information. 3) The
model does not strictly follow the rule, i.e., the common
pattern should match all inputs, even though we state this
repeatedly in different ways in the prompt. The model will
say “always” even when there is a counterexample. We
should keep 2) and 3) in mind when reading the results.

We run the generation for each entry in Table 3 once, using
the samples generated from the corresponding activation.
The results are shown in Table 5, accompanied with hu-
man interpretation for comparison. The interpretation given
by Claude 3 reflects the main information in almost all
cases. Even when the information becomes more complex
in layer 1, the interpretation quality does not significantly de-
cline. This implies that automated interpretation by LLM is
promising. On the other hand, there are also some problems:
1) Some of the model’s claims are spurious, these claims
are usually ranked low by the model, indicating they are not
very obvious. 2) The model sometimes does not explain
in a desirable manner. For example, for the entry “x0,mid,
A3”, the information includes A2 and whether A1=1, which
means when A1=1, the sum of F1 and S1 is known. Thus
Claude 3 concludes that (F1, S1) is approximately repre-
sented. Though this is somewhat true, it is not a fundamental
piece of information, and there is a more concise summary.
3) The interpretation tends to be verbose, despite we ask the
model to be succinct and provide it with some examples.
Despite the problems, we think the automatically generated
interpretation is by and large satisfactory and informative,
and we think some of the problems can probably be solved
or mitigated by engineering better prompts.

K. Compute Resources
We ran all experiments on NVIDIA A100 cards. The de-
coder is trained for 4-6 hours on 2 GPUs for the first three
case studies, without exhaustively tuning efficiency of the
implementation, which we believe could further speed up
training. Regarding the factual recall task, we train the
decoder for less than 1 day on 4 GPUs. Generation of ϵ-
preimage samples (including forward passes on the probed
model to calculate distance metric) is fast for the first 3
tasks, and it takes around 9 hours on 4 GPUs for factual
recall task (for 200 query inputs). Patching experiments run
quickly, as they are done for small models.

44

InversionView: Reading Information from Neural Activations

Start of Table 5
Entry in Ta-
ble 3

Interpretation from
Table 3 Interpretation by Claude 3

a0,0, A1 1-2 digits from F1
and S1 *used as example in the prompt

a0,1, A1 1-2 digits from F1
and S1

F1 and S1 (sometimes exactly and sometimes approximately. Their order can
sometimes vary)

a0,2, A1
1-2 digits from F1
and S1

the digits in the hundreds place (F1 and S1): - They tend to be large single digits (7,
8, 9) that add up to 10 or more - Sometimes one or both are fixed to a certain single
digit value - Sometimes their values can swap positions between F1 and S1 There
are no strong consistent patterns observed for the digits in the tens or ones places
(F2, S2, F3, S3). No other types of patterns (e.g. on A1 or carries) are consistently
observed.

a0,3, A1 1-2 digits from F2
and S2; C2 F2 and S2 (fuzzy, interchangeable); F3 (sometimes fuzzy); S2 (sometimes fuzzy)

x0,mid, A1 F1 and S1; C2

1) F1 and S1 are either the same digit, or a pair of digits that always appear
together in the hundreds place (sometimes with order swapped). 2) Whether F2+S2
produces a carry (the value of C2) is often consistent in each example, either always
0 or always 1. 3) There is no consistent pattern found for the ones digits F3 and S3.

x0,post, A1 F1 and S1; C2
1) F1 and S1, either exactly or an approximate version, with order sometimes
varying 2) S2, usually 3) C2, occasionally F3, S3 and other parts of the addition
rarely contain any mutual information between the query and generated strings.

a1,0, A1

Fuzzy info about F1,
S1 and C2;
Fuzzy info about F3
and S3 (sometimes)

1) F1 and S1 digits (sometimes exact match, sometimes approximate match). 2)
Whether the sum of F2 and S2 is greater than or equal to 10 (i.e. the value of C2).
3) F3 and/or S3 digits are often preserved from the query to the generated strings.

a1,1, A1

If A1=1 (likely
to be): 1-2 digit
from F1 and S1
(sometimes their
sum); C2;
Else: Fuzzy info,
including some info
about F3 and S3
(sometimes)

