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ABSTRACT

The optimal transport (OT) problem has gained significant traction in modern ma-
chine learning for its ability to: (1) provide versatile metrics, such as Wasserstein
distances and their variants, and (2) determine optimal couplings between probabil-
ity measures. To reduce the computational complexity of OT solvers, methods like
entropic regularization and sliced optimal transport have been proposed. The sliced
OT framework improves efficiency by comparing one-dimensional projections
(slices) of high-dimensional distributions. However, despite their computational
efficiency, sliced-Wasserstein approaches lack a transport plan between the input
measures, limiting their use in scenarios requiring explicit coupling. In this paper,
we address two key questions: Can a transport plan be constructed between two
probability measures using the sliced transport framework? If so, can this plan be
used to define a metric between the measures? We propose a ‘lifting’ operation
to extend one-dimensional optimal transport plans back to the original space of
the measures. By computing the expectation of these lifted plans, we derive a new
transport plan, termed expected sliced transport (EST) plans. We further prove that
using the EST plan to weight the sum of the individual Euclidean costs ∥x−y∥p for
moving from x to y results in a valid metric between the input discrete probability
measures. Finally, we demonstrate the connection between our approach and the
recently proposed min-SWGG, along with illustrative numerical examples that
support our theoretical findings.

1 INTRODUCTION

The optimal transport (OT) problem (Villani, 2009) seeks the most efficient way to transport a
distribution of mass from one configuration to another, minimizing the cost associated with the
transportation process. It has found diverse applications in machine learning due to its ability
to provide meaningful distances, i.e., the Wasserstein distances (Peyré & Cuturi, 2019), between
probability distributions, with applications ranging from supervised learning (Frogner et al., 2015) to
generative modeling (Arjovsky et al., 2017). Beyond merely measuring distances between probability
measures, the optimal transport plan obtained from the OT problem provides correspondences
between the empirical samples of the source and target distributions, which are used in various
applications, including domain adaptation (Courty et al., 2014), positive-unlabeled learning (Chapel
et al., 2020), texture mixing (Rabin et al., 2011), color transfer (Rabin et al., 2014), image analysis
(Basu et al., 2014), and even single-cell and spatial omics (Bunne et al., 2024), to name a few.

One of the primary challenges in applying the OT framework to large-scale problems is its com-
putational complexity. Traditional OT solvers for discrete measures typically scale cubically with
the number of samples N (i.e., the support size) (Kolouri et al., 2017). Precisely, when using linear
programming for solving the OT problem, the computational complexity is of order O(N3 log(N)).
This computational burden has spurred significant research efforts to accelerate OT computations.
Various approaches have been developed to address this challenge, including the seminal work (Cuturi,
2013), which introduces entropic regularization, leveraging the Sinkhorn algorithm to compute OT
efficiently with quadratic time complexity; multiscale methods (Schmitzer, 2016); and projection-

∗Equal contribution.

1



Published as a conference paper at ICLR 2025

based techniques such as sliced-Wasserstein distances (Rabin et al., 2011) and robust subspace OT
(Paty & Cuturi, 2019). Each of these methods has its own advantages and limitations.

For instance, the entropic regularized OT is solved via an iterative algorithm (i.e., the Sinkhorn
algorithm) with quadratic computational complexity per iteration. However, the number of iterations
required for convergence typically increases as the regularization parameter decreases, which can
offset the computational benefits of these methods. Precisely, the complexity of Sinkhorn method
is of order O(N2 log(N)/λ2), where λ is the regularization parameter Dvurechensky et al. (2018);
Altschuler et al. (2017). Additionally, while entropic regularization interpolates between Maximum-
Mean Discrepancy (MMD) (Gretton et al., 2012) and the Wasserstein distance (Feydy et al., 2019), it
does not produce a true metric between probability measures. Despite not providing a metric, the
entropic OT provides a transport plan, i.e., soft correspondences, albeit not the optimal one. On the
other hand, sliced-Wasserstein distances offer linearithmic computational complexity, enabling the
comparison of discrete measures with millions of samples. These distances are also topologically
equivalent to the Wasserstein distance and offer statistical advantages, such as better sample complex-
ity (Nadjahi et al., 2020). However, despite their computational efficiency, the sliced-Wasserstein
approaches do not provide a transport plan between the input probability measures, limiting their
applicability to problems that require explicit coupling between measures.

In this paper, we address two central questions: First, can a transportation plan be constructed
between two probability measures using the sliced transport framework? If so, can the resulting
transportation plan be used to define a metric between the two probability measures? Within
the sliced transport framework, the "slices" refer to the one-dimensional marginals of the source
and target probability measures, for which an optimal transportation plan is computed. Crucially,
this optimal transportation plan applies to the marginals (i.e., one-dimensional probability measures)
rather than the original measures. To derive a transportation plan between the source and target
measures, this optimal plan for the marginals must be "lifted" back to the original space.

For discrete measures with equal support size, N , and uniform mass, 1/N , the optimal transportation
plan between marginals is represented by a correspondence matrix, specifically anN×N permutation
matrix. Previous works have used directly the correspondence matrix obtained for a slice as a
transportation plan in the original space of measures (Rowland et al., 2019; Mahey et al., 2023).
This paper provides a holistic and rigorous analysis of this problem for general discrete probability
measures.

Our specific contributions in this paper are:
1. Introducing a computationally efficient transport plan between discrete probability measures,

the Expected Sliced Transport (EST) plan. Motivated by the first question highlighted
above, we construct this transport plan as the average of transport plans computed via a
lifting scheme involving one-dimensional sliced transport plans. (See Definition 2.4 below.)

2. Providing a distance for discrete probability measures, the Expected Sliced Transport
(EST) distance. (See Definition 2.6 and Theorem 2.10 below.)

3. Offering both a theoretical proof and an experimental visualization showing that the EST
distance is equivalent to the Wasserstein distance (and to weak∗ convergence) when applied
to discrete measures.

4. Illustrating the potential applicability of the proposed distance and transport plan, with a
focus on interpolation and classification tasks.

2 EXPECTED SLICED TRANSPORT

2.1 PRELIMINARIES

Given a probability measure µ ∈ P(Rd) and a unit vector θ ∈ Sd−1 ⊂ Rd, we define θ#µ :=
⟨θ, ·⟩#µ to be the θ-slice of the measure µ, where ⟨θ, x⟩ = θ · x = θTx denotes the standard inner
product in Rd. For any pair of probability measures with finite p-moment (p > 1) µ1, µ2 ∈ Pp(Rd),
one can pose the following two Optimal Transport (OT) problems: On the one hand, consider the
classical OT problem, which gives rise to the p-Wasserstein metric:

Wp(µ
1, µ2) := min

γ∈Γ(µ1,µ2)

(∫
Rd×Rd

∥x− y∥pdγ(x, y)
)1/p

(1)
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Figure 1: Our goal in this paper is to construct transportation plans between d-dimensional measures
(d > 1) using their one-dimensional marginals, or slices. For two measures µ1 (represented by green
circles) and µ2 (represented by blue circles), we first derive a one-dimensional transport plan Λµ1,µ2

θ
from their slices along a unit vector θ (indicated by triangles). This one-dimensional transport plan is
then lifted back to the original d-dimensional space to produce a transport plan between the measures,
γµ

1,µ2

θ . Finally, these transport plans are aggregated over all directions θ ∈ Sd−1. In (a), the measures
µ1 and µ2 are uniform, with their masses non-overlapping when projected in the direction of θ. In
(b), µ1 and µ2 are non-uniform, resulting in overlapping masses when projected along θ. For further
details, see Remark A.1 in Appendix A.1.

where ∥ · ∥ denotes the Euclidean norm in Rd and Γ(µ1, µ2) ⊂ P(Rd × Rd) is the subset of all
probability measures with marginals µ1 and µ2. On the other hand, for a given θ ∈ Sd−1, consider
the one-dimensional OT problem:

Wp(θ#µ
1, θ#µ

2) = min
Λθ∈Γ(θ#µ1,θ#µ2)

(∫
R×R

|u− v|pdΛθ(u, v)

)1/p

(2)

In this case, since the measures θ#µ1, θ#µ
2 can be regarded as one-dimensional probabilities in

P(R), there exists a unique optimal transport plan, which we denote by Λµ1,µ2

θ (see, for e.g., (Villani,
2021, Thm. 2.18, Remark 2.19)], (Maggi, 2023, Thm. 16.1)).

2.2 ON SLICING AND LIFTING TRANSPORT PLANS

In this section, given discrete probability measures µ1, µ2 ∈ Pp(Rd), we describe the process of
slicing them according to a direction θ ∈ Sd−1 and lifting the optimal transport plan Λµ1,µ2

θ , which
solves the 1-d OT problem (2), to get a plan in Γ(µ1, µ2). Thus, we obtain a new measure, denoted
as γµ

1,µ2

θ , in P(Rd ×Rd) with first and second marginal µ1 and µ2, respectively. For clarity, we first
describe the process for discrete uniform measures and then extend it to any pair of discrete measures.

2.2.1 ON SLICING AND LIFTING TRANSPORT PLANS FOR UNIFORM DISCRETE MEASURES

Given N ∈ N, consider the space P(N)(Rd) of uniform discrete probability measures concentrated
at N particles in Rd, that is,

P(N)(Rd) =

{
1

N

N∑
i=1

δxi
| xi ∈ Rd, ∀i ∈ {1, ..., N}

}
.

