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Abstract

Implementing adaptive experimentation methods in the real world often encounters a mul-
titude of operational difficulties, including batched/delayed feedback, non-stationary envi-
ronments, and constraints on treatment allocations. To improve the flexibility of adaptive
experimentation, we propose a Bayesian, optimization-based framework founded on model-
predictive control (MPC) for the linear-contextual bandit setting. While we focus on simple
regret minimization, the framework can flexibly incorporate multiple objectives along with
constraints, batches, personalized and non-personalized policies, as well as predictions of
future context arrivals. Most importantly, it maintains this flexibility while guaranteeing
improvement over non-adaptive A/B testing across all time horizons, and empirically out-
performs standard policies such as Thompson Sampling. Overall, this framework offers a
way to guide adaptive designs across the varied demands of modern large-scale experiments.

Keywords: Adaptive Experimentation, Model Predictive Control, A/B Testing

1. Introduction

Experimentation is a core component of the deployment life-cycle of machine learning (ML)
models in the real world, particularly for large-scale Internet platforms. These systems
are often calibrated by a multitude of hyperparameters, ranging from model parameters
to preferences over different metrics and objectives. These choices may influence system
behavior in an unpredictable, black-box manner. This necessitates experimentation to
carefully evaluate them and ensure quality of service.

Given the large number of possible configurations, adaptive experimentation offers a
powerful methodology for efficiently allocating sampling effort. However, modern experi-
ments increasingly involve many considerations and constraints, making it difficult to design
adaptive methods in an appropriate manner. To name a few: first, experiments are almost
always conducted in large batches with infrequent updates to the sampling policy (Bakshy
et al., 2018; Offer-Westort et al., 2020; Jobjörnsson et al., 2022). Second, given the wide
heterogeneity in how users respond to treatments, non-stationarity in the arrivals of users
to the experiment can derail adaptive sampling policies (Qin and Russo, 2023). Finally,
these experiments often must meet certain constraints, such as requiring sufficient sample
coverage for post-experiment inference (Offer-Westort et al., 2020; Zhang et al., 2020), re-
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quiring fairness (Chen et al., 2020), and ensuring safety (Amani et al., 2019). Given the
difficulties of operationalizing adaptive algorithms, almost all experiments are non-adaptive
A/B tests (Sculley et al., 2015; Agarwal et al., 2016).

In this work, we introduce a flexible optimization-based framework for designing adap-
tive experiments in a linear contextual bandit setting, in order to model personalization and
non-stationarity. Under large batches, asymptotic normality of standard estimators allow
the experimenter to update a tractable Bayesian model of their uncertainty. Using this
model, we apply the model-predictive control (MPC) design principle to adaptively plan
the sampling allocations: after observing new samples, re-solve for an optimal non-adaptive
sampling policy to use for the rest of experiment. By resolving after every batch, the pol-
icy remains adaptive while working flexibly with batched feedback. Since the policy is the
outcome of an optimization sub-routine, we can flexibly incorporate constraints. Finally, it
allows the experimenter to incorporate predictions of context arrivals, ensuring robustness
against predictible non-stationarity (e.g. day-of-the-week, seasonality).

Related Work Our work is most related to Che and Namkoong (2023), which models
batched experiments as an MDP and proposes a model-predictive control policy for the
multi-armed bandit. This work extends their approach to the linear contextual setting.
In this regard, it is also closely related to dynamic programming approaches in Bayesian
optimization (Frazier et al., 2008; Gonzalez et al., 2016; Lam et al., 2016; Wu and Frazier,
2019; Jiang et al., 2020). The considered objective of this work is simple/policy regret in
linear contextual bandits, which has been studied by Ruan et al. (2021); Deshmukh et al.
(2020); Zanette et al. (2021); Krishnamurthy et al. (2023). Our work builds on this literature
by providing a Bayesian, optimization-based framework which can handle constraints in
batch settings. In this sense, our work is also related to Jörke et al. (2022), which trains
non-adaptive policies to minimize Bayesian simple regret, and Qin and Russo (2023), who
study Bayesian bandit algorithms in the linear contextual setting which are robust to non-
stationary variation. We propose a policy which also has a performance guarantee against
uniform sampling, but which requires additional knowledge of context arrivals.