If A1=1: 1. F1 and S1 digits from the query string appear in the generated strings,
but their order may be swapped. 2. Occasionally some other information is shared,
such as the carry digit C2, or a specific digit like F3, but this is not consistent
across all examples. In summary, the key common information is the two digits
that appear in the hundreds place of the query and generated strings, while their
specific positions as F1 or S1 may vary.
Else: The amount of information shared between the query and generated strings
varies by example. In some cases, there are clear patterns like certain digits being
consistently shared (e.g. S1, S3). Other digits may share approximate rather than
exact values (e.g. F1). Some digits tend to vary more (e.g. F2, S2). Occasionally,
the carry C2 is also shared. When there are too few generated strings, it is hard to
conclusively identify patterns. More generated strings allow more confidence in
the patterns found.

a1,2, A1 Fuzzy info about F2
and S2 (sometimes)

1. F1 and S1 (sometimes fuzzy representation, their order can vary) 2. F2 and/or
S2 (sometimes only one of them, sometimes partially match) 3. Occasionally F3
and/or S3 (partially match, their order can vary)

a1,3, A1
1-2 digits from F1
and S1 (sometimes
fuzzy)

1) F1 and S1 values, either exactly or approximately. Their order can sometimes be
swapped. 2) To a lesser extent, F2 and S2 values, either exactly or approximately.
Patterns for F3/S3 are rarely seen. Other aspects like C2 are occasionally but not
consistently shared. The level of correspondence varies a lot between examples.
Examples with many missing values are hard to find patterns in.

x1,mid, A1 F1 and S1; C2
1) The values of F1 and S1, either the exact values or their sum 2) The value or
presence/absence of S2 3) The relationship between F2 and S2 (which is greater,
or whether there is a carry) 4) Which digits are missing in the result (A1 or A2)

x1,post, A1 F1 and S1; C2

the F1 and S1 values from the query can be found in either order (F1, S1) or (S1,
F1) in all generated strings for that query. In some cases, C2 (carry from tens place)
is also consistent between query and generated strings, being either 0 or 1 in all
strings for that query. F3 and S3 values do not seem to have any limitations or
correspondence between query and generated strings.

a0,0, A2 whether A1=1

- Sometimes A1 is consistent (always the same value) between query and generated
strings - Sometimes the exact or approximate F3 and S3 values from the query
appear together frequently in the generated strings - In some examples, there is no
clear common information The values of (F1, S1) and (F2, S2) do not seem to be
consistently shared between query and generated strings in these examples.

45

InversionView: Reading Information from Neural Activations

Continuation of Table 5
Entry in Ta-
ble 3

Interpretation from
Table 3 Interpretation by Claude 3

a0,1, A2

If A1=1: Almost no
info
Else: 1-2 digits from
F2 and S2

If A1=1: F2 (sometimes fuzzy); A1
Else: 1) The exact values or range of values for F2 and/or S2 2) The value of C2
(whether F2+S2≥10) 3) Occasionally F1/S1 or F3/S3, but not as common as F2/S2
4) A1 is usually not shared The most commonly shared information is the exact
values or ranges for F2 and S2, as well as the resulting C2. F1/S1 and F3/S3 are
less commonly shared.

a0,2, A2

If A=1: both F1 and
S1
Else: 1-2 digits from
F2 and S2

If A=1: 1. F1 and S1 from the query string always appear in generated strings in
the hundreds place, but their order may be swapped. 2. A1 is always the same in
query and generated strings.
Else: 1) F2 and S2 (sometimes S2 is fuzzy) 2) Number of digits in the final sum
(related to whether A1 is shown in query) Less commonly, F1 and S1 are shared in
a fuzzy way.

a0,3, A2

If A=1: 1-2 digits
from F1 and S1
Else: 1-2 digits from
F3 and S3; C3

If A=1: 1) F1 and S1 are often the same pair of digits (sometimes with a bit of
variation). The order of the two digits may vary. 2) A1 is always the same digit.
3) In some cases, the presence or absence of a carry from the tens place (C2) is
consistent. The digits in the ones place (F3 and S3) are usually not shared between
the query and generated strings.
Else: 1) F3 and/or S3 often have specific shared values between the query and
generated strings. The shared digit is usually in the range 2-9. 2) Occasionally
other patterns exist in generated strings (e.g. ones place of answer) but are not
truly shared with the query. 3) Besides the ones place operands, no other consistent
patterns were found across F1/S1, F2/S2 or the answer digits.