Let µ1 = 1
N

∑N
i=1 δxi

, µ2 = 1
N

∑N
j=1 δyj

∈ P(N)(Rd), where xi, yj ∈ Rd and δxi
denotes a Dirac

measure located at xi (respectively for δyj
). Let us denote by U(Sd−1) the uniform measure on the

hypersphere Sd−1 ⊂ Rd. In this case, the θ-slice of µ1 is represented by θ#µ1 = 1
N

∑N
i=1 δθ·xi

, and
similarly for θ#µ2. Let SN denote the symmetric group of all permutations of the elements in the set
[N ] := {1, . . . , N}. Let ζθ, τθ ∈ SN denote the sorted indices of the projected points {θ · xi}Ni=1

and {θ · yj}Nj=1, respectively, that is,

θ · xζ−1
θ (1) ≤ θ · xζ−1

θ (2) ≤ · · · ≤ θ · xζ−1
θ (N) and θ · yτ−1

θ (1) ≤ θ · yτ−1
θ (2) ≤ · · · ≤ θ · yτ−1

θ (N) (3)

The optimal matching from θ#µ
1 to θ#µ2 for the problem (2) is induced by the assignment

θ · xζ−1
θ (i) 7−→ θ · yτ−1

θ (i), ∀1 ≤ i ≤ N. (4)

We define Tµ1,µ2

θ : {x1, . . . , xN} → {y1, . . . , yN} the lifted transport map between µ1 and µ2 by:

Tµ1,µ2

θ (xi) = yτ−1
θ (ζθ(i))

, ∀1 ≤ i ≤ N. (5)
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Rigorously, Tµ1,µ2

θ is not necessarily a function defined on {x1, . . . , xN} but on the labels
{1, . . . , N}, as two projected points θ · xi and θ · xj could coincide for i ̸= j. As a result, it
is more appropriate to work with lifted transport plans. Indeed, the matrix uµ

1,µ2

θ ∈ Rn×n given by

uµ
1,µ2

θ (i, j) =

{
1/N if j = τ−1

θ (ζθ(i))

0 otherwise
(6)

encodes the weights of the optimal transport plan between θ#µ1 and θ#µ2 given by

Λµ1,µ2

θ :=
∑
i,j

uµ
1,µ2

θ (i, j)δ(θ·xi,θ·yj), (7)

as well as the weights of the lifted transport plan between the original measures µ1 and µ2 according
to the θ-slice defined by

γµ
1,µ2

θ :=
∑
i,j

uµ
1,µ2

θ (i, j)δ(xi,yj). (8)

This new measure γµ
1,µ2

θ ∈ P(Rd × Rd) has marginals µ1 and µ2. While γµ
1,µ2

θ is not necessarily
optimal for problem (1), it can be interpreted as a transport plan in Γ(µ1, µ2) which is optimal when
projecting µ1 and µ2 in the direction of θ. See Figure 1 (a) for a visualization.

2.2.2 ON SLICING AND LIFTING TRANSPORT PLANS FOR GENERAL DISCRETE MEASURES

Consider discrete measures µ1, µ2 ∈ Pp(Rd). In this section, we will use the notation µ1 =∑
x∈Rd p(x)δx, where p(x) ≥ 0 for all x ∈ Rd, p(x) ̸= 0 for at most countable many points x ∈ Rd,

and
∑

x∈Rd p(x) = 1. Similarly, µ2 =
∑

y∈Rd q(y)δy for a non-negative density function q in Rd

with finite or countable support and such that
∑

y∈Rd q(y) = 1. Given θ ∈ Sd−1, consider the
equivalence relation defined by:

x ∼θ x
′ if and only if θ · x = θ · x′

We denote by x̄θ the equivalence class of x ∈ Rd. By abuse of notation, we will use interchangeably
that x̄θ is a point in the quotient space Rd/∼θ, and also the set {x′ ∈ Rd : θ · x = θ · x′}, which is
the orthogonal hyperplane to θ that intersects x. The intended meaning of x̄θ will be clear from the
context. Notice that, geometrically, the quotient space Rd/∼θ is the line R in the direction of θ.

Now, we interpret the projected measures θ#µ1, θ#µ2 as 1-dimensional probability measures in
P(Rd/∼θ) given by θ#µ1 =

∑
x̄θ∈Rd/∼θ

P (x̄θ)δx̄θ , where P (x̄θ) =
∑

x′∈x̄θ p(x′), and similarly,
θ#µ

2 =
∑

ȳθ∈Rd/∼θ
Q(ȳθ)δȳθ , where Q(ȳθ) =

∑
y′∈ȳθ q(y′).

Remark 2.1. Notice that if P (x̄θ) = 0, then p(x′) = 0 for all x′ ∈ x̄θ, or, equivalently, if p(x) ̸= 0,
then P (x̄θ) ̸= 0 (where x is any ‘representative’ of the class x̄θ). Similarly for Q.

Consider the optimal transport plan Λµ1,µ2

θ ∈ Γ(θ#µ
1, θ#µ

2) ⊂ P(Rd/∼θ×Rd/∼θ) between θ#µ1

and θ#µ2, which is unique for the OT problem (2) as we are considering 1-dimensional probability
measures. Let us define

uµ
1,µ2

θ (x, y) :=

{
p(x)q(y)

P (x̄θ)Q(ȳθ)
Λµ1,µ2

θ ({(x̄θ, ȳθ)}) if p(x) ̸= 0 and q(y) ̸= 0

0 if p(x) = 0 or q(y) = 0

which allows us to generalize the lifted transport plan given in (6) in the general discrete case:

γµ
1,µ2

θ :=
∑
x∈Rd

∑
y∈Rd

uµ
1,µ2

θ (x, y)δ(x,y) (9)

See Figure 1 (b) for a visualization.
Remark 2.2. Notice that this lifting process can be performed by starting with any transport plan
Λθ ∈ Γ(θ#µ

1, θ#µ
2), but in this article we will always consider the optimal transport plan, i.e.,

Λθ = Λµ1,µ2

θ . The reason why we make this choice is because this will give rise to a metric between
discrete probability measures: The EST distance which will be defined in Section 2.3.
Lemma 2.3. Given general discrete probability measures µ1 and µ2 in Rd, the discrete measure
γµ

1,µ2

θ defined by (9) has marginals µ1 and µ2, that is, γµ
1,µ2

θ ∈ Γ(µ1, µ2) ⊂ P(Rd × Rd).

We refer the reader to the appendix for its proof.
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2.3 EXPECTED SLICED TRANSPORT (EST) FOR DISCRETE MEASURES

Leveraging on the transport plans γµ
1,µ2

θ described before, in this section we propose a new transport
plan γ̄µ

1,µ2 ∈ Γ(µ1, µ2), which will give rise to a new metric in the space of discrete probability
measures.

Definition 2.4 (Expected Sliced Transport plan). Let σ ∈ P(Sd−1). For discrete probability measures
µ1, µ2 in Rd, we define the Expected Sliced Transport (EST) plan γ̄µ

1,µ2 ∈ P(Rd × Rd) by

γ̄µ
1,µ2

:= Eθ∼σ[γ
µ1,µ2

θ ], where each γµ
1,µ2

θ is given by (9), that is, (10)

γ̄µ
1,µ2

({(x, y)}) =
∫
Sd−1

γµ
1,µ2

θ ({(x, y)})dσ(θ), ∀x, y ∈ Rd × Rd.

In other words, γ̄µ
1,µ2

=
∑

x∈Rd

∑
y∈Rd Uµ1,µ2

(x, y)δ(x,y), where the new weights are given by

Uµ1,µ2

(x, y) =

{
p(x)q(y)

∫
Sd−1

Λµ1,µ2

θ ({(x̄θ,ȳθ)})
P (x̄θ)Q(ȳθ)

dσ(θ) if p(x) ̸= 0 and q(y) ̸= 0

0 otherwise

Remark 2.5. The measure γ̄µ
1,µ2

is well-defined and, moreover, (as an easy consequence of
Lemma 2.3) γ̄µ

1,µ2 ∈ Γ(µ1, µ2), i.e., it has marginals µ1 and µ2. (See Lemma A.5 in the appendix.)

Definition 2.6 (Expected Sliced Transport distance). Let σ ∈ P(Sd−1) with supp(σ) = Sd−1. We
define the Expected Sliced Transport discrepancy for discrete probability measures µ1,µ2 in Rd by

Dp(µ
1, µ2) :=

∑
x∈Rd

∑
y∈Rd

∥x− y∥p γ̄µ
1,µ2

({(x, y)})

 1
p

, where γ̄µ
1,µ2

is defined by (10). (11)

Remark 2.7. By defining the following generalization of the Sliced Wasserstein Generalized
Geodesics (SWGG) dissimilarity presented in Mahey et al. (2023),

Dp(µ
1, µ2; θ) :=

∑
x∈Rd

∑
y∈Rd

∥x− y∥pγµ
1,µ2

θ ({x, y})

1/p

, (12)

we can rewrite (11) as
Dp(µ

1, µ2) = E1/p
θ∼σ[D

p
p(µ

1, µ2; θ)]

Remark 2.8. Since the EST plan γ̄µ
1,µ2

is a transport plan, we have that

Wp(µ
1, µ2) ≤ Dp(µ

1, µ2).

In Appendix B we show that they define the same topology for the space of discrete probabiliies.

Remark 2.9 (EST for discrete uniform measures and the Projected Wasserstein distance). Consider
uniform measures µ1 = 1

N

∑N
i=1 δxi , µ

2 = 1
N

∑N
j=1 δyj ∈ P(N)(Rd), and for θ ∈ Sd−1, let

ζθ, τθ ∈ SN be permutations that allow us to order the projected points as in (3). Notice that if
σ = U(Sd−1), by using the formula (5) for each assignment given θ and noticing that τ−1

θ ◦ ζθ ∈ SN ,
we can re-write (11) as

Dp(µ
1, µ2)p = Eθ∼U(Sd−1)

[
1

N

N∑
i=1

∥xi − yτ−1
θ (ζθ(i))

∥p
]
. (13)

Therefore, we have that the expression for Dp(·, ·) given by (13) coincides with the Projected
Wasserstein distance proposed in (Rowland et al., 2019, Definition 3.1). Then, by applying (Rowland
et al., 2019, Proposition 3.3), we have that the Expected Sliced Transport discrepancy defined in
Equation (13) is a metric on the space P(N)(Rd). We generalise this in the next theorem.

Theorem 2.10. The Expected Sliced Transport Dp(·, ·) defined in (11) is a metric in the space of
finite discrete probability measures in Rd.

5



Published as a conference paper at ICLR 2025

Sketch of the proof of Theorem 2.10. For the detailed proof, we refer the reader to Appendix A. Here,
we present a brief overview of the main ideas and steps involved in the proof.