2. Model

We consider the linear contextual bandit model with K actions. Each experimental unit
has a context x ∈ Rp and the reward r(x, a) of assigning an action a to x is

r(x, a) = ϕ(x, a)⊤β∗ + ϵi, (1)

where ϕ(xi, ai) : X × [K] → Rd is a known feature mapping, β∗ ∈ Rd is an unknown
parameter vector and ϵi are iid mean zero E[ϵi] = 0 random variables with fixed, known
measurement variance Var(ϵi) = s2. This model can flexibly incorporate a variety of inter-
actions between actions and contexts:

While our formulation allows for a variety of objectives, we are primarily interested in
the best-policy identification task, in which an experiment is conducted across T rounds in
order to identify an optimal policy πT for assigning actions to users drawn from a reference
distribution µ. If the experimenter knew β∗, the optimal policy would be

V ∗
T := max

πT

EX∼µ

[
πT (a|X)ϕ(X, a)⊤β∗

]
= EX∼µ

[
max
a

ϕ(X, a)⊤β∗
]
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Given that the experimenter only observes noisy estimates of β∗, their objective is to obtain
a policy π̂T that minimizes policy regret (also known as simple regret) compared to
the optimal policy.

PolicyRegretT := V ∗
T − EX∼µ

[
π̂T (a|X)ϕ(X, a)⊤β∗

]
Batched Experiment Design The experiment is composed of T sequential epochs (or
“batches”). Within each epoch t = 0, ..., T − 1,

1. A batch of nt units arrives with contexts {Xt
i}

nt
i=1 drawn iid from a distribution µt

(which may change over time and differ from the reference distribution µ)

2. The experimenter selects a sampling allocation policy πt : X → ∆K based on previous
observations and the contexts of the current batch.

3. Each unit is assigned to an action randomly according to Ai ∼ πt(X
t
i ).

4. The experimenter observes features Φt = {ϕ(Xt
i , Ai)}nt

i=1 and rewards Rt = {Rt,i}nt
i=1.

Given that the rewards follow a linear model, it is natural for the experimenter to estimate
β∗ through the ordinary least squares (OLS) estimator,

β̂t = (Φ⊤
t Φt)

−1ΦtRt.

The signal-to-noise of this estimate will depend on the population design matrix Γt under
sampling allocation π:

Γt(π) = EXi∼µt

∑
a∈[K]

π(a|Xi)ϕ(Xi, a)ϕ(Xi, a)
⊤


When the batch size nt → ∞ is large, the OLS estimator is asymptotically normal by the
central limit theorem. As long as Γt(π) is invertible, then

√
nt(β̂t− β∗) ⇒ N(0, s2Γt(π)

−1).
This justifies the normal approximation for the OLS estimator, which is the backbone of
standard inferential procedures and power calculations:

β̂t ≈ N
(
β∗, s2(ntΓt(π))

−1
)
. (2)

Bayesian Linear Model We consider an experimenter with a prior belief over β∗,
N(β0,Σ0) with mean β0 ∈ Rd and Σ0 ∈ Rd×d, possibly informed by a reservoir of pre-
vious experiments or domain knowledge. After each epoch t, the experimenter updates
their posterior beliefs (βt,Σt) after assigning actions according to πt and calculating the
OLS estimator β̂t. The experimenter updates their posterior using the normal approxima-

tion (2), updating Σt+1 =
(
s−2ntΓt(πt) + Σ−1

t

)−1
and βt+1 = Σt+1(Σ

−1
t βt+s−2ntΓt(πt)β̂t).

