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ABSTRACT

Quantum state property estimation (QPE) is a fundamental challenge in quan-
tum many-body problems in physics and chemistry, involving the prediction of
characteristics such as correlation and entanglement entropy through statistical
analysis of quantum measurement data. Recent advances in deep learning have
provided powerful solutions, predominantly using auto-regressive models. These
models generally assume an intrinsic ordering among qubits, aiming to approxi-
mate the classical probability distribution through sequential training. However,
unlike natural language, the entanglement structure of qubits lacks an inherent
ordering, hurting the motivation of such models. In this paper, we introduce a novel,
non-autoregressive generative model called QuaDiM, designed for Quantum state
property estimation using Diffusion Models. QuaDiM progressively denoises Gaus-
sian noise into the distribution corresponding to the quantum state, encouraging
equal, unbiased treatment of all qubits. QuaDiM learns to map physical variables
to properties of the ground state of the parameterized Hamiltonian during offline
training. Afterwards one can sample from the learned distribution conditioned on
previously unseen physical variables to collect measurement records and employ
post-processing to predict properties of unknown quantum states. We evaluate
QuaDiM on large-scale QPE tasks using classically simulated data on the 1D
anti-ferromagnetic Heisenberg model with the system size up to 100 qubits. Nu-
merical results demonstrate that QuaDiM outperforms baseline models, particularly
auto-regressive approaches, under conditions of limited measurement data during
training and reduced sample complexity during inference.

1 INTRODUCTION

Quantum state property estimation (QPE) is a pivotal and challenging problem in the field of
quantum many-body physics (Carleo & Troyer, 2017; Torlai et al., 2018; Carrasquilla, 2020; Gebhart
et al., 2023; Miles et al., 2023) and chemistry (Kandala et al., 2017; Schütt et al., 2019; Cao et al.,
2019; Sajjan et al., 2022; Barrett et al., 2022). The primary goal is to accurately infer certain
properties of the quantum state such as correlation and entanglement entropy using as few quantum
measurements as possible. QPE has wide-ranging applications in quantum computing (Dunjko
& Briegel, 2018; Torlai & Melko, 2020), quantum cryptography (Brakerski & Shmueli, 2019;
Ananth et al., 2022), and quantum simulation (Jia et al., 2019; Schmitt & Heyl, 2020). As the
number of qubits in a system grows, the dimensionality of the corresponding quantum state increases
exponentially, making property estimation increasingly difficult. Traditional techniques, like quantum
state tomography (D’Ariano et al., 2003; Jullien et al., 2014), become impractical for large systems
due to their exponential computational overheads.

Recent advancements in machine learning have opened new avenues for QPE, leveraging the models
to extract intricate features from quantum measurement records. An overview about the pipeline
is provided in Fig. 1. A notable way relies on auto-regressive models, which assumes an inherent
order among qubits (e.g. left-to-right for 1D chain, or ZigZag order for 2D lattice) and decompose
their joint probability distribution into conditional probabilities. These approaches include RNN-
based models (Carrasquilla et al., 2019; Hibat-Allah et al., 2020; Barrett et al., 2022), CNN-based
models (Wu et al., 2019; Sharir et al., 2020) and transformer-based models (Cha et al., 2021; Wang
et al., 2022; Du et al., 2023; Tang et al., 2024). By learning from the records from quantum
measurements, the trained model’s output would approximate the (classical) distribution of quantum
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Figure 1: An Overview of Quantum State Property Estimation. Given the specified Hamiltonian
H(x) parameterized by x, the quantum system initiates from state |ψs⟩ and evolves controlled by
H(x) in either physical experiments on a quantum processing unit (QPU) or simulations on CPUs.
Measurements are then performed on this final state, generating records stored in classical memory.
The machine learning model is trained using measurement records conditioned on x and the model’s
output would reconstruct the distribution of |ψs⟩. The properties of unseen states conditioned on new
x such as fidelity can be obtained by post-processing the samples generated by the learned model.

states. Afterwards properties of the quantum states can be recovered by sampling from the model’s
output and necessarily post-processing.

In auto-regressive models, each qubit is conditioned on the states of previously modeled qubits,
introducing an inherent bias due to the imposed order. While this method works well in domains
where data naturally follows a sequential structure, such as language (Yang et al., 2019; Brown et al.,
2020) or time series (Hewamalage et al., 2021), it comes with a significant limitation when applied to
quantum systems, where qubit interactions are non-sequential and the complex entanglement does not
adhere to a predefined order. Based on our experimental results, the reliance on sequential modeling
could lead to oversimplified representations of the entanglement structure, limiting the model’s ability
to fully capture the intricate correlations between qubits. Consequently, modeling quantum systems
with sequential dependencies introduces biases that may fail to capture the true complexity of the
entanglement and correlations, leading to suboptimal estimations of quantum properties.

To address these challenges, we propose QuaDiM (Quantum state property estimation using
Diffusion Models), a novel non-autoregressive generative model based on diffusion models (Ho et al.,
2020; Dhariwal & Nichol, 2021; Song et al., 2021a;c). Unlike auto-regressive approaches, QuaDiM
treats all qubits equally without imposing a predefined order, thereby avoiding potential biases. The
model learns a mapping from physical variables, i.e. the parameters of a system’s Hamiltonian, to
the ground-state properties associated with those variables. Once trained, QuaDiM is capable of
generalizing to previously unseen quantum systems, allowing it to predict quantum state properties
for systems not encountered during training. This generalization capability is particularly valuable in
practical scenarios where the quantum states of interest may cannot be prepared on modern noisy
intermediate-scale quantum (NISQ) hardware, or quantum states difficult to simulated classically.

The underlying mechanism of QuaDiM is rooted in diffusion models, which iteratively denoise
Gaussian noise to generate samples from the target distribution (Austin et al., 2021; Kong et al.,
2021). In contrast with auto-regressive models, QuaDiM offers an advantage by treating all qubits
equally throughout the denoising process, encouraging to remove the need for any predefined
ordering of qubits. Mathematically, QuaDiM initiates from an random Gaussian distribution, which
is progressively refined through a series of denoising steps to approximate the true distribution
of the quantum state. This iterative process facilitates QuaDiM to capture correlations between
qubits more effectively and without the biases introduced by a sequential models. By incrementally
learning to reverse the noise process, the model naturally handles the complex interactions and
entanglements inherent in many-body quantum systems. As a result, QuaDiM not only achieves
higher accuracy in QPE but also demonstrates scalability when applied to large-scale systems up to
100 qubits. The model’s iterative refinement mechanism encourages that all parts of the system are
considered simultaneously, with the hope of being helpful for estimating properties like correlation
and entanglement entropy, where the relationships between all qubits are equally important.

We validate the efficacy of QuaDiM through extensive numerical experiments on predicting the
correlation and entanglement entropy of the 1D anti-ferromagnetic Heisenberg model with up to 100
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qubits. The results show that QuaDiM outperforms baselines, especially auto-regressive approaches,
in scenarios with limited training measurements data and reduced sample complexity. QuaDiM’s
ability to handle these challenging conditions highlights its potential for practical applications in
quantum computing and related areas, where resource constraints and data scarcity are prevalent.

Our contributions. 1) We introduce QuaDiM, the first-ever (to the best of our knowledge) non-
autoregressive conditional generative model for QPE. By utilizing diffusion models, QuaDiM itera-
tively denoises Gaussian noise to accurately approximate the distribution of unknown quantum states
from limited measurements, encouraging equal and unbiased treatment of all qubits. 2) We classically
simulate relatively large-scale quantum systems with up to 100 qubits to generate extensive training
and test datasets for evaluation, showing QuaDiM’s scalability and practical applicability. 3) We
conduct experiments on QPE tasks involving the prediction of correlation and entanglement entropy.
Our results show that QuaDiM achieves lower prediction errors compared to baselines, particularly
outperforming auto-regressive models such as Carrasquilla et al. (2019) and Tang et al. (2024).

