
DualCodec: A Low-Frame-Rate, Semantically-Enhanced Neural Audio Codec
for Speech Generation

Anonymous submission to Interspeech 2025

Abstract1

Neural audio codecs form the foundational building blocks2

for language model (LM)-based speech generation. Typi-3

cally, there is a trade-off between frame rate and audio qual-4

ity. This study introduces a low-frame-rate, semantically en-5

hanced codec model. Existing approaches distill semantically6

rich self-supervised (SSL) representations into the first-layer7

codec tokens. This work proposes DualCodec, a dual-stream8

encoding approach that integrates SSL and waveform represen-9

tations within an end-to-end codec framework. In this setting,10

DualCodec enhances the semantic information in the first-layer11

codec and enables the codec system to maintain high audio12

quality while operating at a low frame rate. Note that a low-13

frame-rate codec improves the efficiency of speech generation.14

Experimental results on audio codec and speech generation15

tasks confirm the effectiveness of the proposed DualCodec com-16

pared to state-of-the-art codec systems, such as Mimi Codec,17

DAC, Encodec, and SpeechTokenizer. Demos are available at:18

https://dualcodec.github.io.19

Index Terms: Neural Audio Codec, Speech Generation, Self-20

Supervised Feature, Low Frame Rate21

1. Introduction22

Neural audio codec is a technique to compress audio signals23

into a series of discrete codes for efficient data storage and24

transmission [1, 2, 3]. Recently, they are more frequently uti-25

lized as the tokenizers and de-tokenizers of speech language26

models (SLMs). These SLMs are inspired by the success of27

large language models and have shown impressive results in28

text-to-speech (TTS). In a typical SLM framework like VALL-29

E [4], a neural audio codec such as Encodec [2] encodes wave-30

form signal into hierarchical discrete speech tokens with mul-31

tiple layers of codebook tokens. The first-layer codebook to-32

kens are predicted by an autoregressive (AR) model conditioned33

on text, and the remaining codebook layers are predicted via a34

non-autoregressive (NAR) model conditioned on the first-layer35

codebook tokens. Then, the codec decoder converts the speech36

tokens into audio.37

Although this SLM framework has impressive zero-shot38

TTS capabilities, it still suffers from problems like inaccurate39

speech content, limited speech generation quality, and slow in-40

ference speed [5, 6, 7]. These three problems are closely related41

to the speech tokens. Motivated by recent works on improving42

each of these aspects [5, 7, 8], we summarize important design43

principles for a practical speech generation-oriented neural au-44

dio codec:45

• Semantic enhancement: Self-supervised (SSL) speech fea-46

tures have shown to benefit various downstream tasks [9, 10].47

Previous codec work SpeechTokenizer [5] has incorporated 48

SSL feature in neural audio codec via semantic distillation. 49

• Low frame rate: A low token rate decreases the sequence 50

length, reducing the speed and resources to train and infer- 51

ence SLMs. Both single-codebook [11, 1] and low frame- 52

rate [7] codecs serve this purpose, but low-frame-rate codecs 53

deliver higher speedup. 54

• Audio quality: A high codec reconstruction quality is essen- 55

tial for SLM’s generation quality [6]. This becomes challeng- 56

ing for low-token-rate audio codecs. 57

Table 1: A high-level comparison between codec systems.

Semantic Enhancement Audio Quality Frame Rate

Encodec ✗ Good 75Hz
SpeechTokenizer ✓ (distill) Good 50Hz
DAC ✗ Great 75Hz/50Hz
Mimi ✓ (distill) Good 12.5Hz