x0,mid, A2
A1
If A1=1: F1 and S1
Else: F2 and S2; C3

If A1=1: 1) F1 and S1 have fixed values in each example, although the values
differ between examples. Their order can vary. 2) A1 is always “1” in all examples.
3) In some examples, there is a consistent carry or lack of carry from the sum of
F2 and S2 (C2). But this is not true for all examples. 4) There are no consistent
patterns in the values of F2, S2, F3, S3 across all examples.
Else: A1 is always exactly shared, the middle digits F2 and S2 are often approxi-
mately shared, and usually one of the first digits (F1/S1) and one of the last digits
(F3/S3) from the query appears frequently in the generated strings.

x0,post, A2
A1
If A1=1: F1 and S1
Else: F2 and S2; C3

If A1=1: - F1 and S1 always match, although their order can be swapped. In some
cases, the carry C2 (whether F2+S2 is ≥ 10) is also shared between the query and
generated strings.
Else: 1) The digits in the tens place (F2, S2), either the exact digits or their sum
(carry C2). 2) The ones digit of the answer (A1). 3) Sometimes the digits in the
ones place (F3, S3), either the exact digits or their sum (carry C3).

a1,0, A2

If A1=1: F1 and S1
(sometimes fuzzy);
C2 (sometimes)
Else: 1-2 digits from
F2 and S2;

If A1=1: *used as example in the prompt
Else: - F2 and S2 often have fixed values that are shared between the query and
generated strings - A1 and A2 (when present) are consistently single digits in both
query and generated strings

a1,1, A2

If A1=1: Uncertain.
F1 and S1 (some-
times); 1 digit from
F3 and S3 (some-
times)
Else: F2 and S2

If A1=1: - Some or all digits from the hundreds place (F1 and S1), sometimes
exactly, sometimes approximately - The carry to the hundreds place (C2), in some
examples - The first digit of the answer (A1) The digits in the tens and ones place
(F2, S2, F3, S3) usually vary and are not consistently shared. When no generated
strings are provided, the common information is uncertain.
Else: - F2 and S2 are often fixed to specific values in the query and generated
strings of each example. - The sum of F2 and S2 determines the value of C2, which
is consistent between the query and generated strings within each example. - A1
is usually a single digit but can sometimes expand to 2 digits if the sum reaches
or exceeds 100 in the generated strings. The specific digits of A1 are not always
shared.

a1,2, A2

1-2 digits from F1
and S1 (sometimes
fuzzy); 1-2 digits
from F2 and S2
(sometimes fuzzy);

- F1 and S1 often approximately match between the query and generated strings, but
their exact values and order can vary. - In some cases, F2 and S2 also approximately
match, but less frequently and consistently than F1 and S1. - A1 always exactly
matches between the query and generated strings.

46

InversionView: Reading Information from Neural Activations

Continuation of Table 5
Entry in Ta-
ble 3

Interpretation from
Table 3 Interpretation by Claude 3

a1,3, A2

If A1=1: F1 and S1
(sometimes fuzzy);
C2
Else: F2 and S2

If A1=1: 1) F1 and S1, their order can vary 2) Sometimes F2 and S2, either the
exact values or approximate range of values 3) A1 is often the same F3 and S3
usually don’t exhibit obvious patterns. The amount of shared information varies in
different examples, with some having more (e.g. exact F2 and S2 values) while
others have less.
Else: 1) One or both digits in the tens place (F2 and/or S2) 2) One or more digits
in the answer (A1 and/or A2) Less frequently, there are also patterns shared in
the ones place (F3 and S3). The hundreds place (F1 and S1) least often contain
common patterns.