The symmetry of Dp(·, ·) follows from our construction of the transport plan γ̄µ
1,µ2

, which is based
on considering a family of optimal 1-d transport plans {Λµ1,µ2

θ }θ∈Sd−1 . The identity of indiscernibles
follows essentially from Remark 2.8. To prove the triangle inequality we use the following strategy:

1. We leverage the fact that Dp(·, ·) is a metric for the space P(N)(Rd) of uniform discrete
probability measures concentrated at N particles in Rd (Rowland et al. (2019)) to prove that
Dp(·, ·) is also a metric on the set of measures in which the masses are rationals. To do so,
we establish a correspondence between finite discrete measures with rational weights and
finite discrete measures with uniform mass (see the last paragraph of Proposition A.7).

2. Given finite discrete measures µ1, µ2, we approximate them, in terms of the Total Variation
norm, by sequences of probability measures with rational weights {µ1

n}, {µ2
n}, supported

on the same points as µ1 and µ2, respectively. We then turn our attention on how the various
plans constructed behave as the n increases and show the following convergence results in
Total Variation norm:

(a) The sequence
(
Λ
µ1
n,µ

2
n

θ

)
n∈N

converges to Λµ1,µ2

θ .

(b) The sequence
(
γ
µ1
n,µ

2
n

θ

)
n∈N

converges to γµ
1,µ2

θ .

(c) The sequence
(
γ̄µ

1
n,µ

2
n

)
n∈N

converges to γ̄µ
1,µ2

.

As a consequence, we obtain limn→∞ Dp(µ
1
n, µ

2
n) = Dp(µ

1, µ2).

Finally, given three finite discrete measures µ1, µ2, µ3, we proceed as in point 2 by considering
sequences of probability measures with rational weights {µ1

n}, {µ2
n}, {µ3

n} supported on the same
points as µ1, µ2, µ3, respectively, that approximate the original measures in Total Variation, obtaining

Dp(µ
1, µ2

n) = lim
n→∞

Dp(µ
1
n, µ

2
n) ≤ lim

n→∞
Dp(µ

1
n, µ

3
n) +Dp(µ

3
n, µ

2
n) = Dp(µ

1, µ3) +Dp(µ
3, µ2)

where the equalities follows from point 2 and the middle triangle inequality follows from point 1.

3 EXPERIMENTS

3.1 COMPUTATIONAL EFFICIENCY

Figure 2: Wall-clock time plot of Sinkhorn algo-
rithm for entropic OT with varying λ and the EST
method for different numbers of slices, L, as the
size N of the empirical measures increases.

In practice, to compute the EST plan (10) and
distance (11), we sample L unit vectors {θℓ}Lℓ=1

(or slices) uniformly from Sd−1 to approximate
γ̄µ

1,µ2 ≈ 1
L

∑L
ℓ=1 γ

µ1,µ2

θℓ
. For empirical mea-

sures µ1, µ2 in Rd of size N , the computational
complexity of our proposed EST method is of
order O((L+ d)N2). A detailed analysis is pro-
vided in Appendix C. Additionally, Figure 2
presents the wall-clock time of the Sinkhorn al-
gorithm, used to compute entropic OT for various values of the regularization parameter λ, and the
proposed EST method, evaluated with different numbers L of slices, as the size N of the support of
the discrete measures increases. The wall clock times are averaged over 10 runs.

3.2 COMPARISON OF TRANSPORT PLANS

Figure 3 illustrates the behavior of different transport schemes: the optimal transport plan for W2(·, ·),
the transport plan obtained by solving an entropically regularized transportation problem between the
source and target probability measures, and the new expected sliced transport plan γ̄. We include
comparisons with entropic regularization because it is one of the most popular approaches, as it
allows for the use of Sinkhorn’s algorithm. From the figure, we observe that while γ̄ promotes mass
splitting, this phenomenon is less pronounced than in the entropically regularized OT scheme. This
observation will be revisited in Subsection 3.3.
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Figure 3: Depiction of transport plans (an optimal transport plan, a plan obtained from solving an
entropically regularized transport problem, and the proposed expected sliced transport plan) between
source (orange) and target (blue) for four different configurations of masses. The measures in the left
and right panels are concentrated on the same particles, respectively; however, the top row depicts
measures with uniform mass, while the bottom row depicts measures with random, non-uniform mass.
transport plans are shown as gray assignments and as n×m heat matrices encoding the amount of
mass transported (dark color = no transportation, bright color = more transportation), where n is the
number of particles on which the source measure is concentrated, and m = 2n) is the number of
particles on which the target measure is concentrated.

3.3 TEMPERATURE APPROACH

Given µ1, µ2 discrete probability measures, we perform the new expected sliced transportation
scheme by using the following averaging measure στ ≪ U(Sd−1) on the sphere:

dστ (θ) =
e−τDp

p(µ
1,µ2;θ)∫

Sd−1 e−τDp
p(µ1,µ2;θ′)dθ′

dθ, (14)

where Dp(µ
1, µ2; θ) is given by (12), and τ ≥ 0 is a hyperparameter we will refer to as the

temperature (note that increasing τ corresponds to reducing the temperature). If τ = 0, then
σ0 = U(Sd−1). However, when τ ̸= 0, στ is a probability measure on Sd−1 with density given by
(14), which depends on the source and target measures µ1 and µ2. We have chosen this measure
στ because it provides a general parametric framework that interpolates between our proposed
scheme with the uniform measure (τ = 0) and min-SWGG (Mahey et al., 2023), as the EST distance
approaches min-SWGG when τ → ∞. For the implementations, we use

στ (θ
l) =

e−τDp
p(µ

1,µ2;θl)∑L
ℓ′=1 e

−τDp
p(µ1,µ2;θℓ′ )

, (15)

where L represents the number of slices or unit vectors θ1, . . . , θL ∈ Sd−1. Figure 4 illustrates that
as τ → ∞, the weights used for averaging the lifted transport plans converge to a one-hot vector, i.e.,
the slice minimizing Dp(µ

1, µ2; θ) dominates, leading to a transport plan with fewer mass splits. For
the visualization we have used source µ1 and target µ2 uniform probability measures concentrated on
different number of particles. For consistency, the configurations are the same as in Figure 3.

3.4 INTERPOLATION

We use the Point Cloud MNIST 2D dataset Garcia (2023), a reimagined version of the classic MNIST
dataset (LeCun, 1998), where each image is represented as a set of weighted 2D point clouds instead

7
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Figure 4: The effect of increasing τ (i.e., decreasing temperature) on the expected sliced plan. The
left most column shows the OT plan, and the rest of the columns show the expected sliced plan as
a function of increasing τ . The right most column depicts that expected sliced plan recovers the
min-SWGG Mahey et al. (2023) transportation map.

Figure 5: Interpolation between two point clouds via ((1 − t)x + ty)#γ, where γ is the optimal
transport plan for W2(·, ·) (top left), the transport plan obtained from entropic OT with various
regularization parameters (bottom left), and the EST for different temperatures τ (right).

of pixel values. In Figure 5, we illustrate the interpolation between two point clouds that represent
digits 7 and 6. Since the point clouds are discrete probability measures with non-uniform mass, we
perform three different interpolation schemes via ((1− t)x+ ty)#γ where 0 ≤ t ≤ 1 for different
transport plans γ, namely:

1. γ = γ∗, an optimal transport plan for W2(·, ·);

2. a transport plan γ obtained from solving an entropically regularized transportation problem
(performed for three different regularization parameters λ);

8
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3. γ = γ̄: the expected sliced transport plan computed using στ given by formula (14) (or (15)
for implementations) for four different values of the temperature parameter τ .

As the temperature increases, the transport plan exhibits less mass splitting, similar to the effect
of decreasing the regularization parameter λ in entropic OT. However, unlike entropic OT, where
smaller regularization parameters require more iterations for convergence, the computation time for
expected sliced transport remains unaffected by changes in temperature.

3.5 WEAK CONVERGENCE 𝜇! 𝜇" = 𝜈𝜇!.$% 𝜇!.% 𝜇!.&%

Figure 6: Discrepancies calculated from
transport plans between µt and ν, when
µt

∗
⇀ ν, as a function of t ∈ [0, 1].

Given finite discrete probability measures µ and ν, we
consider µt, for 0 ≤ t ≤ 1, the Wasserstein geodesic
between µ and ν. In particular, µt is a curve of probability
measures that interpolates µ and ν, that is µ0 = µ and
µ1 = ν. Moreover, we have that W2(µt, ν) = (1 −
t)W2(µ, ν) −→ 0 as t → 1, or equivalently, we can
say µt converges in the weak∗-topology to ν. Figure 6
illustrates that the expected sliced distance also satisfies
D2(µt, ν) −→ 0 as t → 1. Indeed, this experimental
conclusion is justified by the following theoretical result:

Let µ, µn ∈ P(Ω) be discrete measures with finite or
countable support, where Ω ⊂ Rd is compact. Assume
σ ≪ U(Sd−1). Then, Dp(µn, µ) → 0 if and only if
µn

∗
⇀ µ.

We present its proof in Appendix B.

For the experiment, µ and ν are chosen to be discrete mea-
sures with N particles of uniform mass, sampled from
two Gaussian distributions (see Figure 6, top). For differ-
ent values of time, 0 ≤ t ≤ 1, we compute different discrepancies,

∑N
i=1

∑N
j=1 ∥xi − yj∥2γµt,ν

ij ,
calculated for various transport plans: (1) the optimal transport plan, (2) the outer product plan
µt ⊗ ν, (3) the plan obtained from entropic OT with two different regularization parameters λ, and
(4) our proposed expected sliced plan computed with στ given in (14) for four different temperature
parameters τ . As µt converges to ν, it is evident that both the OT and our proposed EST distance
approach zero, while the entropic OT and outer product plans, as expected, do not converge to zero.