2 RELATED WORK AND PRELIMINARIES

Learning-based Quantum State Property Estimation. In the domain of learning-based QPE,
autoregressive models such as RNN-based (Carrasquilla et al., 2019; Hibat-Allah et al., 2020),
CNN-based (Wu et al., 2019; Sharir et al., 2020), and transformer-based models (Cha et al., 2021;
Wang et al., 2022; Du et al., 2023; Tang et al., 2024) have been extensively explored. These models
inherently assume a sequential ordering of qubits, introducing biases that could limit their ability
to capture the complex entanglement and correlations in quantum systems where qubits interact
non-sequentially. This sequential dependency may lead to oversimplified representations of the
entanglement structure, hindering accurate property estimation.

Alternatively, generative models that learn variational wave functions—such as those based on
deep Boltzmann machines (DBMs) (Gao & Duan, 2017; Nomura et al., 2017), variational autoen-
coders (VAEs) (Rocchetto et al., 2018), and generative adversarial networks (GANs) (Ahmed et al.,
2021)—have been proposed to represent quantum states. While capable of capturing complex proba-
bility distributions, these models typically learn representations for a single specific quantum state and
lack the ability to generalize to unseen states, restricting their applicability in predicting properties
of new quantum systems. Although GANs (Ahmed et al., 2021) could, in principle, generalize to
unknown quantum states, their learning objective involves reconstructing the density matrix. This
significantly hinders scalability because the complexity of fully describing a density matrix increases
exponentially w.r.t quantum system size, making such approaches impractical for large-scale systems.
Moreover, recent efforts have proposed representing quantum states using diffusion models (Zhu
et al., 2024). However, this work requires direct access to the density matrix of quantum states as
input and the experiments are only performed on relatively small quantum systems with 4 qubits,
which is impractical for the NISQ devices with hundreds or thousands of qubits. This fundamental
limitation hampers the feasibility of applying these techniques to real-world quantum systems.

Quantum State and Quantum Measurement. A quantum bit, or qubit, serves as the fundamental
unit in quantum systems. The collection of all qubits within a (sub)system constitutes the quantum
state. Prior to measurement, a qubit exists in a superposition of states, but upon measurement, it
collapses into a definite state. The mathematical representation of a quantum state depends on the
choice of basis states. For instance, using the orthogonal computational basis states |0⟩ =

[
1
0

]
and

|1⟩ =
[
0
1

]
, a single qubit can be expressed as a linear combination |ϕ⟩ = α|0⟩ + β|1⟩ =

[ α
β

]
in

the complex vector space C2, where α, β ∈ C are complex amplitudes satisfying the normalization
condition |α|2 + |β|2 = 1. An alternative representation of a quantum state employs the density
operator or density matrix. For example, the density matrix corresponding to |0⟩ is given by
ρ0 = |0⟩⟨0| =

(
1 0
0 0

)
, where ⟨0| denotes the conjugate transpose of |0⟩.

A general quantum state comprising L qubits can be represented by a wave function:

|ψ⟩ =
K∑

σ1=1

· · ·
K∑

σL=1

Ψ(σ1, . . . , σL)|σ1, . . . , σL⟩, (1)

where Ψ : ZL → C assigns a complex amplitude to each fixed configuration σ = (σ1, . . . , σL) of
the L qubits, satisfying the normalization condition

∑K
σ1=1 · · ·

∑K
σL=1 |Ψ(σ1, . . . , σL)|2 = 1. Each

σi ∈ {1, . . . ,K} represents one of the K possible outcomes when a measurement is performed on
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the i-th qubit. The wave function resides in a complex Hilbert space, with the vector representation
|ψ⟩ ∈ CKL

and its density matrix |ψ⟩⟨ψ| ∈ CKL×KL

, both of which grow exponentially large with
increasing L. In this paper, we consider the Pauli-6 measurements such that K = 6.

Quantum measurements translate aspects of quantum information into classical data for subsequent
processing, utilizing a set of measurement operators {Ok}Kk=1 that satisfy the completeness relation∑

k Ok = I, where K denotes the total number of possible outcomes. Measuring a qubit yields
different results corresponding to the indices k of the measurement operators. Specifically, for a
quantum state ρ, the probability of obtaining outcome k upon measurement is p(k) = tr(ρOk). In
systems with L qubits, it is common practice to perform measurements on all qubits simultaneously
or in parallel (Leibfried et al., 1996; Jullien et al., 2014). According to Born’s rule (Born, 1926) in
quantum mechanics, this measurement process produces a string of outcomes σ = (σ1, . . . , σL),
where each σi ∈ {1, . . . ,K}, with probability |Ψ(σ1, . . . , σL)|2 as defined in Eq. 1.

Diffusion Models. Diffusion models are a class of generative models that have gained significant
attention in recent years due to their ability to produce high-quality samples from complex distribu-
tions (Ho et al., 2020; Song et al., 2021a). These models typically consist of two main processes: a
forward process that gradually adds noise to the data, and a reverse process that aims to reconstruct
the original data from the noisy representation. In the forward process, a data point sampled from a
real-world distribution, denoted as z0 ∼ p(z), is progressively corrupted by adding Gaussian noise.
This process transforms z0 into a standard Gaussian noise vector zT ∼ N (0, I) over a predefined
number of steps T . For each step t ∈ {1, 2, . . . , T}, the perturbation is governed by the conditional
distribution p(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI), where βt ∈ (0, 1) represents varying variance

scales at each time step. This formulation allows for a controlled degradation of the original data,
enabling the model to learn to navigate through the noise space effectively. Once the forward process
is complete, the reverse denoising process seeks to recover the original data z0 by sampling from
zT . This is achieved through the training of a diffusion model fθ, which learns the conditional
distributions necessary to reverse the noise addition process. The learning objective typically involves
minimizing the difference between the predicted and actual distributions, often through techniques
such as score matching (Song et al., 2021b) or variational inference (Sohl-Dickstein et al., 2015).
Diffusion models have demonstrated remarkable capabilities in generating high-fidelity samples
across various domains, including image synthesis (Rombach et al., 2022), audio generation (Kong
et al., 2021), and more recently, applications in solving combinatorial optimization problems (Li
et al., 2024) and imitation learning (Pearce et al., 2023). Their inherent flexibility and robustness
also make them an ideal candidate for capturing the complex distributions associated with quantum
systems, thus paving the way for advancements in quantum machine learning applications.

Classical Shadow for Post-Processing. A standalone generative model and the samples drawn
from its distribution cannot directly reconstruct a quantum state or extract certain features of it.
Post-processing is necessary. In this paper, we consider using classical shadow (Huang et al.,
2020) based on randomized single-qubit measurements to predict quantum state properties. This
measurement procedure is highly efficient on both quantum experiments and classical simulations.
Accordingly, we employ Pauli-6 positive operator-valued measure (POVM) to collect discrete mea-
surement records, which are used to train the generative model. Concretely, the Pauli-6 POVM is
given as OPauli-6 =

{
1
3 × |0⟩⟨0|,

1
3 × |1⟩⟨1|,

1
3 × |+⟩⟨+|,

1
3 × |−⟩⟨−|,

1
3 × |r⟩⟨r|,

1
3 × |l⟩⟨l|

}
, where

{|0⟩, |1⟩}, {|+⟩, |−⟩}, {|r⟩, |l⟩} stand for the eigenbasis of the Pauli operators Z,X , and Y , re-
spectively. Suppose that the quantum system has L qubits, measuring a single qubit using OPauli-6

leads to a snapshot ρ̂(m)
i = 3|s(m)

i ⟩⟨s(m)
i | − I where i ∈ {1, . . . , L} denotes the i-th qubit and

m ∈ {1, . . . ,M} denotes the m-th measurement. Then the quantum state properties such as corre-
lation and the entanglement entropy can be estimated using the LM snapshots. The details can be
found in Sec. 4. After the learning model have been trained, we sample from the model’s distribution
conditioned on the unseen parameters and collect the samples, i.e., the measurement data. Then
classical shadow is used for post-processing to estimate the properties of unknown quantum states
and the results are compared to the ground truth to evaluate the model’s performance.