We can think of the belief (βt,Σt) as the states of a Markov Decision Process (MDP),
where states transitions are determined by the sampling allocation πt. We can reparame-
terize the state transition using the posterior predictive distribution of β̂t given βt,Σt.

Proposition 1 Let Z1, ..., ZT be standard iid N(0, Id) random vectors. The system gov-
erned by the posterior updates has the same joint distribution as that with the following
state transition:

Σt+1 =
(
s−2ntΓt(πt) + Σ−1

t

)−1
(3)

βt+1 = βt + (Σt − Σt+1)
1/2 Zt (4)
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The proof is in Appendix A.1. The state transitions (3) quantifies the future reduction of
uncertainty given a sampling allocation πt, and can be rolled out for several steps. Crucially,
this framework offers a smoothed model of partial feedback, for which state transitions are
differentiable in the sampling allocation πt (as Γt(π) is linear in π). This enables the use
of autodifferentation frameworks (e.g. PyTorch (Paszke et al., 2019) or Tensorflow (Abadi
et al., 2016)) to calculate gradients of objectives with respect to the sampling allocation
along a sample path (Z0, ..., ZT ), and optimize via gradient descent.

Bayesian Objective The experimenter’s objective consists of a sum of per-period re-
wards vs, which can depend on the posterior state (βs,Σs) and the sampling allocation πs
at period s. Given a sampling policy π = {πt(·|βt,Σt)}Tt=0, the value function at time t is

V π
t (βt,Σt) = E

[
T∑
s=t

vs(πs, βs,Σs)

]
.

If the experimenter is maximizing policy reward or minimizing policy regret, then they
would only experience a terminal reward vT (i.e. vs = 0 for s < T ). One can show that
minimizing Bayesian policy regret is equivalent to maximizing the policy reward under the
policy that acts greedily according to final posterior (βT ,ΣT ):

vT (πT , βT ,ΣT ) = EX∼µ

[
max
a

ϕ(X, a)⊤βT

]
3. Residual Horizon Optimization

Using the model (3), we can solve for an optimal policy using dynamic programming.
However, this can be computationally expensive, considering the high-dimensional state
and action spaces. We describe a computationally feasible method denoted as Residual
Horizon Optimization (RHO), introduced in Che and Namkoong (2023). The policy is
based on model-predictive control (MPC): at every epoch t, solve for an optimal static
trajectory {ρt, ..., ρT } of sampling allocations given the current state (βt,Σt). This policy
has many advantages:

• Efficient to solve with stochastic gradient descent (SGD) and function approximation.

• Flexibility with different objectives and constraints.

• The planning problem calibrates exploration with the length of the remaining horizon.

• The experimenter can use knowledge of future context distributions µt, ..., µT to ensure
robustness to non-stationarity (Proposition 2).

Residual Horizon Optimization Concretely, the RHO policy ρ∗t (βt,Σt) selects ρ
∗
t from

a sequence of sampling policies ρ∗t , ..., ρ
∗
T that maximizes the following objective

maximize
ρt,...,ρT

V ρt:T
t (βt,Σt) = Et

[
T∑

s=1

vs(ρs, βs,Σs)

]
(5)

subject to gt(ρs) ≤ ct, ∀s = t, ..., T
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where gt are convex constraint functions and ct ∈ Rh. When the experimenter’s objective
is policy regret, we can show that it is sufficient to optimize over a single allocation ρt (see
Appendix A.2).

maximize
ρt

Et,X∼µ

[
max
a

ϕ(X, a)⊤βt +
√

ϕ(X, a)⊤ [Σt − ΣT (ρt)]ϕ(X, a)Z

]
(6)

subject to gt(ρt) ≤ ct

where ΣT (ρt) = (Σ−1
t +

∑T−1
s=t nsΓs(ρt))

−1 is the posterior covariance after sampling with
ρt across epochs t, .., T . Importantly, the overall objective is differentiable in ρt.