3.6 TRANSPORT-BASED EMBEDDING

Following the linear optimal transportation (LOT) framework, also referred to as the Wasserstein or
transport-based embedding framework (Wang et al., 2013; Kolouri et al., 2021; Nenna & Pass, 2023;
Bai et al., 2023; Martín et al., 2024), we investigate the application of our proposed transport plan
in point cloud classification. Let µ0 =

∑N
i=1 αiδxi

denote a reference probability measure and let
µk =

∑Nk

j=1 β
k
j δyk

j
denote a target probability measure. Let γµ0,µk be a transport plan between µ0

and µk, and define the barycentric projection (Ambrosio et al., 2011, Definition 5.4.2) of this plan as:

bi(γ
µ0,µk) :=

1

αi

Nk∑
j=1

γµ0,µk

ij ykj , i ∈ 1, ..., N. (16)

Note that bi(γµ0,µk) represents the center of mass to which xi from the reference measure is
transported according to the transport plan γµ0,µk . When γµ0,µk is the OT plan, the LOT framework
of Wang et al. (2013) uses

[ϕ(µk)]i := bi(γ
µ0,µk)− xi, i ∈ 1, ..., N (17)

as an embedding ϕ for the measure µk. This framework, as demonstrated in Kolouri et al. (2021),
can be used to define a permutation-invariant embedding for sets of features and, more broadly,
point clouds. More precisely, given a point cloud Yk = {(βk

j , y
k
j )}

Nk
j=1, where

∑Nk

j=1 β
k
j = 1 and βj

represent the mass at location yj , we represent this point cloud as a discrete measure µk.

9
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%92.3%94.3

%92.2%96.8%96.2

Figure 7: t-SNE visualization of the embeddings computed using different transport plans, along with
the corresponding logistic regression accuracy for each embedding. The t-SNE plots are generated
for embeddings with a reference size of N = 100, and for EST, we used L = 128 slices. The
table shows the accuracy of the embeddings as a function of reference size N . For the table, the
regularization parameter for entropic OT is set to λ = 10, and for EST, the temperature is set to
τ = 0 with L = 128 slices. Lastly, the plot on the bottom left shows the performance of EST, when
N = 100 and L = 128, as a function of the temperature parameter, τ .

In this section, we use a reference measure with N particles of uniform mass to embed the digits
from the Point Cloud MNIST 2D dataset using various transport plans. We then perform a logistic
regression on the embedded digits and present the results in Figure 7. The figure shows a 2D t-SNE
visualization of the embedded point clouds using: (1) the OT plan, (2) the entropic OT plan with two
different regularization parameters, and (3) our expected sliced plan with two temperature parameters
(using N = 100 for all methods). In addition, we report the test accuracy of these embeddings for
different reference sizes.

Lastly, we make an interesting observation about the embedding computed using EST. As we reduce
the temperature, i.e., increase τ , the embedding becomes progressively less informative. We attribute
this to the dependence of στ on µk. In other words, the embedding is computed with respect to
different στ for different measures, leading to inaccuracies when comparing the embedded measures.
This finding also suggests that the min-SWGG framework, while meritorious, may not be well-suited
for defining a transport-based embedding.

Additionally, we refer the reader to Appendix D for a similar classification experiment using a more
complex dataset: ModelNet40.

4 CONCLUSIONS

In this paper, we explored the feasibility of constructing transport plans between two probability
measures using the computationally efficient sliced optimal transport (OT) framework. We introduced
the Expected Sliced Transport (EST) framework and proved that it provides a valid metric for
comparing discrete probability measures while preserving the computational efficiency of sliced
transport and enabling explicit mass coupling. Through a diverse set of numerical experiments, we
illustrated the behavior of this newly introduced transport plan. Additionally, we demonstrated how
the temperature parameter in our approach offers a flexible framework that connects our method
to the recently proposed min-Sliced Wasserstein Generalized Geodesics (min-SWGG) framework.
Finally, the theoretical insights and experimental results presented here open up new avenues for
developing efficient transport-based algorithms in machine learning and beyond.
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Wei Wang, Dejan Slepčev, Saurav Basu, John A Ozolek, and Gustavo K Rohde. A linear optimal
transportation framework for quantifying and visualizing variations in sets of images. International
journal of computer vision, 101:254–269, 2013.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

12

https://openreview.net/forum?id=n3XuYdvhNW
https://openreview.net/forum?id=n3XuYdvhNW
https://www.cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf
https://www.cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf
https://www.cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf


Published as a conference paper at ICLR 2025

A PROOF OF THEOREM 2.10: METRIC PROPERTY OF THE EXPECTED SLICED
DISCREPANCY FOR DISCRETE PROBABILITY MEASURES

A.1 PRELIMINARIES ON EXPECTED SLICED TRANSPORTATION

Remark A.1 (Figure 1). Let us elaborate on explaining Figure 1. (a) Visualization for uniform
discrete measures µ1 = 1

3 (δx1
+ δx2

+ δx3
) (green circles), µ2 = 1

3 (δy1
+ δy2

+ δy3
) (blue

circles) in P(N)(Rd) with n = 3. Given an angle θ (red unit vector), when sorting {θ · xi}3i=1 and
{θ · yj}3j=1 we use permutations ζθ and τθ given by ζθ(2) = 1, ζθ(1) = 2, ζθ(3) = 3, and τθ(1) = 1,
τθ(3) = 2, τθ(2) = 3. The optimal transport map between θ#µ1 (green triangles) and θ#µ2 (blue
triangles) is given by the following assignment: θ · xζ−1

θ (1) = θ · x2 7−→ θ · y1 = θ · yτ−1
θ (1),

θ · xζ−1
θ (2) = θ · x1 7−→ θ · y3 = θ · yτ−1

θ (2), θ · xζ−1
θ (3) = θ · x3 7−→ θ · y2 = θ · yτ−1

θ (3). This gives

rise to the plan Λµ1,µ2

θ given in (7) with is represented by solid arrows in the first panel. The lifted plan

γµ
1,µ2

θ defined in (8) is represented in the second panel by dashed assignments. (b) Visualization for
finite discrete measures µ1 = 0.1δx1

+0.3δx2
+0.6δx3

(green circles), µ2 = 0.5δy1
+0.3δy2

+0.2δy3

(blue circles). When projection according a given direction θ, the locations with green masses 0.3
and 0.6 overlap, as well as the locations with blue masses 0.2 and 0.3. Thus, the mass of θ#µ1 is
concentrated at two green points (triangles) on the line determined by θ, each one with 0.1 and 0.9
of the total mass, and similarly θ#µ2 is concentrated at two points (blue triangles) each one with 0.5
of the total mass.

Now, let us prove Lemma 2.3, that is, let us show that each measure γµ
1,µ2

θ defined in (9) is a transport
plan in Γ(µ1, µ2).

Proof of Lemma 2.3. Let x ∈ Rd. First, if p(x) = 0, then uµ
1,µ2

θ (x, y) = 0 for every y ∈ Rd, and so

γµ
1,µ2

θ ({x} × Rd) = 0 = p(x) = µ1({x}). Now, assume that p(x) ̸= 0, then∑
y∈Rd

uµ
1,µ2

θ (x, y) =
p(x)

P (x̄θ)

∑
y∈Rd: q(y)̸=0

q(y)

Q(ȳθ)
Λµ1,µ2

θ ({(x̄θ, ȳθ)})

=
p(x)

P (x̄θ)

∑
ȳθ∈Rd/∼θ:Q(ȳθ) ̸=0

∑
y∈ȳθ

q(y)

 1

Q(ȳθ)
Λµ1,µ2

θ ({(x̄θ, ȳθ)})

=
p(x)

P (x̄θ)

∑
ȳθ∈Rd/∼θ:Q(ȳθ) ̸=0

Q(ȳθ)
1

Q(ȳθ)
Λµ1,µ2

θ ({(x̄θ, ȳθ)})

=
p(x)

P (x̄θ)

∑
ȳθ∈Rd/∼θ

Λµ1,µ2

θ ({(x̄θ, ȳθ)}) = p(x)

P (x̄θ)
P (x̄θ) = p(x).

Thus, γµ
1,µ2

θ ({x} × Rd) = p(x) = µ1({x}) for every x ∈ Rd. Similarly,
∑

x∈Rd u
µ1,µ2

θ (x, y) =

q(y), or equivalently, γµ
1,µ2

θ (Rd × {y}) = q(x) = µ2({y}) for every y ∈ Rd .

Remark A.2 (Expected Sliced Transport for uniform discrete measures). Let µ1, µ2 ∈ P(N)(Rd) of
the form µ1 = 1

N

∑N
i=1 δxi

, µ2 = 1
N

∑N
j=1 δyj

. Then, the expected sliced transport plan between

µ1 and µ2, γ̄µ
1,µ2

= Eθ∼σ[γ
µ1,µ2

θ ], defines a discrete measure on P(Rd × Rd) supported on
{(xi, yj)}i,j∈[N ] where it takes the values

γ̄µ
1,µ2

({xi, yj}) =
∫
Sd−1

γµ
1,µ2

θ ({xi, yj})dσ(θ) ∀i ∈ [N ], j ∈ [N ]. (18)

Thus, it can be regarded as an N ×N matrix whose (i, j)-entry is given by (18). Moreover, each
N×N matrix uµ

1,µ2

θ defined by (6) can be obtained by swapping rows from theN×N identity matrix
multiplied by 1/N , there are finitely many matrices (precisely, N ! matrices in total). Hence, the
function θ 7→ uµ

1,µ2

θ is a piece-wise constant matrix-valued function. Thus, the function θ 7→ γµ
1,µ2

θ

13
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(where γµ
1,µ2

θ is an in (8)) is a measurable function. This can be generalized for any pair of finite
discrete measures as in the following remarks.

Remark A.3 (Expected Sliced Transport for finite discrete measures). Consider arbitrary finite
discrete measures µ1 =

∑n
i=1 p(xi)δxi

and µ2 =
∑m

j=1 q(yi)δyj
, i.e., discrete measures with finite

support.

• Fix xi, yj ∈ Rd, then θ 7→ p(xi)q(yj)

P (x̄θ
i )Q(ȳθ

j )
̸= 1 for all but a finite number of directions. This is

due to the fact that only for finitely many directions θ we obtain overlaps of the projected
points θ · x.