DualCodec ✓ (dual encoding) Great 12.5Hz/25Hz

A comparison of the relevant existing codec models is presented 58

in Table 1. Some of the existing models attempt to model se- 59

mantic information in the codec explicitly by distilling SSL rep- 60

resentation to codec. Also, existing models have a trade-off be- 61

tween audio quality and frame rate. 62

We argue that the three design principles can be integrated 63

into a single framework: incorporating an explicit semantic- 64

related codec layer, maintaining a low frame rate, and preserv- 65

ing high audio quality. To achieve this, we propose DualCodec, 66

which unifies SSL and waveform representations in a single 67

framework using dual encoding. In this framework, the code 68

from the first layer is semantically enhanced directly from SSL 69

features. Rather than making a trade-off between frame rate and 70

audio quality, DualCodec enables the model to achieve a low 71

frame rate while maintaining high audio quality. Additionally, 72

we release the training and inference code for a 12.5 Hz codec. 73

To the best of our knowledge, this is the first open-source 12.5 74

Hz low bit-rate codec1. 75

2. Related Works 76

Vanilla neural audio codecs [2, 8] consist of an encoder, a resid- 77

ual vector quantization (RVQ) module, and a decoder. In this 78

framework, only waveform is utilized as input in both training 79

and inference. To serve codec systems better for SLMs, the 80

following three important design decisions, including semantic 81

enhancement, low token rate, and audio quality have been in- 82

vestigated in previous works. 83

1The Mimi codec is the first open-weight 12.5Hz codec, but its data
and training codes are not available. We train on a public dataset and
release our models and training codes.
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Figure 1: The dual encoding method for neural audio codecs. The upper stream is SSL encoding, and the lower stream is waveform
encoding. Given a speech input, the SSL feature is obtained from a pretrained w2v-bert-2 model and then encoded as the codec’s
first-layer token (RVQ-1). The remaining RVQ layers encodes the residual between the waveform feature and the RVQ-1 feature, and
outputs audio. The framework is trained end-to-end requiring an additional L2 SSL feature loss in addition to codec training losses.