Evaluating the objective requires knowledge of the measurement variance s2 and the
sum of population covariances

∑T−1
s=t nsΓs(ρs), which in turn requires knowing the context

distributions µt. In practice, to solve the above problem one would

1. Sample Z ∼ N(0, 1) and contexts from µ to approximate expectation in (6).

2. Parameterize the sampling allocation ρθt (a|x), e.g. multi-layer perceptron.

3. Use current batch {Xt
i}

nt
i=1 and samples from future context distributions µs, s ≥ t to

estimate population covariances in ΣT (ρ
θ
t ).

nsΓs(ρ
θ
t ) ≈

ns∑
i=1

K∑
a=1

ρθt (a|Xs
i )ϕ(X

s
i , a)ϕ(X

s
i , a)

⊤, Xs
i ∼ µs, ∀s = t, ..., T − 1

4. Optimize (6) by stochastic gradient descent over policy parameters θ.

The experimenter can use offline data (as in Zanette et al. (2021)) to estimate future context
arrivals, especially if the non-stationarity of contexts can be planned for (e.g. day of the
week). The structure of this policy immediately gives guarantees on the performance, which
motivates the MPC design principle. The proof is in Appendix A.3.

Proposition 2 (Policy Improvement) Consider any static sequence ρ̄ = (ρ̄0, ..., ρ̄T ) of sam-
pling allocation policies, which are dynamically feasible: gt(ρ̄s) ≤ ct,∀s ≥ t ∈ [T ]. Let V ρ̄0:T

t

be the corresponding value function under the Bayesian model and V ρ∗

t (βt,Σt) be the value
function of the RHO policy that solves (5). We have that for all t, βt,Σt that

V ρ∗

t (βt,Σt) ≥ max
ρ̄

V ρ̄
t (βt,Σt)

This is a robustness property that guarantees performance improvement over A/B testing
for all epochs t, even under non-stationary contexts. This holds even with constraints. In
contrast, adapting standard heuristics (e.g. Thompson Sampling) to constraints requires
ad hoc adjustments and new, bespoke proofs of convergence. These constraints typically
concern the sampling allocation for units in the current batch {Xt

i}
nt
i=1. Some examples

include:

gbudget(ρt) =

nt∑
i=1

c⊤ρt(X
t
i ) ≤ B, gsafe(ρt) = logPt

(
−

nt∑
i=1

ρt(X
t
i )

⊤r(Xt
i ) ≤ r̄

)
≥ log 0.99

where ρt(X
t
i ) ∈ ∆K and r(Xt

i ) ∈ RK are the sampling probabilities and possible rewards
for individual Xt

i . The constraint gbudget is a budget constraint with action costs c ∈ RK ,
and gsafe is a safety constraint that places an lower bound on the probability that the total
reward is above a value −r̄ > 0 (under a Gaussian approximation, this is concave in ρt).
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Figure 1: (Left) Relative gains over uniform sampling in personalization example across a
range of time horizons T (batch size = 100, Gumbel noise with s2 = 0.2). (Right)
Relative gains over uniform sampling in day-of-the-week example for s2 ∈ {0.2, 1}.
Above figure shows policy regret when the final policy assigns an arm for each
day. Below shows simple regret for a final policy that selects a single action.

4. Experiments

Personalization We evaluate the policy regret of different experimentation methods for
a setting in which the optimal policy gives a personalized action for each user. We simulate
an environment with 10 arms, each with an unknown parameter βa and rewards given as,

r(xi, a) = x⊤i βa + ϵi. (7)

We compare against Thompson Sampling (Agrawal and Goyal, 2013), a Myopic version
of RHO, and Top-Two Thompson Sampling (Qin and Russo, 2023). In Figure 4, RHO
exhibits large gains over other benchmarks, which holds under different noise levels and
even heavy-tailed (Student-T) and skewed (Gumbel) noise ϵi. Details can be found in B.