• The optimal transport plan Λµ1,µ2

θ is given by “matching from left to right until fulfilling
the target bins”: that is, one has to order the points similarly as in (3) and consider an

“increasing” assignment plan. Since the order of {θ ·xi}ni=1 and {θ · yj}mj=1 changes a finite

number of times when varying θ ∈ Sd−1, the function θ 7→ Λµ1,µ2

θ takes a finite number of
possible transport plan options.

Thus, the range of θ 7→ uµ
1,µ2

θ is finite.

Remark A.4 (γ̄µ
1,µ2

is well-defined for finite discrete measures). First, we notice that for each θ, the
support of Λµ1,µ2

θ is finite or countable, and so the support of γµ
1,µ2

θ is also finite or countable. Given

an arbitrary point (x, y) ∈ Rd × Rd, we have to justify that the function Sd−1 ∋ θ 7→ uµ
1,µ2

θ (x, y)

is (Borel)-measurable: If the supports of µ1 and µ2 are finite, by Remark A.3, θ 7→ uµ
1,µ2

θ is a
piece-wise constant function, and so it is measurable and integrable on the sphere. For the general
case, when the supports of µ1 and µ2 are countable, we refer to Remark A.14.

Lemma A.5 (γ̄µ
1,µ2

is a transport plan between µ1 and µ2). We have that γ̄µ
1,µ2 ∈ Γ(µ1, µ2), i.e.,

it has marginals µ1 and µ2. This is because for each θ ∈ Sd−1, γµ
1,µ2

θ ∈ Γ(µ1, µ2) and because σ is

a probability measure on Sd−1. Then, γ̄µ
1,µ2

is a convex combination of transport plans γµ
1,µ2

θ , and
since Γ(µ1, µ2) is a convex set, we obtain thatγ̄µ

1,µ2 ∈ Γ(µ1, µ2). Precisely, for every test function
ϕ : Rd → R∫

Rd×Rd

ϕ(x)dγ̄µ
1,µ2

(x, y) =

∫
Sd−1

∫
Rd×Rd

ϕ(x)dγµ
1,µ2

θ (x, y)dσ(θ)

=

∫
Sd−1

∫
Rd

ϕ(x)dµ1(x)dσ(θ) =

∫
Rd

ϕ(x)dµ1(x)

Similarly,
∫
Rd×Rd ψ(y)dγ̄

µ1,µ2

(x, y) =
∫
Rd ψ(y)dµ

2(y), and so γ̄µ
1,µ2

has marginals µ1 and µ2.

A.2 AN AUXILIARY RESULT

For simplicity, in this paper we consider the strictly convex cost ∥x− y∥p (1 < p <∞). Also, in this
section we consider σ = U(Sd−1) and in this case we denote dσ(θ) = dθ.

Proposition A.6. Let Ω ⊂ Rd be a compact set, and let µ1, µ2 ∈ P(Ω). Let (µ1
n)n∈N, (µ

2
n)n∈N ⊂

P(Ω) be sequences such that, for i = 1, 2, µi
n ⇀

∗ µi as n → ∞, where the limit is in the weak*-
topology. For each n ∈ N, consider optimal transport plans γn ∈ Γ∗(µ1

n, µ
2
n). Then, there exists a

subsequence such that γnk
⇀∗ γ, for some optimal transport plan γ ∈ Γ∗(µ1, µ2).

Proof. As (γn)n∈N is a sequence of probability measures, their mass is 1, by Banach-Alaoglu
Theorem, there exists a subsequence such that γnk

⇀∗ γ, for some γ ∈ P(Ω× Ω). It is easy to see
that the limit γ has marginals µ1, µ2. Indeed, given any test functions ϕ, ψ ∈ C(Ω), since each γn
has marginals µ1

n, µ
2
n, we have∫

Ω×Ω

ϕ(x)dγn(x, y) =

∫
Ω

ϕ(x)dµ1
n(x) and

∫
Ω×Ω

ψ(y)dγn(x, y) =

∫
Ω

ψ(y)dµ2
n(y)

14
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and taking limit as n→ ∞, we obtain∫
Ω×Ω

ϕ(x)dγ(x, y) =

∫
Ω

ϕ(x)dµ1(x) and
∫
Ω×Ω

ψ(y)dγ(x, y) =

∫
Ω

ψ(y)dµ2(y).

Now, we only have to prove the optimality of γ for the OT problem between µ1 and µ2. Since
(x, y) 7→ ∥x− y∥p is continuous and γn, γ are compactly supported, by using that for each n ∈ N,
γn is optimal for the OT problem between µ1

n and µ2
n, we have

lim
n→∞

(
Wp(µ

1
n, µ

2
n)
)p

= lim
n→∞

∫
Ω×Ω

∥x− y∥pdγn(x, y)

=

∫
Ω×Ω

∥x− y∥pdγ(x, y) ≥
(
Wp(µ

1, µ2)
)p

(19)

Also, by hypothesis and (Santambrogio, 2015, Theorem 5.10) we have that for any ν ∈ P(Ω),

lim
n→∞

Wp(µ
1
n, ν) =Wp(µ

1, ν) and lim
n→∞

Wp(ν, µ
2
n) =Wp(ν, µ

2).

So, by using the the triangle inequality for the p-Wasserstein distance we get

lim
n→∞

Wp(µ
1
n, µ

2
n) ≤ lim

n→∞
Wp(µ

1
n, µ

1) + lim
n→∞

Wp(µ
2, µ2

n) +Wp(µ
1, µ2)

= 0 +Wp(µ
1, µ2) =Wp(µ

1, µ2) (20)

Therefore, from (20) and (19) we have that

lim
n→∞

Wp(µ
1
n, µ

2
n) =Wp(µ

1, µ2).

In particular, in (19) we have that the following equality holds:∫
Ω×Ω

∥x− y∥pdγ(x, y) =
(
Wp(µ

1, µ2)
)p
.

As a result, γ is optimal for the OT problem between µ1 and µ2.

A.3 FINITE DISCRETE MEASURES WITH RATIONAL WEIGHTS

Let us denote by PQ(Rd) the set of finite discrete probability measures in Rd with rational weights,
that is, µ ∈ PQ(Rd) if and only if it is of the form µ =

∑m
i=1 qiδxi

with xi ∈ Rd, qi ∈ Q ∀i ∈ [m]
for some m ∈ N, and

∑m
i=1 qi = 1. We have

P(N)(Rd) ⊂ PQ(Rd), ∀N ∈ N.

In the definition of an uniform discrete measure µ = 1
N

∑N
i=1 δxi

∈ P(N)(Rd) one can allow
xi = xj for some pairs of indexes i ̸= j.

Proposition A.7. Dp(·, ·) defined by (11) is a metric in PQ(Rd).

Proof. This was essentially pointed out Remark 2.9: When restricting to the space P(N)(Rd),
our Dp(·, ·) and the Projected Wasserstein distance presented in (Rowland et al., 2019) coincide.
Rowland et al. (2019) prove the metric property. We recall here their main argument, which is used
for showing the triangle inequality. Given µ1, µ2, µ3 ∈ P(N)(Rd) of the form µ1 = 1

N

∑N
i=1 δxi ,

µ2 = 1
N

∑N
i=1 δyi , µ

3 = 1
N

∑N
i=1 δzi . Fix θ ∈ Sd−1, and consider permutations ζθ, τθ, ξθ ∈ SN , so

that

θ · xζ−1
θ (1) ≤ · · · ≤ θ · xζ−1

θ (N),

θ · yτ−1
θ (1) ≤ · · · ≤ θ · yτ−1

θ (N),

θ · zξ−1
θ (1) ≤ · · · ≤ θ · zξ−1

θ (N)
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Thus, the key idea is that

Dp(µ
1, µ2)p =

∫
Sd−1

1

N

N∑
i=1

∥xζ−1
θ (i) − yτ−1

θ (i)∥
pdθ =

∑
ζ,τ,ξ∈SN

q(ζ, τ, ξ)

N

N∑
i=1

∥xζ−1(i) − yτ−1(i)∥p

Dp(µ
2, µ3)p =

∫
Sd−1

1

N

N∑
i=1

∥yτ−1
θ (i) − zξ−1

θ (i)∥
pdθ =

∑
ζ,τ,ξ∈SN

q(ζ, τ, ξ)

N

N∑
i=1

∥yτ−1(i) − zξ−1(i)∥p

Dp(µ
3, µ1)p =

∫
Sd−1

1

N

N∑
i=1

∥zξ−1
θ (i) − xζ−1

θ (i)∥
pdθ =

∑
ζ,τ,ξ∈SN

q(ζ, τ, ξ)

N

N∑
i=1

∥zξ−1(i) − xζ−1(i)∥p

where q ∈ P(SN × SN × SN ) is such that q(ζ, τ, ξ) is the probability that the tuple permutations
(ζ, τ, ξ) = (ζθ, τθ, ξθ) are required, given that θ is drawn from Unif(Sd−1). With these alternative
expressions established by the authors in (Rowland et al., 2019), the triangle inequality follows from
the standard Minkowski inequality for weighted finite Lp-spaces.

Finally, notice that we have used the fact that each µ1 is associated to N -indexes {1, . . . , N},
without asking that the points {xi} do not overlap, i.e., they could be repeated. That is, given
µ1 = 1

N

∑n
i=1 δxi ∈ P(N)(Rd) one can allow xi = xj for some pairs of indexes i ̸= j (analogously

for µ2 and µ3). Thus, the proof also holds for measures in PQ(Rd): Indeed, let µ1, µ2, µ3 ∈ PQ(Rd)

be of the form µ1 =
∑n1

i=1
r1i
s1i
δxi

, µ2 =
∑n2

i=1
r2i
s2i
δyi

, µ3 =
∑n3

i=1
r3i
s3i
δzi with rji , q

j
i ∈ N. First,

consider the n′1 as the least common multiple of {s11, . . . , s1n1
} and, for each i ∈ [n1], let r̃1i so

that r̃1i
n′
1
=

r1i
s1i

. Thus, we can rewrite µ1 =
∑n1

i=1
r̃1i
n′
1
δxi . Notice that, since µ1 is a probability

measure, we have n′1 =
∑n1

i=1 r̃
1
i . Now, for each i ∈ [n1] such that r̃1i > 1, consider r̃1i copies of the

corresponding point xi so that we can rewrite µ1 =
∑n′

1
i=1

1
n′
1
δxi (where we recall that n′1 =

∑n1

i=1 r̃
1
i

and the points xi in the new expression can be repeated, i.e., they are not necessarily all different).
Repeat this process to rewrite µ2 =

∑n′
2

i=1
1
n′
2
δyi

, µ3 =
∑n′

3
i=1

1
n′
3
δzi . Now, consider N as the least

common multiple of n′1, n
′
2, n

′
3, and rewrite the measures as µ1 = 1

N

∑N
i=1 δxi

, µ2 = 1
N

∑N
i=1 δyi

,
µ3 = 1

N

∑N
i=1 δzi where the points xi, yi, zi can be repeated if needed. Thus, µ1, µ2, µ3 can be

regarded as measures in P(N)(Rd) where Dp(·, ·) behaves as a metric.