3 METHODOLOGY

We first define the task of QPE in Sec. 3.1. Key methods and insights underlying QuaDiM are then
detailed in Sec. 3.2, where we discuss its mathematical foundations and core innovations.
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Figure 2: a) The diffusion forward process iteratively perturbs the input by adding Gaussian noise,
while the reverse process incrementally removes the noise to recover the original distribution. To
facilitate the transition between the latent variable z0 and the observed records σ, an embedding
function (Li et al., 2022) is employed, along with a rounding step (Gong et al., 2023). b) The main
learnable part is a multi-layer transformer. It models the mean of the posterior distribution qθ.

3.1 PROBLEM DEFINITION

The problem is to learn to predict the quantum state properties of ground states of parameterized
Hamiltonians. We consider a family of Hamiltonians, where the Hamiltonian H(x) is parameterized
by a set of real parameters x ∈ Rp. These parameters are physical condition variables determining
the evolution dynamics of the quantum system. Different physical conditions could lead to different
ground states. The neural network is trained on training data consisting of sampled values of {xi}N

tr

i=1 ,
each accompanied by the corresponding measurement records Ri ∈ ZMin×L obtained from Pauli-6
measurements repeatedly operated Min times on the ground state ρ(xi) of H(xi). This training data
could be obtained from either classical simulations or quantum experiments. During the inference
phase, we sample Mout times from the trained neural network conditioned on a new values of
x∗ ∈ {xi}N

te

i=1 in the test data and outputs a collection of measurement data R∗ ∈ ZMout×L of the
unknown quantum state ρ(x∗). Ground state properties can then be estimated using post-processing
on the R∗ such as the classical shadow.

3.2 QUADIM
We propose QuaDiM to extend vanilla diffusion models to learn conditional quantum state represen-
tations (as shown in Fig. 2), concerning the architecture and the training objective. For conciseness if
not otherwise specified, we will omit the subscripts of the variables in the subsequent text.

3.2.1 FORWARD NOISING PROCESS WITH QUADIM
Although diffusion models have achieved success in image generation, applying continuous diffusion
models to inherently discrete quantum measurement records remains non-trivial. We follow the
Diffusion-LM (Li et al., 2022) in the text generation domain to design an embedding function that
projects discrete measurement records into a high-order continuous feature space. Specifically, given
a physical condition x and the corresponding measurement records R, QuaDiM first randomly
samples a measurement string σ = (σ1, . . . , σL) which is a single row of R. To apply a continuous
diffusion model to discrete measurements, a token embedding function EMB(σl) is introduced to
map the single-qubit measurement outcome σl to a d-dimensional vector for each l ∈ {1, . . . , L}.
The token embeddings are jointly trained with diffusion model’s parameters. We empirically find that
these learnable embeddings can achieve better numerical results than the fixed embeddings. The token
embedding is accompanied with trainable positional embedding (PE) with the same hidden dimension
d. Thus the token embedding function is written as EMB(σ) = [EMB(σ1) + PE(1), . . . , EMB(σL) +
PE(L)] ∈ RL×d. The initial input to the diffusion model in time step t = 0 is an additional Markov
transition from EMB(σ), given as

p̃δ (z0|σ) = N (z0; EMB(σ), β0I) , (2)

where δ is the set of parameters of learnable token embeddings and positional embeddings. The
forward noising process gradually corrupts z0 into a standard Gaussian noise zT ∼ N (0, I). For each
time step t ∈ {1, . . . , T}, the perturbation is defined as p(zt|zt−1) = N

(
zt;
√
1− βtzt−1, βtI

)
.
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3.2.2 REVERSE CONDITIONAL DENOISING PROCESS WITH QUADIM
The proposed conditional denoising employs a classifier-free approach, i.e. we do not need to train an
additional classifier to navigate the denoising process. Instead of performing conditional denoising
directly on the discrete quantum measurement records, we perform it on the sequence of continuous
latent variables z0:T defined by the QuaDiM. It enables a simple gradient-based algorithm to perform
complex, controllable quantum state generation based on diffusion models. Specifically, conditional
denoising is equivalent to decoding from the posterior qθ(z0:T |x) = q(zT )

∏T
t=1 qθ(zt−1|zt,x). For

each denoising step, we model it as a Gaussian qθ(zt−1|zt,x) = N (zt−1;µθ(zt,x, t), γ(t)I), where
µθ and γ(t) are the predicted mean and variance:

µθ(zt,x, t) =
βt−1

√
1− βt
βt

zt +
βt

√
1− βt−1

βt

fθ(zt,x, t), γ(t) =
βtβt−1

βt

, (3)

where βt = 1 −
∏t

i=1(1 − βt). The network µθ(zt,x, t) is akin to the multi-layer transformer
decoder (Vaswani et al., 2017). The distinction is that an additional time step embedding is specified
by the transformer sinusoidal position embedding (PE) (Ho et al., 2020). Besides, to achieve
the controllable generation of quantum states conditioned on the physical variable x, we use a
feed-forward network (FFN) with one hidden layer to transform x into a hidden feature with the
same dimension d. This feature is viewed as a global information added to the token embeddings of
measurement records, such that the input to the transformer at time step t is H0 = zt+PE(t)+FFN(x).
Suppose that the (l − 1)-th layer’s output Hl−1 ∈ RL×d where d is the hidden dimension, we have:

Hl = MULTIHEADATTENTION(Hl−1) =
q
Ol

1, . . . ,O
l
h

y
Wl

o,

with Ol
j =

(Hl−1Wl
q,j)(H

l−1Wl
k,j)

⊤
√
d

Hl−1Wl
v,j ,

(4)

where J·K denotes the concatenation operation, Wl
q,j , Wl

k,j , Wl
v,j ∈ Rd×d/h and Wl

o ∈ Rd×d are
the parameters to be learned. In this paper, all the experimental results of QuaDiM are reported for a
transformer configuration consisting of 4 heads, 4 layers, and 128 hidden dimensions. The maximum
denoising time steps is set to T = 2000.
3.2.3 LEARNING OBJECTIVE
The canonical learning objective is to minimize the KL divergence between the joint probability
distribution p(z0:T |σ) and qθ(z0:T |x) corresponding to the forward and reverse processes defined by
the diffusion model, respectively. The objective is given as

LKL = Ep(z0:T |σ) log
p(z0:T |σ)
qθ(z0:T |x)

, (5)

where p(z0:T |σ) = p̃δ (z0|σ)
∏T

t=1 p(zt|zt−1) denotes the distribution of the forward process, and
qθ(z0:T |x) = q(zT )

∏T
t=1 qθ(zt−1|zt,x) represents the distribution of the reverse process. Note

that in the forward process, p̃δ (z0|σ) is the Markov transition (as given in Eq. 2) from the discrete
quantum measurements to their continuous embeddings, allowing the token embeddings and model
parameters to jointly participate in gradient descent. The objective can be further simplified to

LKL = Ep(z0:T |σ)

[
log

p(zT |z0)
q(zT )

+

T∑
t=2

log
p(zt−1|z0, zt)
qθ(zt−1|zt)

+ log
p̃δ (z0|σ)
qθ(z0|z1)

]
. (6)

The detailed derivation and explanation of each term are given in Appendix A. In the reverse process,
the diffusion model iteratively removes Gaussian noise zT and outputs the embeddings z0. To
estimate the reconstruction quality from the model’s output distribution when training the model, a
rounding step (Li et al., 2022; Gong et al., 2023) is added to map the continuous z0 obtained from
the denoising process back to discrete measurement outcomes σ of length L. Specifically, the step
is given as q̃θ(σ|z0) =

∏L
l=1 q̃θ(σl|z0,l) and z0,l is the l-th component of z0 ∈ RL×d. Now we

introduce the overall objective as the combination of two terms: maximizing the average negative
log-likelihood Ep(z0|x,z1:T ) log q̃θ(σ|z0) and minimizing the KL divergence LKL. Thus the objective
is as follows, where the detailed derivation is given in Appendix B.

min
δ,θ
L = min

δ,θ

[
LKL − Ep(z0|x,z1:T ) log q̃θ(σ|z0)

]
= min

δ,θ
Ex∈{xi}

σ∈R

[
∥EMB(σ)− µθ(z1,x, 1)∥2 +

T∑
t=2

∥z0 − µθ(zt,x, t)∥2 − log q̃θ(σ|z0)

]
,

(7)
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Table 1: RMSE of predicting the correlations of all subsystems of size two on the test dataset. The
result is averaged over Heisenberg model instances and each pair of adjacent qubits. For CS, M
denotes the number of input measurements. While for the neural network-based approaches M
denotes the number of sampled measurements Mout from trained models. The best results are
emphasized in red while the second-best results are distinguished in blue.