Robustness to Nonstationarity Standard adaptive algorithms have been shown to fail
under nonstationarity (Qin and Russo, 2023). Similar to (Qin and Russo, 2023), we consider
a day of the week effect model in which there are |X | = 7 contexts and

r(x, a) = θx + θx,a + θa + ϵi (8)

This setting consists of one batch experiment per day for seven days with day-specific
rewards. There are 10 actions and we consider two objectives: choosing an action to
deploy for all days (best-arm identification), and choosing an action to deploy for each
specific day (best-policy identification). We observe that major advantage of the RHO
policy is that it can plan for future non-stationarity, as it uses the sum of (known) future
population covariances

∑T−1
s=t nsΓs(ρs), which is feasible since the days in the week are

known in advance. Figure 1 shows that RHO outperforms in both objectives, and additional
details can be found in Section B.

6



Appendix A. Proofs

A.1 Proof of Proposition 1

We can simplify the Bayesian posterior update for the mean as follows:

Σt+1(Σ
−1
t βt + s−2ntΓt(π)βt − s−2ntΓt(π)βt + s−2ntΓt(π)β̂t)

= βt +Σt+1(s
−2ntΓt(π))(β̂t − βt)

Note that the posterior predictive distribution of β̂t ∼ N(β∗, s2(ntΓt(π))
−1) is given by

β̂t = β∗ + s(ntΓt)
−1/2Z1

= (βt +Σ
1/2
t Z2) + s(ntΓt)

−1/2Z1

where Z1 and Z2 are independent N(0, Id) random vectors. This implies

Var
(
(s−2ntΓt)(β̂t − βt)

)
= Var

(
(s−2ntΓt)(Σ

1/2
t Z2 + s(ntΓt)

−1/2Z1)
)

= s−4n2
t (ΓtΣtΓt) + (s−2ntΓt)

(
s2n−1

t Γ−1
t

)
(s−2ntΓt)

= s−4n2
t (ΓtΣtΓt) + (s−2ntΓt)

To compute Var
(
Σt+1(s

−2ntΓt)(β̂t − βt)
)
, we observe that

Var
(
Σt+1(s

−2ntΓt)(β̂t − βt)
)
= Σt+1

(
s−4 ((ntΓt)Σt(ntΓt)) + (s−2ntΓt)

)
Σt+1

= Σt+1

(
s−2ntΓtΣt + I

)
(s−2ntΓt)Σt+1

We use the identity (A + B)−1 = A−1 − (A + AB−1A)−1, taking A = s−2ntΓt and
B = Σ−1

t and observe that

Σt+1 = (s−2ntΓt)
−1 −

[
s−4 ((ntΓt)Σt(ntΓt)) + (s−2ntΓt)

]−1

= A−1 −
[
(AB−1 + I)A

]−1

Further simplifying, we have

Σt+1

(
s−4 ((ntΓt)Σt(ntΓt)) + (s−2ntΓt)

)
Σt+1

=
(
A−1 −

[
(AB−1 + I)A

]−1
) (

(AB−1 + I)A
) (

A−1 −
[
(AB−1 + I)A

]−1
)

=
(
A−1 −

[
(AB−1 + I)A

]−1
) (

(AB−1 + I)− I
)

=
(
A−1 −

[
(AB−1 + I)A

]−1
)
AB−1

=
(
A−1 −

[
(AB−1 + I)A

]−1
)
AB−1

= Σt+1s
−2ntΓtΣt
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Finally, we can observe that Σt+1s
−2ntΓtΣt is equal to Σt−Σt+1. Since, Σt+1(s

−2ntΓt)(β̂t−

βt) is a mean-zero Gaussian random vector, it can be expressed as Var
(
Σt+1(s

−2ntΓt)(β̂t − βt)
)1/2

Z.