2.1. Semantic Enhancement84

The discrete tokens extracted from self-supervised (SSL)85

speech representations are commonly referred to as semantic86

tokens. These semantic tokens are extracted by k-means or87

vector quantization (VQ) on self-supervised (SSL) representa-88

tions [12, 13]. Previous studies reveal that they possess rich89

phonetic and semantic information, reduces the model predic-90

tion complexity, but cannot accurately reconstruct audios due91

to a lack of acoustic traits like speaker identity [14, 12]. Audio92

codec tokens, on the other hand, contain more complex infor-93

mation supporting waveform reconstruction. Because of this94

information complexity, SLMs that predict vanilla audio codec95

tokens are known to be more unstable in their intelligibility than96

semantic token-based systems [5, 15, 12]. This happens primar-97

ily in the AR model because the AR generation can accumulate98

prediction errors.99

Previous work SpeechTokenizer [5] proposed to unify the100

two types of tokens by enhancing the first-layer audio codec to-101

ken (RVQ-1) through semantic distillation. Specifically, build-102

ing upon the Encodec model [2], the approach introduces a103

semantic distillation loss between the RVQ-1 codebook vec-104

tor and a certain layer HuBERT [16] hidden feature extracted105

from the same speech input. However, we find that the distilled106

tokens still lack semantic content accuracy, and have not been107

extensively verified in SLMs, especially multilingual SLMs.108

2.2. Token Rate109

Vanilla neural audio codecs operate at more than 4kbps bitrate110

and above 50Hz frame rates [2, 8, 3]. Lately, there has been111

a surge in research efforts focused on designing low bit-rate112

codec systems [7, 17, 1, 18]. These low-bitrate codec sys-113

tems benefit the SLM efficiency by reducing the speech token114

length. In particular, the recent neural audio codec Mimi [7]115

operates at only 12.5Hz, a 6x reduction to the original 75Hz En-116

codec. Mimi uses SpeechTokenizer’s semantic distillation with117

increased stride sizes and codebook sizes based on Encodec.118

We still find it has speech reconstruction artifacts especially at119

low bitrates.120

2.3. Audio Quality121

There has been several attempts to improve the audio recon-122

struction quality over vanilla systems like Encodec. Descript-123

Audio-Codec (DAC) [8] addressed codebook collapse problem124

by reducing the codebook latent dimensions to a very small125

value for quantization, and applied cosine similarity matching126

on L2 normalized codebooks. It also replaces the ReLU acti-127

vation function with the snake activation function [19], offer- 128

ing benefits for reconstructing periodic signals. Some recent 129

works explored using Transformer as replacements for CNN 130

modules [1, 7]. We incorporate the DAC architecture in this 131

work, and leave Transformer codecs as future investigations. 132

3. Method: Dual Encoding 133

As shown in Figure 1, our system consists of two encoding 134

streams: an SSL encoding stream and a waveform encoding 135

stream. 136

• The SSL encoding stream captures semantic-rich information 137

to the first-layer codec tokens by directly encoding from SSL 138

feature. 139

• The waveform encoding stream encodes and decodes high- 140

quality audio with the proven DAC framework. 141

• We apply downsampling to both streams to achieve a low 142

frame rate. 143

By using the two encoding streams, we obtain semantic- 144

rich RVQ-1 tokens, with remaining layers (RVQ-rest) focused 145

on the remaining acoustic aspects in the waveform feature. This 146

“disentanglement” is achieved by subtracting RVQ-1 feature 147

from waveform feature, before obtaining RVQ-rest tokens. Fi- 148

nally to decode audio, the RVQ-1 feature is re-summed to the 149

codebook vectors of RVQ-rest. For SLM training, both encod- 150

ing streams are required to obtain training tokens. During SLM 151

inference, only the codec decoder is used to produce audio. 152

3.1. SSL Encoding 153

The SSL encoding stream contains a pretrained SSL model, 154

a ResNet encoder, a vector quantization (VQ) module and 155

a ResNet decoder. This architecture is analogous to a VQ- 156

VAE [20], inspired by the RepCodec tokenizer [13] which first 157

applied VQ-VAE to discretizing SSL features. 158

SSL Model. The SSL model is used here to obtain semantic- 159

rich representations. We use normalized 16th layer w2v-BERT- 160

2.0 [21] feature following [22]. The model outputs 50Hz fea- 161

ture from 16kHz waveforms with a 600M-parameter Trans- 162

former [23] network. The SSL model is frozen during training 163

and inference. 164

ResNet Encoder and Decoder. These networks are used to 165