A.4 THE PROOF FOR GENERAL FINITE DISCRETE MEASURES

We first introduce some notation. Consider a finite discrete probability measure µ ∈ P(Rd) of
the form µ =

∑m
i=1 p

iδxi , with general weights pi ∈ R+ such that
∑m

i=1 p
i = 1. For each

i ∈ {1, . . . ,m− 1}, consider an increasing sequence of rational numbers (pin)n∈N ⊂ Q, with 0 ≤
pin ≤ pi, such that limn→∞ pin = pi. For i = m, consider the sequence (pmn )n∈N ⊂ Q defined by
0 ≤ pmn := 1−

∑m−1
i=1 pin ≤ 1. Thus, limn→∞ pmn = 1−limn→∞

∑m−1
i=1 pin = 1−

∑m−1
i=1 pi = pm.

Define the sequence of probability measures (µn)n∈N given by µn :=
∑m

i=1 p
i
nδxi

∈ PQ(Rd). It is
easy to show that (µn)n∈N converges to µ in Total Variation (i.e., uniform convergence or strong
convergence): Indeed, let ε > 0. For each i ∈ [m], let Ni ∈ N such that |pin − pi| < ε/m ∀n ≥ Ni

and define N = max{N1, . . . , Nm}. Now, given any set B ⊂ Rd we obtain, for n ≥ N ,

|µn(B)− µ(B)| =

∣∣∣∣∣∣
∑

i∈[m]: xi∈B

(pin − pi)

∣∣∣∣∣∣ (µn and µ have the same support)

≤
∑

i∈[m]: xi∈B

|pin − pi| (triangle inequality)

≤
∑
i∈[m]

|pin − pi| (sum over all indexes to get independence of the set B)

< ε.

This shows that limn→∞ ∥µn − µ∥TV = 0. Moreover, this shows that in this case, i.e., when
approximating a finite discrete measure µ by a sequence of measures having the same support as µ,
we only care about point-wise convergence.
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We will now introduce some lemmas which together with the above proposition will allow us to
prove the metric property of Dp(·, ·) for finite discrete probability measures. For all of them we will
consider:

• µ1, µ2 two finite discrete probability measures in Rd given by µ1 =
∑m1

i=1 p
iδxi , µ

2 =∑m2

j=1 q
jδyj

• (µ1
n)n∈N, (µ2

n)n∈N approximating sequences of probability measures µ1
n =

∑m1

i=1 p
i
nδxi

,
µ2
n =

∑m2

j=1 q
j
nδyj

, with rational weights {pin}, {qjn}, defined in analogy to what we have
already done, i.e., so that, for k = 1, 2 we have that (µk

n)n∈N is a sequence of probability
measures that converges to µk in Total Variation).

Also, for each θ, Λµ1,µ2

θ denotes the unique optimal transport plan between θ#µ1 and θ#µ2; γµ
1,µ2

θ

denotes lifted transport plan between µ1 and µ2 given as in (9); and γ̄µ
1,µ2

the expected sliced
transport plan between µ1 and µ2 given as in (10). Similarly, for each n ∈ N we consider the plans
Λ
µ1
n,µ

2
n

θ , γµ
1
n,µ

2
n

θ , and γ̄µ
1
n,µ

2
n .

Lemma A.8. The sequence
(
Λ
µ1
n,µ

2
n

θ

)
n∈N

converges to Λµ1,µ2

θ in Total Variation.

Lemma A.9. The sequence
(
γ
µ1
n,µ

2
n

θ

)
n∈N

converges to γµ
1,µ2

θ in Total Variation.

Lemma A.10. The sequence
(
γ̄µ

1
n,µ

2
n

)
n∈N

converges to γ̄µ
1,µ2

in Total Variation.

Lemma A.11. lim
n→∞

Dp(µ
1
n, µ

2
n) = Dp(µ

1, µ2).

In general, notice that since for every i ∈ [m1], j ∈ [m2] we have that limn→∞ pin = pi, and
limn→∞ qjn = pj , then we obtain that limn→∞ P i

n = P i, and limn→∞Qj
n = Qj , where P i =∑

i∈[m1]:xi∈x̄θ
i
pi, Qj =

∑
j∈[m2]:yj∈ȳθ

j
qj , and where, for each n ∈ N, P i

n and Qj
n are analogously

defined (see Subsection 2.2.2). Thus,

lim
n→∞

pinq
j
n

P i
nQ

j
n

=
piqj

P iQj
∀i ∈ [m1], j ∈ [m2]. (21)

Proof of Lemma A.8. The support of all the measures we are considering are finite and so, the
measures have compact support. Hence, we can apply Proposition A.6 to θ#µi, (θ#µi)n∈N, i = 1, 2.

Specifically, given (Λ
µ1
n,µ

2
n

θ )n∈N ∈ Γ∗(θ#µ
1
n, θ#µ

2
n), there exists a subsequence (Λ

µ1
nk

,µ2
nk

θ )K∈N
and Λθ ∈ Γ∗(θ#µ

1, θ#µ
2) such that

Λ
µ1
nk

,µ2
nk

θ ⇀∗ Λθ. (22)

As we are in one dimension, the set Γ∗(θ#µ
1, θ#µ

2) is a singleton, and so we have that Λθ = Λµ1,µ2

θ
is the unique optimal transport plan. Since the supports of all the measures are the same, (that is,
{(θ · xi, θ · yj)}i∈[m1],j∈[m2]), the weak∗ convergence in (22) implies the stronger convergence in
Total Variation.

Now, suppose that the original sequence (Λµ1
n,µ

2
n

θ )n∈N does not converge to Λµ1,µ2

θ (in Total Variation).

Then, given ε > 0, there exists a subsequence (Λ
µ1
nj

,µ2
nj

θ )j∈N such that

∥Λ
µ1
nj

,µ2
nj

θ − Λµ1,µ2

θ ∥TV > ε (23)
But again, from Proposition A.6, using that the supports of all the measures involved are the same
set {(θ · xi, θ · yj)}i∈[m1],j∈[m2], and the fact that Γ∗(θ#µ

1, θ#µ
2) = {Λµ1,µ2

θ } (only one optimal
transport plan), we have that there exists a sub-subsequence such that

∥Λ
µ1
nji

,µ2
nji

θ − Λµ1,µ2

θ ∥TV < ε.

contradicting (23). Since the contradiction is achieved from assuming that the whole sequence
(Λ

µ1
n,µ

2
n

θ )n∈N does not converge to Λµ1,µ2

θ , we have that, in fact, it does converge to Λµ1,µ2

θ in Total
Variation.
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Proof of Lemma A.9. This holds by looking at (9): Due to the fact that the supports of µ1
n and µ1 are

the same (respectively, for µ2
n and µ2), we only care about the locations {(xi, yj)}i∈[m1],j∈[m2], and

then by using (21) and the convergence from Lemma A.8, the result holds true.

Proof of Lemma A.10. As pointed out before, we only care about point-wise convergence: That is,
since the supports of the measures involved coincide (are the same set {(xi, yj)}i∈[m1],j∈[m2]) weak∗
convergence, point-wise convergence and convergence in Total Variation are equivalent.

Since 0 ≤ γ
µ1
n,µ

2
n

θ ({(xi, yj)}) ≤ 1 and Sd−1 is compact, by the convergence result from Lemma A.9
and using the Dominated Convergence Theorem, we have that for each i ∈ [m1], j ∈ [m2],

lim
n→∞

γ̄µ
1
n,µ

2
n({(xi, yj)}) = lim

n→∞

∫
Sd−1

γ
µ1
n,µ

2
n

θ ({(xi, yj)})dθ

=

∫
Sd−1

lim
n→∞

γ
µ1
n,µ

2
n

θ ({(xi, yj)})dθ

=

∫
Sd−1

γµ
1,µ2

θ ({(xi, yj)})dθ = γ̄µ
1,µ2

({(xi, yj)})

Proof of Lemma A.11.∣∣Dp(µ
1
n, µ

2
n)

p −Dp(µ
1, µ2)p

∣∣ ≤ max
i∈[m1],j∈[m2]

{∥xi − yj∥p}∥γ̄µ
1
n,µ

2
n − γ̄µ

1,µ2

∥TV (24)

where the RHS goes to 0 as n→ ∞, due to Lemma A.10.

Theorem A.12. Dp(·, ·) is a metric for the space of finite discrete probability measures in Rd.

Proof.

• Symmetry: The way we constructed Dp(·, ·) makes it so that Dp(µ
1, µ2) = Dp(µ

2, µ1).

• Positivity: It is clear that by definition Dp(µ
1, µ2) ≥ 0.

• Identity of indiscernibles:

First, if µ1 = µ2 =: µ, then γµ
1,µ2

θ = (id × id)#µ for all θ ∈ Sd−1. Hence γ̄µ
1,µ2

=
(id× id)#µ which implies Dp(µ

1, µ2) = 0.

Secondly, if µ1, µ2 are such that Dp(µ
1, µ2) = 0, by having

Wp(µ
1, µ2) ≤ Dp(µ

1, µ2) = 0,

we can use the fact that Wp(·, ·) satisfies the identity of indiscernibles by being a distance.
That is, Wp(µ

1, µ2) = 0 implies µ1 = µ2.