L = 10 L = 40 L = 70 L = 100
Method

M = 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000

CS 0.1564 0.0509 0.0156 0.0107 0.1696 0.0538 0.0173 0.0121 0.1771 0.0545 0.0172 0.0121 0.1724 0.0547 0.0172 0.0122

RBFK 0.0796 0.0639 0.0578 0.0493
NTK 0.0775 0.0622 0.0565 0.0470

RNN 0.1328 0.0502 0.0145 0.0119 0.1795 0.0671 0.0164 0.0118 0.2137 0.0739 0.0240 0.0153 0.2325 0.0806 0.0251 0.0163
LLM4QPE 0.1316 0.0489 0.0136 0.0093 0.1624 0.0513 0.0142 0.0097 0.1814 0.0527 0.0155 0.0116 0.1759 0.0531 0.0152 0.0114
Ours 0.1269 0.0432 0.0097 0.0085 0.1582 0.0465 0.0113 0.0091 0.1679 0.0473 0.0117 0.0092 0.1686 0.0478 0.0125 0.0098

4 EXPERIMENTS

In this section, we first introduce dataset construction and baselines in Sec. 4.1 and Sec. 4.2. In
Sec. 4.3 and Sec. 4.4, we evaluate QuaDiM’s performance on QPE tasks compared to state-of-the-art
baselines, focusing on predicting correlation and entanglement entropy in various system sizes.

4.1 DATASETS

We focus on investigating the ground state of the one-dimensional anti-ferromagnetic Heisenberg
model, as it can be efficiently simulated classically at relatively large scale. Its Hamiltonian is
parameterized by x ∈ RL−1 and can be written as

H(x) =
∑
i

xi (XiXi+1 + YiYi+1 + ZiZi+1) , (8)

where L is the number of qubits and x is a sequence of real numbers for the coupling strength among
qubits. X,Y, Z denotes the Pauli operator and Xi indicates that Pauli X is operated on the i-th qubit.

For the sake of simplicity, we first describe how a single sample is generated, with other samples in
the dataset being produced in a similar manner. Given the length L of the quantum system, we first
randomly sample L− 1 distinct values of x to construct the corresponding Hamiltonian H(x). We
then obtain the ground state of theH(x) using classical simulation based on tensor networks (Fishman
et al., 2022). Thanks to the efficiency of tensor networks, we are able to simulate quantum systems
from 10 to 100 qubits on a CPU cluster. Subsequently, Pauli-6 positive operator-valued measure
(POVM) is utilized to measure the ground state corresponding to H(x) and the output is a string-
like sequence σ = (σ1, . . . , σL) where σl ∈ {1, 2, . . . ,K}. The same measurement procedure is
performed Min times independently on the Min copies of the ground state. As a result, the model
input consists of x along with the corresponding measurement records R ∈ ZMin×L. The above
process is repeated N tr and N te times to obtain the training dataset {xi}N

tr

i=1 with measurement
records {Ri}N

tr

i=1 and test dataset {xj}N
te

j=1 with {Rj}N
te

j=1.

As for the ground truth labels, which represent the ground state properties of the Hamiltonian H(x)
such as correlation and entanglement entropy, we utilize exact diagonalization (Weiße & Fehske,
2008) for quantum systems with L ≤ 10 to obtain the true labels. For quantum systems with L > 10,
we collect a substantial amount of measurement data by setting M = 320, 000 and approximate the
corresponding labels using classical shadow (Huang et al., 2020).

4.2 BASELINES

We consider the classical shadow (CS) (Huang et al., 2020) – a SOTA learning-free protocol for
constructing the representation of an unknown quantum state. For learning-based baselines, we
consider kernel methods including the Radial Basis Function Kernel (RBFK) and Neural Tangent
Kernel (NTK) implemented in Huang et al. (2022). We also explore advanced deep learning
approaches, including a Recurrent Neural Network (RNN)-based model (Carrasquilla et al., 2019),
and a transformer-based SOTA model LLM4QPE (Tang et al., 2024).

For all the methods, we set N tr = 100 and N te = 20, with the number of qubits in the quantum
system L ∈ {10, 40, 70, 100}. To construct the training set, we perform repeated measurements
of Min = 1000 for each ground state. To evaluate the performance of the trained QuaDiM and
auto-regressive baselines in predicting certain quantum state property w.r.t. different sampling counts,
the model is sampled Mout times, and the outputs are processed to predict the ground state property
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Figure 3: Visualization of predicted correlations Ĉij for the ground state of the 1D anti-ferromagnetic
Heisenberg model of length L = 10 with different number of samples Mout from the trained models.
The chain in the upper right corner represents a Heisenberg model selected from the test set, where the
width of the edges indicates the coupling strength xi. The upper part shows the prediction results of
LLM4QPE (Tang et al., 2024), while the lower part presents those of proposed QuaDiM alongside the
ground truth. For all the settings, we fix Min = 1000 and use classical shadow for post-processing.
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Figure 4: Visualization of predicted correlations of QuaDiM Ĉij for the ground state of the 1D
anti-ferromagnetic Heisenberg model of length L = 10. The measurement samples are generated
from the different denoising time step t. For all the settings, we fix Min = 1000 and Mout = 10000.

of the Hamiltonian in the test dataset. We use the Root Mean Square Error (RMSE) to assess the
difference between the predicted property and the true one, with smaller RMSE indicating that the
model achieves better predictive accuracy with fewer measurement samples or sampling iterations.
To adapt our proposed generative model, we made appropriate adjustments to all auto-regressive
baselines including RNN and LLM4QPE, to facilitate generative training and sampling from the
trained model, while employing the same classical shadow protocol for post-processing to ensure a
fair comparison. For the kernel methods, since generative training is not possible, the model input
retains only the physical condition x. For specific details about baselines, please refer to Appendix D.

4.3 PREDICT THE CORRELATION

The first learning task is to predict the correlations of all subsystems of size two. Denote the density
matrix of the quantum state as ρ. For two qubits located at different positions i and j, the correlation
is described as Cij = tr(Oijρ) where Oij =

1
3 (XiXj + YiYj + ZiZj). Given a physical condition

x, the model along with post-processing is learned to approximate the mapping f : x→ Cij .

The data sampled from the trained model will be fed into the classical shadow for post-processing.
Specifically, assuming the number of samples is Mout, we obtain an output Rout ∈ ZMout×L, where
each element can be converted into a snapshot ρ̂(m)

i = 3|s(m)
i ⟩⟨s(m)

i | − I where i ∈ {1, . . . , L} and
m ∈ {1, . . . ,Mout}, as discussed in Sec. 2. Then the predicted correlation between the i-th qubit
and the j-th qubit is calculated by

Ĉij =
1

3Mout

∑
o∈{x,y,z}

Mout∑
m

tr
[(
ρ̂
(m)
i ⊗ ρ̂(m)

j

) (
σo
i ⊗ σo

j

)]
. (9)

As shown in Tab. 1, QuaDiM achieves the lowest RMSE across all the configurations, showcasing its
ability to deliver precise correlation predictions even with a moderate Mout. An important advantage
of QuaDiM is its ability to maintain excellent performance even with fewer Mout. For instance, at
Mout = 100, QuaDiM’s RMSE of surpasses CS and remains competitive with the auto-regressive
baselines. This trend persists across larger system sizes as well. QuaDiM demonstrates strong
performance at low sample counts, indicating its efficiency in utilizing limited samples from the
trained model for accurate quantum state property estimation.
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As expected, the RMSE decreases with increasing Mout, reflecting that all models except for
kernel methods improve in predictive accuracy as more measurement samples become available.
However, the degree of improvement varies significantly between methods. The CS protocol performs
reasonably well for small Mout but shows diminishing returns at larger Mout, particularly for larger
system sizes (L = 40 and beyond). In contrast, QuaDiM continues to benefit from increased Mout,
which suggests that the model is better at learning and generalizing from larger quantum systems.