process the SSL feature before and after the VQ module. This 166

allows the VQ tokens to capture more complex semantic pat- 167

terns. The decoder mirrors the encoder. Both models contain 168

stacked ConvNeXt [24] blocks, which are the latest ResNet [25] 169

variants. There’s no down-sampling or up-sampling operation 170



in these ResNet modules.171

VQ Module. This module discretizes latent represetation Z ∈172

RH×T into a 1D token sequence RV Q 1 ∈ Z1×T , where H is173

the hidden dimension and T is the feature length. We use the VQ174

formulation in DAC. Formally, RV Q 1 is computed by finding175

the closest codebook vector to the projected input: RV Q 1 =176

argmink ||ℓ2(WinZ) − ℓ2(ek)||2. Here, Win ∈ RD×H is the177

input projection matrix with D = 8,H = 1024, ℓ2 is the L2-178

normalizaton, e1, e2, ..., ek are codebook vectors, ek ∈ RH×T .179

The continuous feature is RV Q 1 feat = ResNet(ek).180

3.2. Waveform Encoding181

The waveform encoding stream is inspired by existing neural182

audio codecs. We adopt the DAC [8] architecture, comprising a183

codec encoder, an RVQ module, and a codec decoder.184

Codec encoder and decoder. The codec encoder and decoder185

are CNN networks with snake activation function [19]. The en-186

coder contains a series of strided convolution layers to down-187

sample the waveform into feature resolution. The decoder mir-188

rors the encoder’s structure, replacing strided convolutions with189

upsampling transposed convolutions to produce waveform.190

RVQ module. This module has N − 1 layers of VQ. Each191

VQ layer quantizes the residual error of the previous layer [3].192

The input to this module is the residual between the wave-193

form feature and the RV Q 1 feat. It discretizes into RVQ rest194

∈ Z(N−1)×T . After obtaining the RVQ rest tokens, their code-195

book vectors ek are added together with RV Q 1 feat. This196

continuous feature summarizes SSL encoding and waveform197

encoding, and is used as input to the codec decoder. We em-198

ploy RVQ dropout [2] during training. That is, we only use the199

first q quantizers each time, where q ∈ [0, N − 1] is randomly200

chosen. When q = 0, only the SSL encoding stream is used,201

allowing the model to vocode the RVQ-1 tokens.202

Frame rate. Our framework operates at low frame rate options203

of 25Hz and 12.5Hz, with 24kHz audio input. We release mod-204

els of both frame rates to support diverse application demands.205

To output a 25Hz frame rate, the encoder uses 4 CNN blocks206

with strides [4, 5, 6, 8], giving 24000Hz ÷ (4 × 5 × 6 × 8) =207

25Hz. The 12.5Hz version uses strides [4, 5, 6, 8, 2]. We also208

downsample the 50Hz SSL feature into our frame rates using209

simple 1D average pooling with kenel size = stride size =210

downsampling factor. The downsampling factor is 2 for211

25Hz, is 4 for 12.5Hz.212

3.3. Training objective213

The dual encoding framework is trained end to end. It is trained214

on an added SSL reconstruction loss [13] on top of the GAN215

training objective from DAC [8]: spectrogram reconstruction216

loss, quantization loss, and adversarial loss.217

SSL reconstruction loss. This is an MSE losss between the218

reconstructed SSL feature and the input SSL feature. Both fea-219

tures are either the 12.5Hz or 25Hz downsampled version.220

Spectrogram reconstruction loss. This is a multi-scale Mel221

Spectrogram loss between the input and reconstructed audio.222

Quantization loss The codebooks are trained with an L1 loss223

between features before and after quantization. There’s also a224

commitment loss with a weight of 0.25. They both employ the225

stop-gradient technique [3].226

Adversarial loss We use Multi-Period Discriminator (MPD)227

and Multi-Scale STFT Discriminator (MS-STFTD) [8, 2]. A228

L1 feature matching loss is employed in all intermediate layers229

between generated and ground truth samples [8].230

4. Experiments 231

4.1. Model training setup 232

We use the 100K-hour multilingual, 24kHz speech dataset 233

Emilia [26, 27], and 8 A100 GPUs for training. Each codec 234

model is trained for 500K steps. Each TTS model is trained for 235

600K steps. There are N = 8 codebook layers in DualCodec. 236

4.2. Semantic content analysis 237

Table 2: WER Results of codec-reconstructed RVQ-1 audio.

ID Rate Method RVQ-1 EN ZH
Config WER(%)↓ WER(%)↓

A1 - Ground-Truth - 2.13 1.25
A2 50Hz SpeechTokenizer 1024 EMA 14.9 83.2
B1 25Hz DAC 1024 Proj 55.4 46.4
B2 25Hz w/ Distill 1024 Proj 28.4 26.4
B3 25Hz w/ Dual encoding 1024 Proj 5.59 6.52
C1 25Hz DAC 16384 Proj 31.8 21.0
C2 25Hz w/ Distill 16384 Proj 17.8 14.4
C3 25Hz w/ Dual encoding 16384 Proj 2.98 2.91
D1 12.5Hz w/ Dual encoding 16384 Proj 6.94 6.36