• Triangle inequality: Given µ1, µ2, µ3 arbitrary finite discrete measures with arbitrary real
weights, consider approximating sequences (µ1

n)n∈N, (µ2
n)n∈N, (µ3

n)n∈N in PQ(Rd) as
before. Notice that every subsequence of (µ1

n)n∈N (respectively of (µ2
n)n∈N and (µ3

n)n∈N)
will converge to µ1 (respectively, to µ2 and µ3), as every subsequence of a convergent
sequence is convergent.

By Proposition A.7, we have that, for each n ∈ Rd,

Dp(µ
1
n, µ

2
n) ≤ Dp(µ

1
n, µ

3
n) +Dp(µ

3
n, µ

2
n).

Taking the limit as n→ ∞, from Lemma (A.11) we obtain

Dp(µ
1, µ2) ≤ Dp(µ

1, µ3) +Dp(µ
3, µ2).
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A.5 DISCRETE MEASURES WITH COUNTABLE SUPPORT

Lemma A.13. Let µ =
∑∞

m∈N p
mδxm

be a discrete probability measure with countable support
{xm}m∈N. Let σ be an absolutely continuous probability measure with respect to the Lebesgue
measure on the sphere (we write, σ ≪ Unif(Sd−1)). Let

Sµ := {θ ∈ Sd−1 : θ · xm = θ · xm′ for some pair (m,m′) with m ̸= m′}.

Then
σ(Sµ) = 0.

Proof. First, consider distinct points xm, xm′ on the support of µ, and let

S(xm, xm′) = {θ ∈ Sd−1 : θ · xm = θ · xm′}.

It is straightforward to verify that

S(xm, xm′) = Sd−1 ∩ span({xm − xm′})⊥,

where span({xm − xm′})⊥ is the orthogonal subspace to the line in the direction of the vector
(xm − xm′). Thus, S(xm, xm′) is a subset of a d− 2-dimensional sub-sphere in Sd−1, and therefore

σSd−1(S(xm, xm′)) = 0 (25)

Since,

Sµ =
⋃

(xm,xm′ )∈M

S(xm, xm′), where M = {(xm, xm′) : m ̸= m′} (26)

we have that

σ(Sµ) ≤
∑

(xi,x′
i)∈M

σ(S(xm, xm′)) = 0.

since M is countable (indeed, |M| ≤ |supp(µ)× supp(µ)|).

Remark A.14. [γ̄µ
1,µ2

is well-defined for discrete measures with countable support] Let σ ≪
Unif(Sd−1). Given two discrete probability measures µ1 =

∑
p(x)δx and µ2 =

∑
q(y)δy with

countable support, from Lemma A.13, we have that σ(Sµi) = 0 for i = 1, 2, and so σ(Sµ1∪Sµ2) = 0.
Therefore, similarly to the case of discrete measures with finite support, given any x ∈ supp(µ1),
y ∈ supp(µ2) we have that the map θ 7→ p(x)q(y)

P (x̄θ)Q(ȳθ)
from Sd−1 to R is equal to the constant function

θ 7→ 1 up to a set of σ-measure 0. This implies that the function θ 7→ uµ
1,µ2

θ is measurable. Finally,

since |γµ
1,µ1

θ ({(x, y)})| ≤ 1 for every (x, y), we have that γ̄µ
1,µ2

is well-defined.

B EQUIVALENCE WITH WEAK∗ CONVERGENCE

Lemma B.1. Let Ω ⊂ R be a compact set, µ ∈ P(Ω) and consider a sequence of probability
measures (µn)n∈N defined in Ω such that µn

∗
⇀ µ as n → ∞. Then, for each θ ∈ Sd−1, we have

that θ#µn
∗
⇀ θ#µ as n→ ∞.

Proof. Given θ ∈ Sd−1, notice that {θ · x : x ∈ Ω} is a 1-dimensional compact set, which contains
the supports of θ#µ and (θ#µn)n∈N. Thus, when dealing with the weak∗-topology we can use
continuous functions as test functions. Let φ : R → R be a continuous test function, then∫

R
φ(u)dθ#µn(u) =

∫
Rd

φ(θ · x)dµn(x) −→
n→∞

∫
Rd

φ(θ · x)dµ(x) =
∫
R
φ(u)dθ#µ(u)

since the composition x 7→ θ · x 7→ φ(θ · x) is a continuous function from Rd to R.
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Lemma B.2. Let Ω ⊂ R be a compact set, µi ∈ P(Ω), i = 1, 2, and consider sequences of
probability measures (µi

n)n∈N defined in Ω such that µi
n

∗
⇀ µi as n → ∞, for i = 1, 2. Given

θ ∈ Sd−1, consider Λµ1,µ2

θ the unique optimal transport plan between θ#µ1 and θ#µ2, and for

each n ∈ N, consider Λµ1
n,µ

2
n

θ the unique optimal transport plan between θ#µ1
n and θ#µ2

n. Then

Λ
µ1
n,µ

2
n

θ
∗
⇀ Λµ1,µ2

θ .

Proof. The proof is similar to that of Lemma A.8. From Lemma B.1, Proposition A.6, and uniqueness

of optimal plans in one-dimension, there exists a subsequence (Λ
µ1
nk

,µ2
nk

θ )k∈N such that

Λ
µ1
nk

,µ2
nk

θ ⇀∗ Λµ1,µ2

θ .

Now, suppose that the original sequence (Λ
µ1
n,µ

2
n

θ )n∈N does not converge to Λµ1,µ2

θ (in the weak∗-
topology). Thus, there exists a continuous function φ : R → R such that for a given ε > 0 there

exists a subsequence (Λ
µ1
nj

,µ2
nj

θ )j∈N with∣∣∣∣∫
R
φ(u) dΛ

µ1
nj

,µ2
nj

θ (u)−
∫
R
φ(u) dΛµ1,µ2

θ (u)

∣∣∣∣ > ε (27)

But again, from Lemma B.1, Proposition A.6, and uniqueness of optimal plans in one-dimension, we
have that there exists a sub-subsequence such that∫

R
φ(u) dΛ

µ1
nji

,µ2
nji

θ (u) −→
i→∞

∫
R
φ(u) dΛµ1,µ2

θ (u),

contradicting (27). Since the contradiction is achieved from assuming that the whole sequence
(Λ

µ1
n,µ

2
n

θ )n∈N does not converge to Λµ1,µ2

θ , we have that, in fact, it does converge to Λµ1,µ2

θ in the
weak∗-topology.

Lemma B.3. Consider probability measures supported in a compact set Ω ⊂ Rd such that µ1
n

∗
⇀

µ1, µ2
n

∗
⇀ µ2. Let θ ∈ Sd−1, then the sequence of lifted plans {γµ

1
n,µ

2
n

θ }n∈N satisfies that there exists

a subsequence such that γ
µ1
nk

,µ2
nk

θ
∗
⇀ γ∗ for

γ∗ ∈ Γ(µ1, µ2; Λµ1,µ2

θ ) := {γ ∈ Γ(µ1, µ2) : (θ × θ)#γ = Λµ1,µ2

θ },

where θ × θ(x, y) := (θ · x, θ · y) for all (x, y) ∈ Rd × Rd.

Proof. Since γµ
1
n,µ

2
n

θ ∈ Γ(µ1
n, µ

2
n), similar to the proof of Proposition A.6, by Banach-Alaoglu

Theorem, there exists a subsequence γ
µ1
nk

,µ2
nk

θ , such that γ
µ1
nk

,µ2
nk

θ
∗
⇀ γ∗, for some γ∗ ∈ P(Ω× Ω).

Again, as in the proof of Proposition A.6, it can be shown that γ∗ ∈ Γ(µ1, µ2).

In addition, we have

(θ × θ)#γ
µ1
nk

,µ2
nk

θ
∗
⇀ (θ × θ)#γ

∗ and (θ × θ)#γ
µ1
nk

,µ2
nk

θ = Λ
µ1
nk

,µ2
nk

θ
∗
⇀ Λµ1,µ2

θ

(where the first one follows by similar arguments to those in Lemma B.1 and the second one follows
by definition of the lifted plans). By the uniqueness of the limit (for the weak∗-convergence), we
have (θ × θ)#γ

∗ = Λµ1,µ2

θ . Thus, γ∗ ∈ Γ(µ1, µ2; Λµ1,µ2

θ ).

Theorem B.4. Let σ ≪ Unif(Sd−1). Consider discrete probability measures measures µ1 =∑∞
i=1 piδxi

, µ2 =
∑∞

j=1 qjδyj
in Ω supported on a compact set Ω ⊂ Rd. Consider sequences

(µ1
n)n∈N, (µ2

n)n∈N of discrete probability measures defined on Ω such that µ1
n ⇀

∗ µ1, µ2
n ⇀

∗ µ2.
Then σ-a.s. we have that Dp(µ

1
n, µ

2
n; θ) → Dp(µ

1, µ2; θ) as n → ∞. Moreover, Dp(µ
1
n, µ

2
n) →

Dp(µ
1, µ2) as n→ ∞.
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Proof. Let us define the set

S(µ1, µ2) :=
{
θ ∈ Rd : Γ(µ1, µ2; Λµ1,µ2

θ ) = {γµ
1,µ2

θ }
}
.

Since we are considering discrete measures, notice that

Sd−1 \ S(µ1, µ2) ⊆ Sµ1 ∪ Sµ2 ,

where Sµ1 = {θ ∈ Sd−1 : θ ·xm = θ ·xm′ for some pair m ̸= m′} and Sµ2 = {θ ∈ Sd−1 : θ ·yn =
θ · yn′ for some pair n ̸= n′}.

By Lemma A.13, we have σ(Sd−1 \ S(µ1, µ2)) ≤ σ(Sµ1 ∪ Sµ2) = 0. Thus,

σ(S(µ1, µ2)) = 1.

Let θ ∈ S(µ1, µ2), and consider the lifted plans γµ
1,µ2

θ and γµ
1
n,µ

2
n

θ . By Lemma B.3, there exists a

subsequence of (γµ
1
n,µ

2
n

θ )n∈N such that

γ
µ1
nk

,µ2
nk

θ
∗
⇀ γ∗ ∈ Γ(µ1, µ2; Λµ1,µ2

θ ).