Kernel-based methods (RBFK and NTK) show competitive performance for medium system sizes
(L = 40), but they struggle to match the performance of the generative models (QuaDiM, LLM4QPE
and RNN) at higher sample sizes or larger system sizes. This could be due to the inherent limitations
of kernel methods in capturing the complex structure of large quantum systems, which generative
models like QuaDiM can better model through learned representations.

50 100 250 500 1000
Training size of Min

0.016

0.062

0.250

R
M

SE

L = 70

50 100 250 500 1000
Training size of Min

0.016

0.062

0.250

L = 100

RNN LLM4QPE QuaDiM

Figure 5: RMSE of predicting the correla-
tions of all subsystems of size two on the
test dataset of the auto-regressive baselines
and the proposed QuaDiM for L ∈ {70, 100}.
The models are trained using different of num-
ber of input measurements Min.

One of the most critical challenges in quantum state
estimation is scalability. While some methods, such
as the classical shadow approach, demonstrate robust
performance for smaller system sizes (L = 10), their
performance becomes inferior compared to the neu-
ral network-based methods as L increases. This is
consistent with the findings in Huang et al. (2022)
that neural networks could more easily display non-
local correlations, allowing in principle to capture
quantum states with higher entanglement for rela-
tively larger quantum systems. Notably, for L = 100,
the RNN-based baseline yields significantly higher
RMSE values compared to others, indicating that the
auto-regressive training and generation mechanism
makes oversimplified representations of the entangle-
ment structure, limiting the model’s ability to fully capture the intricate correlations between qubits.
Conversely, QuaDiM shows resilience to scaling, maintaining low RMSE values across all system
sizes, with only a slight increase in RMSE as L increases. This scalability suggests that QuaDiM
is particularly well-suited for handling large quantum systems, making it a promising approach for
real-world quantum computations where the number of qubits can be extensive (for example, IBM’s
latest commercial quantum computer has more than 1,000 qubits).

More results about the performance w.r.t. the samples complexity of the trained models. The
experimental results visualized in Fig. 3 show the predicted correlations Ĉij for the ground state of
the 1D anti-ferromagnetic Heisenberg model, with varying sample sizes Mout. QuaDiM outperforms
the auto-regressive baseline LLM4QPE in achieving lower RMSE with fewer samples. As the sample
size increases, QuaDiM continues to demonstrate superior performance, achieving an RMSE of
0.0097 at Mout = 10000, compared to LLM4QPE’s 0.0136. We also illustrate QuaDiM’s predicted
correlations at various denoising time steps t in Fig. 4. As the denoising process progresses, the
RMSE steadily decreases. This demonstrates that QuaDiM effectively reconstructs the distribution
of quantum states as the denoising process advances, with each time step reducing the noise and
improving the fidelity of the sampled quantum states. A more fine-grained visualization of the
prediction performance of QuaDiM is depicted in Fig. 6 in Appendix E.

More results about the performance w.r.t. the number of measurements used for training. The
experimental results shown in Fig. 5 highlight the predictive error of auto-regressive baselines and
our proposed QuaDiM when predicting correlations for subsystems of size two within quantum
systems of L ∈ {70, 100}. The models are trained using different numbers of input measurements
Min ranging from 50 to 1000. QuaDiM consistently outperforms the auto-regressive baselines
across all training sizes. For both L ∈ {70, 100}, it achieves a lower RMSE with fewer input
measurements compared to the other methods, showing a advantage in training efficiency. Notably, as
Min increases, QuaDiM ’s RMSE decreases more sharply than that of the baselines, indicating that it
can better approximate the (classical) probability distribution of quantum states using fewer input
measurements. In quantum computation, where measurement resources are often limited for both
quantum experiments and classical simulation (Gebhart et al., 2023), QuaDiM’s ability to perform
well with fewer measurements offers a significant advantage over auto-regressive methods.
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Table 2: RMSE of predicting the entanglement entropies of all subsystems of size two on the test
dataset. The result is averaged over Heisenberg model instances and each pair of adjacent qubits. The
best results are emphasized in red while the second-best results are distinguished in blue.

L = 10 L = 40 L = 70 L = 100
Method

M = 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000

CS 0.5966 0.0922 0.0204 0.0119 0.6487 0.0927 0.0294 0.0259 0.6421 0.0943 0.0312 0.0298 0.6518 0.0998 0.0357 0.0316

RBFK 0.1268 0.1037 0.0997 0.0752
NTK 0.1379 0.1034 0.0983 0.0719

RNN 0.5225 0.1164 0.0187 0.0115 0.6132 0.1054 0.0246 0.0212 0.7948 0.1305 0.0514 0.0385 0.8229 0.1476 0.0617 0.0439
LLM4QPE 0.4937 0.0948 0.0176 0.0102 0.5878 0.0896 0.0223 0.0207 0.6258 0.0912 0.0276 0.0251 0.6392 0.1055 0.0312 0.0286
Ours 0.5479 0.0867 0.0132 0.0089 0.5629 0.0861 0.0187 0.0145 0.5970 0.0879 0.0245 0.0218 0.6125 0.0928 0.0281 0.0243

4.4 PREDICT THE ENTANGLEMENT ENTROPY

Another learning task is to predict the second-order Rényi entanglement entropy of the subsystem
A, which is formulated as EA = − log(tr(ρ2A)), where A is a subsystem of the n-qubit quantum
system. The required number of measurements scales exponentially in the size of the subsystem A,
but is independent of total system size (Huang et al., 2020). In this paper, we consider learning the
entanglement entropy of all the subsystems of size two. This leads to a local quadratic feature for a
unknown quantum state ρ, which can be also efficiently estimated by the classical shadow given by

Eij = − log(tr(ρ2Aij
)) = − log(tr(SAijρ⊗ ρ)) = − log(tr(SAijE[ρ̂1]⊗ E[ρ̂2]))

≈ 1

Mout(Mout − 1)

∑
m ̸=n

tr(SAij ρ̂
(m)
1 ⊗ ρ̂(n)2 ) = Êij ,

(10)

where ρ̂1, ρ̂2 are two independent snapshots of the unknown state ρ and SAij denotes the local swap
operator of two copies of the subsystem comprising the i-th and the j-th qubits. The E[ρ̂] represents
the averaged value among Mout samples from the trained model. Given a specific physical condition
x, the model along with post-processing is learned to approximate the mapping f : x→ Eij .

Tab. 2 compares models’ performance in predicting the entanglement entropy of subsystems of size
two. The key metric is also the RMSE, with lower values indicating better predictive accuracy. The
results are presented across different system size L and sample sizes Mout from the trained models.
CS method performs reasonably well at lower system sizes and sample counts, but it struggles to
maintain competitive RMSE values as both M and L increase. Similarly, the kernel-based methods
demonstrate some degree of competitiveness but fall behind neural network-based models at larger
system sizes and higher sample counts. It can be seen that QuaDiM achieves superior performance
across most system sizes and sample counts, consistently achieving lower RMSE values compared to
baseline models. This trend continues as the sample size increases, with QuaDiM maintaining its
advantage over the other models. The RMSE reduction demonstrates that QuaDiM can accurately
predict the entanglement entropy even with a relatively small number of samples.

Performance across system sizes. QuaDiM also scales effectively as the system size increases. This
indicates that QuaDiM could be a practical choice for real-world quantum computations where the
number of qubits can be large. The model’s ability to maintain low RMSE values across different
system sizes shows its scalability even for the relative large quantum system with 100 qubits.