Metrics. We evaluate the semantic preservation of the RVQ-1 238

tokens by reporting the ASR Word Error Rate (WER) on the 239

codec-reconstructed audio, using only RVQ-1. The evaluations 240

leverage Whisper-large-v3 for English (EN) and Paraformer-zh 241

for Chinese (ZH), tested on the Seed-TTS-Eval [28] dataset. 242

The results are summarized in Table 2. 243

Group A baselines. Group A (A1 and A2) models are ground- 244

truth and official SpeechTokenizer checkpoint, respectively. 245

The A2 model has semantic distillation and 1024 EMA code- 246

books. While it is trained on English-only data, we still report 247

its Chinese performance and find that its RVQ-1 has extremely 248

high Chinese WER. Our listening test suggests that its RVQ-1 249

lacks pitch information, which explains because pitch informa- 250

tion is critical for Chinese understanding. 251

Effect of Dual Encoding. The DAC framework at 25Hz with a 252

1024 projection codebook (B1) yields WERs of 55.4 (English) 253

and 46.4 (Chinese). We then add a semantic distillation loss 254

from [5], this (B2) reduces WERs to 28.4 and 26.4. Dual en- 255

coding (B3) further improves performance, achieving WERs of 256

5.59 (English) and 6.52 (Chinese). These results highlight the 257

effectiveness of dual encoding in significantly enhancing se- 258

mantic preservation. 259

Effect of Larger Codebooks. Increasing the RVQ-1 codebook 260

size to 16384 brings additional improvements. With dual en- 261

coding (C3), the WERs drop to 2.98 (English) and 2.91 (Chi- 262

nese), closely approaching the ground truth (A1). Meanwhile, 263

at a reduced frame rate of 12.5Hz, the dual encoding config- 264

uration (D1) achieves competitive results, with WERs of 6.94 265

(English) and 6.36 (Chinese). 266

4.3. Audio quality analysis 267

Metrics. In this section, we report the audio reconstruction 268

quality of DualCodec. We use the full Librispeech-test-clean 269

[29] data. Metrics include the Perceptual Evaluation of Speech 270

Quality (PESQ) [30] (both the 8kHz narrow-band PESQ nb, 271

and 16kHz wide-band PESQ wb), Short Term Objective Intel- 272

ligibility (STOI) [31], Mel Cepstral Distortion (MCD) [32]. We 273

also evaluate on the reference-free neural MOS predictor UT- 274

MOS [33], a metric that highly correlates with human pref- 275

erences [34, 1]. The subjective test is the MUltiple Stimuli 276

with Hidden Reference and Anchor (MUSHRA) [35]. We con- 277

duct the test with 8 participants rating 15 sets of audios recon- 278

structions sampled from the same test set. We use open-source 279

baselines DAC [8], Encodec [2], SpeechTokenizer[5], WavTok- 280

enizer [11], and Mimi [7]. We compare under a consistent setup 281



Table 3: Audio reconstruction performance of neural audio codecs around 75token/s and 0.75kbps bitrate on LibriSpeech-test-clean.

ID System (RVQ-1 size, RVQ-rest size) Bit(kbps) Tok/s #VQ PESQ nb↑ PESQ wb↑ STOI↑ MCD↓ UTMOS↑ MUSHRA↑

E1 DAC-official 75Hz 0.75 75 1 1.46 1.18 0.75 6.00 1.32 26.0
E1 Encodec 75Hz 1.5 150 2 1.92 1.54 0.84 4.30 1.55 36.2
E3 SpeechTokenizer 50Hz 1.0 100 2 1.42 1.15 0.70 6.94 1.81 35.9
E4 WavTokenizer-large 75Hz 0.90 75 1 2.54 2.05 0.89 3.99 3.87 81.0
E5 Mimi 12.5Hz 0.83 75 6 2.51 1.99 0.89 4.13 3.43 72.8
F1 DAC-repro 25Hz (1024+1024) 0.75 75 3 2.58 2.06 0.89 3.93 3.29 68.8
F2 DAC-repro 12.5Hz (1024+1024) 0.75 75 6 2.88 2.33 0.91 3.70 3.87 81.8
G1 DualCodec 25Hz (1024+1024) 0.75 75 3 2.64 2.07 0.90 3.99 3.86 79.5
G2 DualCodec 25Hz (16384+1024) 0.85 75 3 2.92 2.32 0.91 3.61 4.08 86.2
G3 DualCodec 12.5Hz (1024+1024) 0.75 75 6 2.89 2.30 0.91 3.61 3.94 83.5
G4 DualCodec 12.5Hz (16384+1024) 0.80 75 6 2.94 2.33 0.91 3.65 4.04 85.2
G5 DualCodec 12.5Hz (16384+4096) 0.93 75 6 3.11 2.54 0.92 3.33 4.11 88.2