x1,mid, A2

A1
If A1=1: F1 and S1;
C2
Else: F2 and S2; C3

If A1=1: 1. F1 and S1 are always the same two digits but their order can vary. 2.
The sum of F2 and S2 is always the same, implying the carry C2 is consistent. 3.
A1 is always the same digit “1”. There is no consistent pattern found for F3 and
S3.
Else: 1. F1 and S1: their specific values in query often show up in generated
strings in an approximate way, and their order can sometimes vary. 2. F2 and S2:
the specific values or a small range of values are often shared. 3. F3 and S3: a
fuzzy version is often shared, meaning the specific values may vary but are close to
those in query. 4. A1: often exactly the same between query and generated strings.

x1,post, A2
If A1=1: F1 and S1;
C2
Else: F2 and S2; C3

If A1=1: - F1 and S1 have two possible values that are swapped between F1 and
S1. In other words, (F1, S1) have two possible combinations that are the reverse of
each other. - A1 is always the same in the query and all generated strings in each
example. Sometimes the carry C2 (whether F2+S2≥10) is also shared between
query and generated strings.
Else: 1) Specific digits are often fixed or highly common in certain places (e.g.
F2, S2) across query and equations. 2) The answer digit A1 is often the same or
highly consistent across query and equations. 3) The carry C2 from tens place is
sometimes consistent (0 or 1) across examples. 4) Other than above, the digits and
relationships seem to vary substantially between examples.

a0,0, A3 whether A1=1

1. Digits in the answer part (A1, A2, etc.), either the exact digit or a range. This is
observed in all 5 examples. 2. The range that F1 and S1 can take, and sometimes
they can swap positions. This is observed in 2 out of 5 examples. Digits in F2, S2,
F3, S3 do not show consistent patterns across examples.

a0,1, A3 1-2 digits from F2
and S2

- When the sum is a 2-digit number, A1 is sometimes shared between query and
generated strings - When the sum is a 3-digit number, A2 is often (but not always)
shared - If there is a shared A2, its value often matches the query - If both A1 and
A2 are present, A1A2 is between 10-19 There are no consistent patterns in the
operand digits F1/S1, F2/S2, F3/S3 or their sums.

a0,2, A3 1-2 digits from F2
and S2

1) S2 or F2 sometimes takes on a consistent value (like 0, 9, 7) in the query and
many generated strings. 2) The equations are often incomplete, with A1 and/or
A2 missing in many generated strings. 3) When present, A2 sometimes has a
consistent value (like 1, 2, 6) in the query and generated strings, but not always. 4)
No consistent patterns were found for the (F1, S1) and (F3, S3) digit pairs.

a0,3, A3
1 digit from F3 and
S3 (2 when F3=S3);
C3

1) Certain digits from F3 and/or S3, although the order of F3 and S3 may vary
in generated strings compared to the query. 2) The existence of A1 and A2 in
complete equations, but not always. Other patterns like digits from F1, S1, F2, S2
are rarely shared.

x0,mid, A3
A2; F2 and S2; C3;
whether A1=1

1. An exact or approximate representation of (F1, S1), sometimes with order
varying 2. Specific values or range of values for F2 and S2, sometimes along with
their sum (C2) 3. Sometimes specific values for F3 and/or S3 4. Often an exact
or approximate representation of (A1, A2) The amount and type of information
shared varies between examples. But in general, there are usually some constraints
on the digits in each place value shared by the query and generated strings.

x0,post, A3 A2; F2 and S2; C3;
whether A1=1

1. F1 and S1: exact match or fuzzy match, order of F1 and S1 may vary 2. F2 and
S2: exact match or fuzzy match, order of F2 and S2 may vary, sometimes have size
relationship (like F2 ≤ S2) 3. F3: exact match or fuzzy match 4. S3: exact match
or fuzzy match 5. A1: exact match 6. A2: exact match Not every example has all
the above common information.