Sample efficiency from the trained models. One of the most important advantages of QuaDiM is its
sample efficiency. It consistently achieves lower RMSE values with fewer samples for post-processing.
As the number of samples increases, the performance gap widens, with QuaDiM achieving an RMSE
of 0.0145 with Mout = 20, 000, while LLM4QPE and CS exhibit higher RMSE. This sample
efficiency is critical in post-processing, as large samples leads to prohibitive post-processing costs.

5 CONCLUSION

In this paper, we introduced QuaDiM, a novel non-autoregressive model for QPE based on diffusion
models. Our results demonstrate it achieves superior performance in predicting quantum properties
such as correlation and entanglement entropy with limited measurement data and reduced samples.

Limitations and Future Work. While QuaDiM demonstrates promising improvements, there is
still room for further investigation regarding its scalability to highly entangled quantum systems and
its sampling efficiency. Future work will aim to extend the model to accommodate more complex
quantum systems and incorporate advanced methods to enhance the speed of diffusion sampling.
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A DETAILED DERIVATION OF EQ. 6

To derive the expanded form of the KL divergence in the learning objective, we start from the
definition of the KL divergence, which is given as

LKL = Ep(z0:T |σ)

[
log

p(zT |z0)
q(zT )

+

T∑
t=2

log
p(zt−1|zt, z0)
qθ(zt−1|zt)

+ log
p̃δ(z0|σ)
qθ(z0|z1)

]
. (11)

Note that the KL divergence between p and q is defined as

LKL = Ep

[
log

p

q

]
. (12)

Given that p is p(z0:T |σ) and q is qθ(z0:T |x), the KL divergence should be

LKL = Ep(z0:T |σ)

[
log

p(z0:T |σ)
qθ(z0:T |x)

]
. (13)

Both p and q are Markov chains and can be factorized. The forward process p(z0:T |σ) can be
factorized as

p(z0:T |σ) = p̃δ(z0|σ)
T∏

t=1

p(zt|zt−1). (14)

And the reverse process qθ(z0:T |x) can be also factorized as

qθ(z0:T |x) = q(zT )

T∏
t=1

qθ(zt−1|zt). (15)

Here, p̃δ(z0|σ) is the initial distribution, p(zt|zt−1) is the forward noising process, and qθ(zt−1|zt)
is the reverse denoising process. Substitute the factorized forms into the KL divergence and we can
get

LKL = Ep(z0:T |σ)

[
log p̃δ(z0|σ) +

T∑
t=1

log p(zt|zt−1)−

(
log q(zT ) +

T∑
t=1

log qθ(zt−1|zt)

)]

= Ep(z0:T |σ)

[
(log p̃δ(z0|σ)− log qθ(z0|z1)) +

T−1∑
t=1

(log p(zt|zt−1)− log qθ(zt|zt+1))

+ log p(zT |zT−1)− log q(zT )] .
(16)

We can express p(zt|zt−1) in terms of p(zt−1|zt, z0) using the properties of the Gaussian distributions
in the diffusion process. First, recall that in the forward process, the joint distribution p(z0:T |σ) can
be rewritten using the posterior distributions p(zt−1|zt, z0):

p(z0:T |σ) = p̃δ(z0|σ)p(zT |z0)
T∏

t=2

p(zt−1|zt, z0). (17)

This is possible because the diffusion process allows us to compute p(zt−1|zt, z0), which is Gaussian.
Then we substitute the new expression into the KL divergence:

LKL = Ep(z0:T |σ)

[
log p̃δ(z0|σ)− log qθ(z0|z1) + log p(zT |z0)− log q(zT ) +

T∑
t=2

(log p(zt−1|zt, z0)− log qθ(zt−1|zt))

]
.

(18)
Now, the KL divergence becomes:

LKL = Ep(z0:T |σ)

[
log

p̃δ(z0|σ)
qθ(z0|z1)

+ log
p(zT |z0)
q(zT )

+

T∑
t=2

log
p(zt−1|zt, z0)
qθ(zt−1|zt)

]
. (19)

The derivation is completed. We can further interpret each term in the expanded KL divergence as
follows.
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• Initial KL Term (t = 0).

Ep(z0|σ)

[
log

p̃δ(z0|σ)
qθ(z0|z1)

]
. (20)

This term measures the discrepancy between the initial embedding distribution p̃δ(z0|σ)
and the model’s initial reconstruction qθ(z0|z1).

• Final KL Term (t = T ).

Ep(zT |z0)

[
log

p(zT |z0)
q(zT )

]
. (21)

This term compares the noise distribution at time T conditioned on z0 with the standard
Gaussian prior q(zT ).

• Intermediate KL Terms (2 ≤ t ≤ T ).
T∑

t=2

Ep(zt−1,zt|z0)

[
log

p(zt−1|zt, z0)
qθ(zt−1|zt)

]
. (22)

These terms measure the discrepancy between the true posterior p(zt−1|zt, z0) and the
model’s predicted distribution qθ(zt−1|zt).

B DETAILED DERIVATION OF EQ. 7

To derive the learning objective of Eq. 7, we first review some notations and definitions of diffusion
models and the KL divergence in the main body of the paper as follows.

Measurement String: σ = (σ1, . . . , σL), a sequence of discrete tokens. Physical Condition: x,
a sequence of physical variables conditioning the ground state of the Hamiltonian H(x). Token
Embeddings: EMB(σ) ∈ RL×d, continuous embeddings of the measurement string. Initial Embed-
ding Distribution: p̃δ(z0|σ) = N (z0; EMB(σ), β0I). Forward Process: Adds noise to z0 to obtain
z1, . . . , zT , with transitions p(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI). Reverse Process: Starts from

zT ∼ N (0, I) and predicts z0 using qθ(zt−1|zt,x) = N (zt−1;µθ(zt,x, t), γ(t)I).

Then we derive this equation. The KL divergence between the forward process p(z0:T |σ) and the
reverse process qθ(z0:T |x) is

LKL = Ep(z0:T |σ)

[
log

p(z0:T |σ)
qθ(z0:T |x)

]
. (23)

Expanding the joint distributions and we obtain

p(z0:T |σ) = p̃δ(z0|σ)
T∏

t=1

p(zt|zt−1),

qθ(z0:T |x) = q(zT )

T∏
t=1

qθ(zt−1|zt,x).

(24)

Substituting back into the KL divergence and we obtain

LKL = Ep(z0:T |σ)

[
log p̃δ(z0|σ)− log qθ(z0|z1,x) +

T∑
t=1

(log p(zt|zt−1)− log qθ(zt−1|zt,x))− log q(zT )

]
.

(25)
Then the KL divergence is broken down and we can reorganize the KL divergence into terms
corresponding to each timestep. The formulation is given as

LKL = Ep(z0:T |σ)

[
KL (p(zT |z0)∥q(zT )) +

T∑
t=2

KL (p(zt−1|zt, z0)∥qθ(zt−1|zt,x)) + KL (p(z0|z1,σ)∥qθ(z0|z1,x))

]
.

(26)
For Gaussian distributions, the KL divergence between p = N (µp,Σp) and q = N (µq,Σq) is

KL(p∥q) = 1

2

[
tr(Σ−1

q Σp) + (µq − µp)
⊤Σ−1

q (µq − µp)− k + ln

(
detΣq

detΣp

)]
, (27)
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where k is the dimensionality. Given that variances are fixed and known, and constants can be ignored
during optimization, the KL divergence reduces to

KL (p∥q) ∝ ∥µq − µp∥2 . (28)

Now we can specify the KL divergence at each time step. For t = 1, the KL divergence between
p(z0|z1,σ) and qθ(z0|z1,x) is:

KL (p(z0|z1,σ)∥qθ(z0|z1,x)) ∝ ∥µθ(z1,x, 1)− µ̃1(z1, EMB(σ))∥2 , (29)

where µ̃1(z1, EMB(σ)) is the true posterior mean from the forward process. When the time step
t ≥ 2, for each t we have

KL (p(zt−1|zt, z0)∥qθ(zt−1|zt,x)) ∝ ∥µθ(zt,x, t)− µ̃t(zt, z0)∥2 . (30)

In the forward process, the posterior mean µ̃t is a linear combination of zt and z0 given by

µ̃t(zt, z0) =

√
αt−1βt
1− αt

z0 +

√
αt(1− αt−1)

1− αt
zt. (31)

When βt is small, we can approximate µ̃t(zt, z0) ≈ z0. Substituting the approximations back into
the KL divergence terms and we obtain the term for t = 1 is

∥µθ(z1,x, 1)− EMB(σ)∥2 . (32)

The term for t ≤ 2 is
∥µθ(zt,x, t)− z0∥2 . (33)

The rounding step involves mapping z0 back to the discrete measurements σ using q̃θ(σ|z0). The
negative log-likelihood of this step is

−Ep(z0|x,z1:T ) log q̃θ(σ|z0). (34)

Then we can combine all terms, the learning objective becomes to minimize

L = Ex,σ

[
∥EMB(σ)− µθ(z1,x, 1)∥2 +

T∑
t=2

∥z0 − µθ(zt,x, t)∥2 − log q̃θ(σ|z0)

]
. (35)

This objective encourages the model to minimize the difference between the predicted means
µθ(zt,x, t) and the true values (EMB(σ) at t = 1 and z0 for t ≥ 2), and encourages to maxi-
mize the likelihood of reconstructing the measurement string σ from z0.