of 75 tokens per second and around 0.75kbps low bitrate 2. Ta-282

ble 3 presents the results.283

Baseline Systems. Among the baselines (group E), Encodec284

achieved the highest reference-based scores but has a low UT-285

MOS of 2.34 which indicates low perceptual quality, and it op-286

erates at a higher bitrate of 1.5 kbps. In contrast, WavTokenizer-287

large, despite its lower bitrate of 0.9 kbps, performed competi-288

tively with similar reference-based scores, and the highest UT-289

MOS = 3.87 among the baselines.290

Reproduced DAC. Group F focuses on our retrained DAC291

codec modified for 25Hz and 12.5Hz frame rates. At the same292

0.75 kbps bitrate, the 12.5 Hz DAC obtain much higher perfor-293

mance than 25Hz in every metric. This suggests that operating294

at a lower frame rate with more quantization layers is more ef-295

fective than a larger frame rate with less quantization layers.296

Interestingly, the 12.5Hz DAC model outperforms all baseline297

models, suggesting the effectiveness of the DAC framework es-298

pecially at lower frame rates.299

DualCodec. Group G highlights the performance of Dual-300

Codec under various configurations of its RVQ codebooks.301

First, models G1 and G3 utilize a codebook size of 1024302

at each RVQ layer, enabling direct comparison with Group F303

models. Comparing G1 (DualCodec 25Hz) with F1 (DAC-repro304

25Hz), G1 achieves similar performance across most objective305

metrics but demonstrates a significant improvement in UTMOS306

(3.86 vs. 3.29), indicating a noticeable enhancement in per-307

ceptual audio quality. Similarly, comparing G3 (DualCodec308

12.5Hz) with F2 (DAC-repro 12.5Hz) shows that while objec-309

tive metrics like PESQ and MCD are comparable, DualCodec310

consistently delivers better perceptual quality as evidenced by311

its higher UTMOS scores. These comparisons highlight the312

benefits of DualCodec’s additional semantic encoding stream313

in enhancing perceptual audio quality.314

We further examine the impact of increasing the RVQ code-315

book sizes in DualCodec, which slightly increases the bitrate316

while maintaining a consistent token rate of 75 tokens/s. Model317

G2, with a configuration of 16384 codebooks in RVQ-1 and318

1024 in RVQ-rest, shows marked improvements over G1 in ev-319

ery metric. The trend continues with models G4 and G5, which320

explore configurations with 12.5Hz frame rates and larger code-321

books in the waveform encoding stream. Model G5, with322

a configuration of 16384+4096 codebooks, achieves the best323

overall performance among all systems, with PESQ nb=3.11,324

STOI=0.92, and UTMOS=4.11. This result highlights that in-325

creasing the codebook size while leveraging lower frame rates326

can significantly enhance low-bitrate audio quality.327

2Bitrate quantifies how much data is used to represent audio signals.
Codec model usually support multiple bitrate settings by RVQ dropout.
Bitrate is calculated by (log2 codebook size) × Tok/s × Num vq.

4.4. SLM analysis 328

Table 4: Codec-based SLM performance on Seed-TTS-Eval.

SLM Codec EN EN ZH ZH RTF↓WER↓ SIM↑ WER↓ SIM↑

GT - 2.13 0.73 1.25 0.75 -

VALL-E

SpeechTokenizer 15.4 0.47 21.5 0.55 0.76
Mimi 8.16 0.48 10.5 0.55 0.16
DualCodec 25Hz 3.40 0.57 2.49 0.67 0.30
DualCodec 12.5Hz 4.40 0.54 4.90 0.65 0.16

AR +
SoundStorm

SpeechTokenizer 11.3 0.50 46.3 0.57 1.18
Mimi 9.09 0.50 39.4 0.57 0.34
DualCodec 25Hz 3.56 0.67 2.93 0.75 0.66
DualCodec 12.5Hz 4.93 0.59 4.72 0.69 0.34

Metrics. We adopt VALL-E [4] and AR+SoundStorm [36] as 329

SLM systems and train each SLM with different codec sys- 330

tems. VALL-E has 270M parameters in AR, 400M in NAR. 331

AR+SoundStorm has 800M in AR, 300M in NAR. For Dual- 332

Codec, we use models G2 and G5 in Table 3 for 25Hz and 333

12.5Hz, respectively. We report the WER and speaker simi- 334

larity SIM-O (SIM) on Seed-TTS-Eval benchmark [28]. We 335

report the real-time-factor (RTF) tested on an A100 GPU which 336

correlates to the inference speed. Results are shown in Table 4. 337

Performance Comparisons. Table 4 demonstrates that Du- 338

alCodec outperforms SpeechTokenizer and Mimi baselines in 339

both SLMs performance. We attribute this to DualCodec’s more 340

accurate semantic content and better codec reconstruction qual- 341

ity. The AR+SoundStorm SLM paired with DualCodec 25Hz 342

achieves the best performance, followed by DualCodec 12.5Hz. 343

The comparison between DualCodec 25Hz and 12.5Hz reveals 344

a clear tradeoff between quality and inference speed. Dual- 345

Codec 25Hz consistently achieves lower WER and higher SIM 346

scores, making it the ideal choice for tasks prioritizing accuracy 347

and similarity. On the other hand, DualCodec 12.5Hz provides 348

faster inference at the cost of different degrees of performance 349

decrease. We also notice that Mimi and SpeechTokenizer have 350

excessively large Chinese WERs in AR+SoundStorm. We sug- 351

gest this is due to a lack of RVQ-1 semantic pitch information, 352

which becomes more notable in SoundStorm because its NAR 353

does not have text prompting. 354

5. Conclusion 355

We introduced DualCodec, a low-frame-rate, semantically- 356

enhanced neural audio codec designed for efficient speech gen- 357

eration. By leveraging dual encoding, low frame rates and larger 358

codebooks, DualCodec significantly improves semantic accu- 359

racy, audio reconstruction quality, and SLM efficiency. Future 360

work will investigate methods to further increase the 12.5Hz se- 361

mantic accuracy, scaling up the model and data, and exploring 362

Transformer architecture. DualCodec also has the potential to 363

be used in real-time multimodal LLM applications. 364
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