Since θ ∈ S(µ1, µ2), we have that Γ(µ1, µ2; Λµ1,µ2

θ ) contains only one element, which is γµ
1,µ2

θ .
Hence,

γ∗ = γµ
1,µ2

θ .

Moreover, by uniqueness of weak convergence, proceeding similarly as in the proof of Lemma B.2,
we have that the whole sequence (γ

µ1
n,µ

2
n

θ )n∈N converges to γµ
1,µ2

θ in the weak∗-topology.

Therefore, by definition of weak∗-convergence for measures supported in a compact set (in our case,
Ω× Ω ⊂ Rd × Rd), since (x, y) 7→ ∥x− y∥p is a continuous function, we have

lim
n→∞

Dp(µ
1
n, µ

2
n; θ)

p = lim
n→∞

∫
Ω2

∥x− y∥pdγµ
1
n,µ

2
n

θ (x, y)

=

∫
Ω2

∥x− y∥pdγµ
1,µ2

θ (x, y)

= Dp(µ
1, µ2; θ)p

Combining this with the fact that σ(S(µ1, µ2)) = 1 and that (Dp(µ
1
n, µ

2
n; θ)

p)n∈N is bounded, that
is, |Dp(µ

1
n, µ

2
n; θ)

p| ≤ max(x,y)∈Ω×Ω ∥x− y∥p, by Dominated Lebesgue Theorem we obtain

lim
n→∞

Dp(µ
1
n, µ

2
n)

p = lim
n→∞

∫
Sd−1

Dp(µ
1
n, µ

2
n; θ)

pdσ(θ)

=

∫
Sd−1

lim
n→∞

Dp(µ
1
n, µ

2
n; θ)

pdσ(θ)

=

∫
Sd−1

Dp(µ
1, µ2; θ)pdσ(θ)

= Dp(µ
1, µ2)p

Corollary B.5. Let µ, µn ∈ P(Ω), where Ω ⊂ Rd is compact, be of the form µ =
∑

x∈Rd p(x)δx,
µn =

∑
x∈Rd pn(x)δx where p(x) and pn(x) are 0 at all but countably many x ∈ Rd. Assume

σ ≪ Unif(Sd−1). Then, Dp(µn, µ) → 0 if and only if µn
∗
⇀ µ.

Proof. If Dp(µn, µ) −→
n→∞

0 then, by Remark 2.8, Wp(µn, µ) −→
n→∞

0, hence µn
∗
⇀

n→∞
µ.

The converse is a Corollary of Theorem B.4
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C COMPUTATIONAL EFFICIENCY

To deduce the computational complexity of the proposed method, we consider, for simplicity, two
finite discrete probability measures on Rd, d > 1, concentrated at N particles, µ =

∑N
i=1 piδxi

and ν =
∑N

j=1 qjδyj . Consider L slices or unit vectors {θl}Ll=1 in Sd−1 We assume that no overlap
occurs when projecting along different directions (as previously noted, this is almost surely the case
as proven in Lemma A.13). The following is the analysis of the computational complexity of the
proposed EST method:

• For each one of the L directions, {θl}Ll=1, we have to project the locations {xi}Ni=1, {yj}Nj=1

to obtain the new projected measures concentrated at {θl · xi}Ni=1 and {θl · yj}Nj=1, respec-
tively. This requires O(LdN) operations.

• To compute the one-dimensional plan Λµ,ν
θl

, for each L ≤ ℓ ≤ L, we essentially need to
solve a one-dimensional optimal transport problem (i.e., a sorting problem), which is of order
O(N log(N)). Thus, when considering all the slices, this step is of order O(LN log(N)).

• The lifting process that gives rise to γµ,νθl
does not require additional operations to be taken

into account (it is performed as an assignment or correspondence).

• The plan γ̄µ,ν can be represented as an N × N matrix. The (i, j)-entry is given by∑L
l=1 γ

µ,ν
θl

({(xi, yj)}), requiring L operations. Thus, the complexity of this step is
O(LN2).

• Finally, once we have γ̄µ,ν , for computing the EST-distance we require another O(N2d)
operations.

As a conclusion, the complexity of computing the plan γ̄µ,ν is O(L(Nd + N log(N) + N2)), or
simply, O(LN2 + LNd), and that of the EST-distance is O((L + d)N2). As it is generally the
case, N is much larger than d, so the computational complexity of both the EST-plan and the
EST-distance is of order

O((L+ d)N2).

We recall that the complexity of using the linear programming approach for solving the classical
optimal transport problem between µ and ν is of order O(N3 log(N)). Besides, for the entropic
regularized version solved by using iterative algorithms like Sinkhorn’s algorithm, the complexity is
of order O(N2 log(N)/λ2), where λ denotes the regularization parameter (see Dvurechensky et al.
(2018); Altschuler et al. (2017)).

In Figures 8 and 9, we report the wall-clock times of the Sinkhorn algorithm, used for computing the
entropic regularized version of OT (for different values of the regularization parameter λ), compared
to the proposed EST distance (calculated with different numbers of slices L) between two N -sized
empirical distributions. The only difference between the two figures is the scale used for the horizontal
axis, which has been adjusted for visualization purposes.

Remark C.1. It is important to note that the computation of EST method can be parallelized over
the number of slices L. Currently, our code does not implement parallelization, but incorporating it
would significantly speed up the computation of the EST plan and distance.

D ADDITIONAL EXPERIMENTAL RESULTS

To further demonstrate the efficiency of our proposed method for the classification task, we consider
the widely used benchmark dataset in 3D computer vision and geometric deep learning, ModelNet40
(Wu et al., 2015). This dataset consists of objects represented as 3D point clouds, with 2048 points
per object. It contains 40 different object categories. The training set comprises 9,840 samples, and
the test set includes 2,468 samples.

In Table 1, we compute the accuracy of the 1NN classifier using (1) the classical optimal transport
(OT) approach calculated with linear programming (LP), (2) its entropic regularized version for
different regularization parameters λ using the Sinkhorn algorithm, and (3) our proposed EST method
with different numbers of slices (L) or unit vectors in S2.
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Figure 8: Wall-clock time between Sinhkorn algorithm applied for computing entropic OT for
different values of the regularization parameter λ and the proposed EST method calculated with
different numbers L of slices. We compare the differences in time as the size of N the empirical
measures increases.

Figure 9: log2 – log10 wall-clock time plot between Sinhkorn algorithm applied for computing
entropic OT for different values of the regularization parameter λ and the proposed EST method
calculated with different numbers L of slices. We compare the differences in time as the size of N
the empirical measures increases.

Of importance, we used the linearized version of these three methods, as described in Subsection 3.6.
Direct computation of the 1NN classifier purely based on OT, its entropic regularized version, and the
EST distance would require 2, 048× 9, 840 = 20, 152, 320 (“number of testing samples × number
of training samples”) pairwise comparisons for each of the three approaches. Instead, we compute
2, 048 + 9, 840 = 11, 888 (“number of testing samples + number of training samples”) transport
plans (with the three different methods) and then use a traditional classifier with Euclidean distance
on the approximated Monge maps given by (17).

We recall that the linearization technique is based on pivoting with a reference measure µ0 to reduce
the number of pairwise comparisons. Specifically, it involves computing transport plans (using the
different transportation approaches: OT, entropic regularization, or EST) between µ0 and the target
samples (training and testing point clouds), applying the barycentric projection (16) to obtain an
embedding (17) of all the training and testing samples, and using a classifier in the embedding space.
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1NN Classification Sinkhorn Sinkhorn ESP ESP OT
λ = 10 λ = 1 L = 128 L = 1024 (LP)

Accuracy ↑ 65.96% 78.93% 77.30% 79.45% 82.09%
Time per distance (Sec) ↓ 0.423 0.594 0.185 0.368 0.883

Table 1: Accuracy and time comparison of 1NN classifier implemented after the embedding.

In these experiments, for all methods, the reference measure µ0 is chosen as the uniform measure on
the cube [−1, 1]3, and we use a 1NN classifier with Euclidean distance in the embedding space.

E RELATIONS BETWEEN THE AVERAGING MEASURE στ AND THE SLICING
DISTRIBUTION IN ENERGY-BASED SLICED WASSERSTEIN DISTANCE

We draw an analogy between our proposed averaging measure στ defined in 14 and the slicing
distribution in the energy-based Sliced Wasserstein distance Nguyen & Ho (2024). Under the
assumption that a higher value of 1-dimensional Wasserstein distance W p

p (θ#µ, θ#ν) will give a
better projecting direction θ, Nguyen & Ho (2024) propose to build on the Sliced Wasserstein distance
and define a slicing distribution supported on Sd−1 as

σµ,ν(θ; f, p) :=
f(W p

p (θ#µ, θ#ν))∫
Sd−1 f(W

p
p (θ′#µ, θ

′
#ν))dθ

′

for µ, ν ∈ Pp(Rd), where f : [0,∞) → Θ ⊂ (0,∞) is a monotonically increasing energy function.
When f is the exponential function fe(x) = ex, the slicing distribution becomes

dσµ,ν(θ; f, p) =
eW

p
p (θ#µ,θ#ν)∫

Sd−1 e
Wp

p (θ′
#µ,θ′

#ν)dθ′
dθ (28)

Both our proposed στ in Equation 14 and σµ,ν(θ; f, p) in Equation 28 employ the exponential
function to reflect the optimality of slices in the resulting distances, with Wasserstein distance serving
as the benchmark. However, it’s important to note a key distinction: contrary to the Sliced Wasserstein
distance as a lower bound of Wasserstein distance, the Expected Sliced Transport distance is an upper
bound, as for all θ ∈ Sd−1,

Wp(θ#µ, θ#ν) ≤Wp(µ, ν) ≤ Dp(µ, ν; θ).

Thus, the analogous energy function in στ is g(x) = e−τx (with τ ≥ 0) which is monotonically
decreasing, based on the assumption that a better slicing direction θ will result in a lower Dp(µ, ν; θ).
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