So altogether the posterior update can be expressed as

(Σt − Σt+1)
1/2 Zt

A.2 Derivation of (6)

Conditional on the current posterior (βt,Σt), the final posterior mean after sampling with
static policies ρt, ..., ρT−1 is

βt +
T−1∑
s=t

(Σs − Σs+1)
1/2 Zs

where Σs+1 = (Σ−1
t +

∑s
u=t nuΓu(ρu))

−1. Since Zs are independent and ρs are non-adaptive,
this is a sum of independent random vectors and by the reparameterization trick:

T−1∑
s=t

(Σs − Σs+1)
1/2 Zs

d
=

(
T−1∑
s=t

Σs − Σs+1

)1/2

Z

= (Σt − ΣT )
1/2 Z

We can write the objective then as

Et

[
max
a

ϕ(x, a)⊤βT

]
= Et

[
max
a

ϕ(x, a)⊤βt +
√

ϕ(x, a)⊤(Σt − ΣT )ϕ(x, a)Z

]

Note that Γu(ρu) is linear in ρu for all u, ΣT depends on the sampling allocations only
through the sum. This means that by replacing ρt, ..., ρT−1 with a the same allocation
policy at each round ρ̃t, ..., ρ̃t where ρ̃t =

1
T−t−1

∑T−1
s=t ρt is the average of ρt, ..., ρT−1, one

can achieve the exact same objective value. This will also be feasible since ρ̃t will still map
to ∆K and since gt(ρs) ≤ ct for all ρs then by Jensen’s inequality, gt(ρ̃t) will also be less
than ct.

A.3 Proof of Proposition 2

First observe that when at T and T−1, the static policy and RHO coincide so V ρ∗

t (βt,Σt) =
maxρ̄ V

ρ̄
t (βt,Σt). Next, as an induction hypothesis, suppose for all (βt+1,Σt+1),

V ρ∗

t+1(βt+1,Σt+1) ≥ max
ρ̄t+1:T

V
ρ̄t+1:T

t+1 (βt+1,Σt+1).

Then for any (βt,Σt),
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Policy s2 = 0.2, σ2 = 0.1 s2 = 0.2, σ2 = 5 s2 = 1, σ2 = 0.1 s2 = 1, σ2 = 5

(Gumbel) Linear TS 67.0 82.8 94.22 91.7
Linear Top-Two TS 69.1 93.8 93.8 94.0

Myopic 66.5 79.9 83.1 86.5
RHO 61.8 80.3 81.1 86.1

(Student’s t) Linear TS 77.1 102 90.6 91.6
Linear Top-Two TS 76.1 97.8 90.8 88.9

Myopic 64.5 83.1 70.0 85.77
RHO 60.5 83.0 66.5 83.3

Figure 2: Percent of policy regret of uniform in the personalization setting under multiple
combinations of context variance {0.1, 5}, measurement variance {0.2, 1}, and
noise distribution {Gumbel, Student’s t}

V ρ∗

t (βt,Σt) = vt(ρ
∗
t , βt,Σt) + Et[V

ρ∗

t+1(βt+1,Σt+1)]

≥ vt(ρ
∗
t , βt,Σt) + Et

[
max
ρ̄t+1:T

V
ρ̄t+1:T

t+1 (βt+1,Σt+1)

]
≥ vt(ρ

∗
t , βt,Σt) + max

ρ̄t+1:T

Et[V
ρ̄t+1:T

t+1 (βt+1,Σt+1)]

= max
ρ̄t:T

{
vt(ρ̄t, βt,Σt) + Et[V

ρ̄t+1:T

t+1 (βt+1,Σt+1)]
}

= max
ρ̄t:T

V ρ̄t:T
t (βt,Σt)

using the definition for the policy ρ∗t .