47

InversionView: Reading Information from Neural Activations

Continuation of Table 5
Entry in Ta-
ble 3

Interpretation from
Table 3 Interpretation by Claude 3

a1,0, A3

If A1=1: 1-2 digits
from F2 and S2; C3
(sometimes);
Else: 1-2 digits from
F3 and S3

If A1=1: 1. F2 and/or S2 (sometimes their roles as F2 or S2 can vary) 2. A pattern
about A1 and A2: when A1 is a specific value (usually “1”), A2 is provided;
otherwise A2 is not provided 3. Sometimes A1 4. Rarely A2 when A1 is a specific
value
Else: - Fuzzy/approximate matching of F3 and S3 values - Exact matching of F3,
S2, S3 values in some cases - Partial matching of A2 (last digit) in some cases
Overall, ones place digits (F3, S3) and occasionally other digits (S2, A2) tend to
be shared in a fuzzy or exact manner. Hundreds place digits (F1, S1, A1) are rarely
shared.

a1,1, A3

If A1=1: 1-2 digits
from F2 and S2; C3
(sometimes);
Else: 1-2 digits from
F3 and S3

If A1=1: F2 and S2 are always certain fixed digits in each example, shared by
the query and all generated strings in that example. Sometimes the first answer
digit A1 is also shared between query and some generated strings, but this is not
fully consistent. The last answer digit shows no consistency between query and
generated strings.
Else: 1) S3 (sometimes F3) 2) Fuzzy representation of (A1, A2) in some cases The
ones place digit (F3 or S3) tends to be exactly preserved, while the answer (A1,
A2) is sometimes preserved approximately but not exactly. Other digits and the
carry do not show consistent patterns.

a1,2, A3

If A1=1: 1-2 dig-
its from F2 and S2;
C3 (sometimes); 1-
2 digits from F1 and
S1 (fuzzy);
Else: 1-2 digits from
F3 and S3

If A1=1: 1. F1 and S1 (order may vary, values may be fuzzy or exact match) 2. F2
(may be exact or fuzzy match) 3. S2 (may be exact or fuzzy match, may appear in
F2 or S2) 4. A1 (always exact match) 5. A2 (may be exact match or not present)
The amount of shared information varies across examples. F3, S3 are not shared.
Else: Across the examples, the most common pattern is that either F3 or S3 has
a fixed single digit value shared by the query and all generated strings in that
example. The specific digit varies between examples but is consistent within each
example.

a1,3, A3

If A1=1: 1-2 digits
from F2 and S2; C3
(sometimes);
Else: 1-2 digits from
F3 and S3

If A1=1: 1. (F1, S1), but usually in an approximate or fuzzy way. Their exact
values and order may vary in generated strings. 2. (F2, S2), usually exactly the
same as in query string. In a few cases, they are shared in an approximate way. 3.
A1, sometimes shared between query and generated strings. 4. S3, occasionally
shared if it is present. The amount and type of shared information seem to vary
from example to example. Some only share (F2, S2), while others share (F1, S1)
and A1 as well, although in an approximate manner.
Else: - The last digit of F (F3) is often shared between query and generated strings
- The last digit of the answer (A2 for 2-digit answer, A3 for 3-digit answer) is very
frequently shared - Sometimes S3 or other answer digits are also shared, but less
reliably In general, the ones place digits of the operands and answer tend to be
shared between the query and generated strings in each example.

x1,mid, A3

If A1=1: A2; F2
and S2; C3; whether
A1=1
Else: A2; F2 and S2;
F3 and S3; whether
A1=1

If A1=1: F1 and S1 (sometimes fuzzy values or ranges); F2 and S2 (sometimes
unordered); F3 (rarely); A1; A2
Else: F3 and S3, sometimes only appearing in an approximate manner and some-
times their relative order can vary; A2, always precisely shared between the query
string and generated strings.

x1,post, A3

If A1=1: A2; F2
and S2; C3; whether
A1=1
Else: A2; F2 and S2;
F3 and S3; whether
A1=1

If A1=1: 1. Approximate or exact values of F1 and S1, their order can vary 2.
Exact values or a couple possible values of F2 and S2, their order can vary 3. Exact
or approximate values of A1 and A2 The information about F3 and S3 does not
seem to be shared.
Else: - Some or all digits in F2, F3, S2, S3 (F2 and S2, F3 and S3 can be swapped)
- The last digit of the answer (A2) - Whether there is a carry from tens place to
hundreds place (C2)

a0,0, A4/E whether A1=1

1) The value of A1 (in 4 out of 5 examples) 2) An approximate or exact match
of (F1, S1) pair (in 2 out of 5 examples) 3) The sum of F3 and S3 (in 1 out of 5
examples) Other occasional commonalities include the value of A2 and whether
A3 is complete.