C MORE BASICS OF QUANTUM STATES AND QUANTUM MEASUREMENTS

In this section, we provide more details about the quantum states and quantum measurements and
their relationship with classical joint distribution. For a comprehensive discussion, we refer the
readers who are interested in quantum computing and quantum information to the Section 2.1 of the
book Nielsen & Chuang (2010).

A single qubit – the smallest unit of quantum computing – is mathematically represented as a vector
|ψ⟩ = α|0⟩+ β|1⟩ parameterized by two complex numbers satisfying |α|2 + |β|2 = 1. Operations
on a qubit must preserve this norm, and thus are described by 2× 2 unitary matrices. Of these, some
of the most important are the Pauli operators; it is useful to list them here:

X ≡
[

0 1
1 0

]
, Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
. (36)

One could do some linear algebras and check that |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
are the eigenvectors of Z,

|+⟩ = 1√
2

[
1
1

]
and |−⟩ = 1√

2

[
1
−1

]
are the eigenvectors of X , |i+⟩ = 1√

2

[
1
i

]
and |i−⟩ = 1√

2

[
1
−i

]
are the eigenvectors of Y . The same qubit can be decomposed in to different orthonormal basis. For
example,

|ψ⟩ = α|0⟩+ β|1⟩

=
1√
2
(α+ β)|+⟩+ 1√

2
(α− β)|−⟩

=
1√
2
(α− βi)|i+⟩+

1√
2
(α+ βi)|i−⟩.

(37)
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Positive-operator valued measurement (POVM) is the testing or manipulation of a physical sys-
tem to yield a numerical result. POVM is described by a set of measurement operators {Πk}K−1

k=0
satisfying

∑
k Πk = I and each Πk is positive semi-definite, where K is the total number of

measurement operators. In this paper, we consider the Pauli-6 POVM (also named as random-
ized single-qubit Pauli measurements in some literature) such that the measurement operators are
{ 13 |0⟩⟨0|,

1
3 |1⟩⟨1|,

1
3 |+⟩⟨+|,

1
3 |−⟩⟨−|,

1
3 |i+⟩⟨i+|,

1
3 |i−⟩⟨i−|}. It is easy to check that these operators

satisfy the POVM definition and K = 6. The reason for choosing the Pauli-6 POVM is that this
measurement protocol is easy to be implemented on current quantum devices (NISQ devices) and is
informative-completed (IC).

Measuring a qubit leads to collapse of the qubit and produces an outcome k with the probability
p(k) satisfying the Born rule, which states that p(k) = tr(ρΠk), where ρ = |ψ⟩⟨ψ| and ⟨ψ| is the
transpose conjugate of |ψ⟩. We may consider a system of L qubits. It can be described by the wave
function:

|Φ⟩ =
M∑

σ1=1

· · ·
M∑

σL=1

Ψ(σ1, . . . , σL)|σ1, . . . , σL⟩,

where Ψ : ZL → C maps a fixed configuration σ = (σ1, . . . , σL) of L qubits to a complex number
which is the amplitude satisfying

∑K
σ1=1 · · ·

∑K
σL=1 |Ψ(σ1, . . . , σL)|2 = 1, and σi ∈ {1, . . . ,K}

is one of the K possible outcomes by performing quantum measurement on the i-th qubit. It
is formulated in a complex Hilbert space where the vector representation of the quantum state
|Φ⟩ ∈ CKL

and its density matrix |Φ⟩⟨Φ| ∈ CKL×KL

, which becomes astronomical for large L.

Performing quantum measurement independently on L qubits is easy to be implemented. The
most common strategy is to combine L single-qubit measurement operators to Πk,1 ⊗ · · · ⊗Πk,L

where ⊗ is the Kronecker product. Such measurement procedure outputs a measurement
string σ = (σ1, . . . , σL) where σi ∈ {1, . . . ,K} with probability |Ψ(σ1, . . . , σL)|2. Define
p(σ1, . . . , σL) = |Ψ(σ1, . . . , σL)|2. We can reformulate the wave function of quantum states to a clas-
sical joint distribution. It is a valid and legal joint distribution since

∑
σ1
· · ·
∑

σL
p(σ1, . . . , σL) =∑

σ1
· · ·
∑

σL
|Ψ(σ1, . . . , σL)|2 = 1 and p(σ1, . . . , σL) ≥ 0.

D DETAILS FOR BASELINE MODELS

We consider the classical shadow (CS) method (Huang et al., 2020), a state-of-the-art, learning-free
approach for efficiently constructing representations of unknown quantum states. For learning-based
comparisons, we include kernel methods such as the Radial Basis Function Kernel (RBFK) and
Neural Tangent Kernel (NTK) following the implementation in Huang et al. (2022). Addition-
ally, we evaluate advanced neural network-based models, including a Recurrent Neural Network
(RNN)-based architecture (Carrasquilla et al., 2019) and the transformer-based state-of-the-art model
LLM4QPE (Tang et al., 2024). The details about their configurations are as follows.

Classical Shadow (Huang et al., 2020). Classical Shadow (CS) is a learning-free protocol used to
efficiently predict many properties of quantum states with a logarithmic number of measurements.
By using randomized measurements and building a memory-efficient representation of the quantum
state, it enables the estimation of various properties with high accuracy.

Kernel Methods (Huang et al., 2022). We utilize Radial Basis Function Kernel (RBFK) and Neural
Tangent Kernel (NTK) to learn the feature map from physical conditions x to certain properties
of the ground state of the Hamiltonian H(x). A grid search is performed to identify the optimal
regularization strength, with candidate values uniformly distributed on a logarithmic scale from 0.001
to 100. We employ a 5-fold cross-validation strategy on the training dataset and present the predictive
performance of the model that achieves the highest accuracy on the test dataset.

RNN (Carrasquilla et al., 2019). Recurrent Neural Networks (RNNs) are employed to reconstruct
quantum states from measurement data, leveraging their ability to capture temporal or sequential
dependencies. In our implementation, the RNN takes a sequence of measurement outcomes as input
and learns to predict the underlying quantum state properties by modeling correlations between
successive measurements. The model architecture includes a hidden layer with 128 units and is
trained using the Adam optimizer. To ensure fair comparison, we perform early stopping based on
validation loss and use the test dataset for final evaluation of predictive performance.
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Table 3: RMSE of predicting the correlations of all subsystems of size two on the test dataset. The
result is averaged over Heisenberg model instances and each pair of adjacent qubits. For CS, M
denotes the number of input measurements. While for the neural network-based approaches M
denotes the number of sampled measurements Mout from trained models. The standard deviations
are distinguished in gray.