Appendix B. Experimental Details

Personalization To incorporate the objective 7 into the flexible reward model 1, the
parameter vector β∗ = (β∗

a)
K
a=1 ∈ RKp specifies an embedding vector β∗

a ∈ Rp for each
action where the reward is given by the dot product,

ϕ(x, a)⊤β∗ = x⊤β∗
a. (9)

In this simulation, there are 10 reallocation epochs and 10 possible arms to deploy,
each corresponding to a separate β∗

a. We let the context be of dimension 5 and each β∗

is normally distributed with diagonal variance 0.001. The contexts are also distributed
normally according to N(1, σ2I), where we vary the level of σ2 from 0.1 to 5. We choose
to center the distribution at mean 1 because the optimal sampling policy for a mean 0
context distribution is to sample each arm equally. In our setup, a greater context variance
leads to a higher support of optimal arms, while small context variance converges to a
treatment effect example. To test the robustness of the different methods, we also compare
the method under different noise levels and distributions in 2. Specifically, we choose the
Gumbel distribution and student’s t distribution to test robustness under heavy-tailed and
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skewed distributions. The high performance of RHO in each setting shows the validity of
the OLS batch approximation under non-Gaussian noise distributions. Additionally, we can
see that thompson sampling performs especially poor with high measurement variance or
context variance

Day of the Week Effects The reward model 1 can also be adapted for 8, where the
parameter vector β∗ = (βx, βx,a, βa) ∈ RK+Kd+d is composed of an action-specific vector
βa ∈ RK , a day-specific reward βx ∈ R, and a reward unique to the action and day
βx,a ∈ RKd. Encoding the day and action into one-hot basis vectors ex ∈ Rd, ea ∈ RK ,
ex,a ∈ RKd, the reward is given by the sum,

ϕ(x, a)⊤β∗ = ⟨βx, ex⟩+ ⟨βx,a, ex,a⟩+ ⟨βa, ea⟩. (10)

The experimental setting consists of a batch of 100 samples arriving on each day of the week
for seven days. β∗ is distributed according to N(0, σ2I) where σ2 = 0.001, and in figure 1
we consider Gaussian noise with measurement variances 0.2 and 0.1. There are two natural
objectives that an experimenter may utilize:

1. Best Arm Identification: The goal is to choose the single best arm to deploy
across all days. This corresponds to minimizing the simple regret of an action a. The
objective can then be formulated as

max
a∈A

{
7∑

i=1

w(xi)ϕ(xi, a)
⊤β∗}

Let ϕ(a) =
∑N

i=1w(xi)ϕ(xi, a). Since we are now optimizing for the mean of an action
effect, we can adjust the RHO objective 6 to reflect this:

E
[
max
a∈A

{ϕ(a)⊤βt +
√
ϕ(a)

⊤
[Σt − ΣT (ρt)]ϕ(a)Z}

]
We benchmark RHO against context unaware thompson sampling and the recently
proposed ”Deconfounded Thompson Sampling” (Qin and Russo, 2023), which op-
timizes the mean while updating its posterior using contexts. Figure 1 shows the
superior performance of RHO compared to existing methods. It is worth noting that
the current thompson sampling methods fail to exploit knowledge of future contexts.

2. Best Arm For Each Day: We also consider a setting where an experimeter can
deploy different arms each day and wants to maximize the expected reward of doing
so. The objective corresponds to 6, but this setup is non-trivial as the distribution of
contexts (days) is non-stationary and deterministic. By planning for future context
distributions, Figure 1 shows how RHO outperforms other benchmarks like linear top
two thompson sampling. Empirically, we find that if RHO naively treats the context
distribution as stationary, in that it plans using only the given contexts at one day,
its performance is worse, showing the necessity of planning.
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E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
19, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/

paper_files/paper/2019/file/09a8a8976abcdfdee15128b4cc02f33a-Paper.pdf.

Eytan Bakshy, Lili Dworkin, Brian Karrer, Konstantin Kashin, Benjamin Letham, Ashwin
Murthy, and Shaun Singh. Ae: A domain-agnostic platform for adaptive experimentation.
In Neural Information Processing Systems Workshop on Systems for Machine Learning,
pages 1–8, 2018.

Ethan Che and Hongseok Namkoong. Adaptive experimentation at scale: A computational
framework for flexible batches. arXiv:2303.11582 [cs.LG], 2023.

Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi, Heramb Nemlekar, and Stefanos
Nikolaidis. Fair contextual multi-armed bandits: Theory and experiments. In Jonas
Peters and David Sontag, editors, Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning Research,
pages 181–190. PMLR, 03–06 Aug 2020.

Aniket Anand Deshmukh, Srinagesh Sharma, James W. Cutler, Mark Moldwin, and Clayton
Scott. Simple regret minimization for contextual bandits. arXiv:1810.07371 [stat.ML],
2020.

Peter I. Frazier, Warren B. Powell, and Savas Dayanik. A knowledge-gradient policy for
sequential information collection. SIAM Journal on Control and Optimization, 47(5):
2410–2439, 2008. doi: 10.1137/070693424.

11

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://proceedings.mlr.press/v28/agrawal13.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/09a8a8976abcdfdee15128b4cc02f33a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/09a8a8976abcdfdee15128b4cc02f33a-Paper.pdf


Javier Gonzalez, Michael Osborne, and Neil Lawrence. Glasses: Relieving the myopia of
bayesian optimisation. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, 2016.

Shali Jiang, Daniel Jiang, Maximilian Balandat, Brian Karrer, Jacob Gardner, and Roman
Garnett. Efficient nonmyopic bayesian optimization via one-shot multi-step trees. In
Advances in Neural Information Processing Systems 20, 2020.

Sebastian Jobjörnsson, Henning Schaak, Oliver Musshoff, and Tim Friede. Improving the
statistical power of economic experiments using adaptive designs. Experimental Eco-
nomics, 2022.

Matthew Jörke, Jonathan Lee, and Emma Brunskill. Simple regret minimization for con-
textual bandits using bayesian optimal experimental design. In ICML2022 Workshop on
Adaptive Experimental Design and Active Learning in the Real World, 2022.

Sanath Kumar Krishnamurthy, Ruohan Zhan, Susan Athey, and Emma Brunskill. Pro-
portional response: Contextual bandits for simple and cumulative regret minimization.
arXiv:2307.02108 [cs.LG], 2023.

Remi R. Lam, Karen E. Willcox, and David H. Wolpert. Bayesian optimization with a
finite budget: an approximate dynamic programming approach. In Advances in Neural
Information Processing Systems 16, 2016.

Molly Offer-Westort, Alexander Coppock, and Donald P. Green. Adaptive experimental
design: Prospects and applications in political science. SSRN 3364402, 2020. URL
http://dx.doi.org/10.2139/ssrn.3364402.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems 32, 2019.

Chao Qin and Daniel Russo. Adaptive experimentation in the presence of exogenous non-
stationary variation. arXiv:2202.09036 [cs.LG], 2023.

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning
distributional optimal design. arXiv:2007.01980 [cs.LG], 2021.

David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner,
Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison. Hidden
technical debt in machine learning systems. In Advances in Neural Information Processing
Systems 28, pages 2503–2511, 2015.

Jian Wu and Peter I. Frazier. Practical two-step look-ahead bayesian optimization. In
Advances in Neural Information Processing Systems 19, 2019.

12

http://dx.doi.org/10.2139/ssrn.3364402


Andrea Zanette, Kefan Dong, Jonathan N Lee, and Emma Brunskill. Design of ex-
periments for stochastic contextual linear bandits. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural In-
formation Processing Systems 21, volume 34, pages 22720–22731. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/

c00193e70e8e27e70601b26161b4ae86-Paper.pdf.

Kelly Zhang, Lucas Janson, and Susan Murphy. Inference for batched bandits. Advances
in Neural Information Processing Systems 20, 33:9818–9829, 2020.

13

https://proceedings.neurips.cc/paper_files/paper/2021/file/c00193e70e8e27e70601b26161b4ae86-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c00193e70e8e27e70601b26161b4ae86-Paper.pdf

	Introduction
	Model
	Residual Horizon Optimization
	Experiments

	Proofs
	Proof of Proposition 1
	Derivation of (6)
	Proof of Proposition 2

	Experimental Details