48

InversionView: Reading Information from Neural Activations

Continuation of Table 5
Entry in Ta-
ble 3

Interpretation from
Table 3 Interpretation by Claude 3

a0,1, A4/E 1-2 digits from F3
and S3

Across the examples, the most consistent commonality is in the ones place (F3 and
S3). They often have the same or very similar values in the query and generated
strings.
Sometimes a digit in a certain place of the final answer is also shared between
query and many/all generated strings, like the first digit (A1) or last digit (A3). But
this is not always the case.
The hundreds place (F1/S1) and tens place (F2/S2) digits usually vary without a
clear mutual pattern between the query and generated strings.

a0,2, A4/E 1-2 digits from F3
and S3

1) F3 and S3 digits (sometimes approximately). Present in 4 out of 5 examples. 2)
A1 and/or A2 digits (only in example 0).

a0,3, A4/E 1-2 digits from F3
and S3

- Certain digit positions (often F3 or S3) having the same value in the query and
all/most generated strings - When sums are shown, certain digits (often A1 or A3)
being restricted to a small set of values or range The specific digit positions and
values/ranges vary between examples, but the general pattern of certain positions
being fixed or constrained is consistent.

x0,mid, A4/E
A3; F3 and S3;
whether A1=1

- F1 and S1 sometimes appear in generated strings with their order swapped - F3
and S3 sometimes appear in generated strings with their order swapped - F3, S3 and
A3 of the query string often appear unchanged in the same position in generated
strings

x0,post, A4/E A3; F3 and S3;
whether A1=1

- F3 is often shared between the query string and generated strings - S3 is sometimes
shared between the query string and generated strings - A3 is consistently the same
value in the query string and all generated strings for each example There is no
strong pattern for F1, S1, F2 or S2.

a1,0, A4/E
1-2 digits from F3
and S3; whether
next token is E

1. Specific digits or narrow ranges in F3 and S3 2. The value or a narrow range of
A1 3. The ending digits or a narrow range of ending digits in A3 4. Sometimes
the carry C1 or C2 The digits in F1, S1, F2, S2 and the full value of A2, A3 are
usually not shared.

a1,1, A4/E
1-2 digits from F3
and S3; whether
next token is E

1) F3 (always the same or frequently appears) 2) S3 (always the same or frequently
appears) 3) One or more answer digits, especially the last one A3 (always the same
or frequently appears)

a1,2, A4/E 1-2 digits from F3
and S3

The ones digit (F3) of the query string consistently shows up in the ones place
(either F3 or S3) of the generated strings. Sometimes the other ones digit in gener-
ated strings has a specific value when query F3 is in a certain place. Occasionally,
the carry (C3) from the ones place addition is also shared between the query and
generated strings.

a1,3, A4/E 1-2 digits from F3
and S3

only the ones digits (F3 and sometimes S3) are consistently shared, while the other
parts of the addition problems vary between the query and generated strings in
each example.

x1,mid, A4/E
A3; F3 and S3;
whether A1=1

- F3 and S3 have some fixed values (varying by example) that always sum to the
same total. The order of the two digits doesn’t matter. - As a result, A3 is always a
fixed value for each example. - There is sometimes a consistent carry over amount
from the tens to hundreds place, resulting in a fixed A1 value.

x1,post, A4/E F3 and S3; whether
A1=1

- Specific digits in the answer (A3) - Specific digits in the operands (F3, S3) -
Whether there is a carry in a certain place (C2, C3) The shared information varies
across examples, but usually relates to the ones or tens place digits and carries.

Table 5: Interpretation for 3 digit addition produced by Claude 3, compared with human interpretation from Table 3. In
general, the automated information is very informative, and the human interpretations 3 is contained in almost all cases,
though the output tends to be more verbose. The LLM outputs, with some human post-checking, can thus further speed up
interpretation.

49