L = 10 L = 40 L = 70 L = 100
Method

M = 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000

CS 0.1564 0.0509 0.0156 0.0107 0.1696 0.0538 0.0173 0.0121 0.1771 0.0545 0.0172 0.0121 0.1724 0.0547 0.0172 0.0122

RBFK 0.0796 0.0639 0.0578 0.0493
NTK 0.0775 0.0622 0.0565 0.0470

0.1328 0.0502 0.0145 0.0119 0.1795 0.0671 0.0164 0.0118 0.2137 0.0739 0.0240 0.0153 0.2325 0.0806 0.0251 0.0163RNN 0.0342 0.0098 0.0024 0.0014 0.0388 0.0132 0.0035 0.0016 0.0453 0.0149 0.0037 0.0025 0.0419 0.0094 0.0043 0.0039
0.1316 0.0489 0.0136 0.0093 0.1624 0.0513 0.0142 0.0097 0.1814 0.0527 0.0155 0.0116 0.1759 0.0531 0.0152 0.0114LLM4QPE 0.0379 0.0140 0.0032 0.0015 0.0392 0.0128 0.0032 0.0017 0.0462 0.0157 0.0038 0.0021 0.0493 0.0082 0.0056 0.0028

0.1269 0.0432 0.0097 0.0085 0.1582 0.0465 0.0113 0.0091 0.1679 0.0473 0.0117 0.0092 0.1686 0.0478 0.0125 0.0098Ours 0.0365 0.0097 0.0022 0.0008 0.0416 0.0115 0.0037 0.0004 0.0479 0.0138 0.0029 0.0011 0.0512 0.0083 0.0036 0.0009

Table 4: RMSE of predicting the entanglement entropies of all subsystems of size two on the test
dataset. The result is averaged over Heisenberg model instances and each pair of adjacent qubits. For
CS, M denotes the number of input measurements. While for the neural network-based approaches
M denotes the number of sampled measurements Mout from trained models. The standard deviations
are distinguished in gray.

L = 10 L = 40 L = 70 L = 100
Method

M = 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000 100 1000 10000 20000

CS 0.5966 0.0922 0.0204 0.0119 0.6487 0.0927 0.0294 0.0259 0.6421 0.0943 0.0312 0.0298 0.6518 0.0998 0.0357 0.0316

RBFK 0.1268 0.1037 0.0997 0.0752
NTK 0.1379 0.1034 0.0983 0.0719

0.5225 0.1164 0.0187 0.0115 0.6132 0.1054 0.0246 0.0212 0.7948 0.1305 0.0514 0.0385 0.8229 0.1476 0.0617 0.0439RNN 0.0833 0.0263 0.0022 0.0014 0.0945 0.0314 0.0026 0.0015 0.0997 0.0302 0.0048 0.0026 0.0957 0.0269 0.0054 0.0032
0.4937 0.0948 0.0176 0.0102 0.5878 0.0896 0.0223 0.0207 0.6258 0.0912 0.0276 0.0251 0.6392 0.1055 0.0312 0.0286LLM4QPE 0.0932 0.0168 0.0023 0.0012 0.0845 0.0209 0.0016 0.0011 0.0940 0.0235 0.0016 0.0018 0.0979 0.0212 0.0020 0.0018

0.5479 0.0867 0.0132 0.0089 0.5629 0.0861 0.0187 0.0145 0.5970 0.0879 0.0245 0.0218 0.6125 0.0928 0.0281 0.0243Ours 0.0952 0.0079 0.0019 0.0011 0.0822 0.0196 0.0021 0.0009 0.0835 0.0194 0.0014 0.0012 0.0857 0.0163 0.0018 0.0014

LLM4QPE (Tang et al., 2024). It presents a transformer-based approach for predicting various
properties of quantum systems through a pre-training procedure that maximizes a likelihood function
based on discrete measurement outcomes. This is also a generative process similar to the conditional
quantum state modeling discussed in Wang et al. (2022). The trained model can generate measure-
ment samples conditioned on the physical parameters which are unseen from the training dataset.
Afterwards the quantum properties can be analyzed by using post-processing such as classical shadow.
For a fair comparison, we set the model with 4 heads, 4 layers, and a hidden dimension of 128.

RydbergGPT (Fitzek et al., 2024). It utilizes autoregressive transformers, employs KL divergence
as the loss function, and learns from large quantum measurement datasets to approximate the classical
joint distribution of the quantum state. Predictions of specific quantum properties are then made by
sampling from this learned distribution. For a fair comparison, we set the model with 4 heads, 4
layers, and a hidden dimension of 128. We also add a linear projection layer at the transformer’s
output (K output units with softmax).

E VISUALIZED SUPPLEMENT OF THE COMPARISON BETWEEN QUADIM AND
AUTOREGRESSIVE BASELINE

We include an additional plot in Fig. 6, where we present a more fine-grained visualization of the
prediction performance of QuaDiM. In this figure, each point represents the absolute error between
the predicted correlation and the ground truth for all pairs of qubits across different Mout.
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Figure 6: Visualization of predicted correlations Ĉij for the ground state of the 1D anti-ferromagnetic
Heisenberg model of length L = 10 with different number of samples Mout from the trained models.
We fix Min = 1000 and use classical shadow for post-processing. Each point represents the absolute
error (lower is better) between the predicted correlation and the ground truth for all pairs of qubits
across different Mout.

F ADDITIONAL EXPERIMENT RESULTS

F.1 IMPACT OF DIFFERENT PRE-DEFINED ORDER

To further compare the our model and the autoregressive baselines, we define an alternative ordering
of qubits (from right to left or from the largest to the smallest index, as opposed to the left-to-right
ordering used throughout the paper) and re-train the autoregressive baselines. The results of RMSE for
predicting the correlations of all subsystems of size two on the test dataset, evaluated in the predefined
order from right to left, are presented in Tab. 5. For comparison, we also include experimental results
already reported in the main text of the paper.

Table 5: RMSE of predicting the correlations of all subsystems of size two on the test dataset under
different sequential order. M denotes the number of sampled measurements Mout from trained
models. Notation← denotes from right to left and→ denotes from left to right.

Method L = 70 L = 100

M = 100 M = 1000 M = 10000 M = 20000 M = 100 M = 1000 M = 10000 M = 20000

RNN(←) 0.2197 0.0721 0.0216 0.0165 0.2276 0.0763 0.0264 0.0159
RNN(→) 0.2137 0.0739 0.0240 0.0153 0.2325 0.0806 0.0251 0.0163
LLM4QPE(←) 0.1865 0.0538 0.0157 0.0108 0.1773 0.0542 0.0149 0.0122
LLM4QPE(→) 0.1814 0.0527 0.0155 0.0116 0.1759 0.0531 0.0152 0.0114

QuaDiM 0.1679 0.0473 0.0117 0.0092 0.1686 0.0478 0.0125 0.0098

F.2 NUMERICAL RESULTS OF LEARNING LONG-RANGE XY MODEL

To further generalize the effectiveness of our proposed model, we have supplemented our experiments
with results from a more physically general and classically challenging system: the long-range XY
model in the presence of a transverse field, whose Hamiltonian is given by

HXY =
∑
i<j

Jij(XiXj + YiYj) +
∑
j

Zj (38)

where Jij = J0/|i− j|a with a ∈ (1, 2). This quantum model inherits the long-range interactions
between every two quantum sites, leading to a complex dynamics which is hard to be simulated by
classical computers. We restrict the system size L = 10 due to memory limitations. The ground states
of quantum systems with different physical conditions Jij are calculated by eigenvalue decomposition.
Follow Xiao et al. (2022), we random sample a series of Jij and conduct classical simulations to
collect the data. The experimental results for L = 10, with Min = 1000 and Mout ∈ {1000, 10000},
are presented in Tab. 6. It can be observed that QuaDiM consistently outperforms baselines.
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Table 6: RMSE of predicting the correlations of ground states of the long-range XY model.
Method M = 1000 M = 10000

CS 0.2575 0.0517
RBFK 0.1158
NTK 0.1039
RNN 0.2234 0.0502
LLM4QPE 0.2139 0.0482

QuaDiM 0.1986 0.0367

F.3 RESULTS OF VALIDATION ON OUT-OF-DISTRIBUTION DATASET

Here, we consider evaluating the QuaDiM with out-of-distribution (OOD) dataset, which means the
dataset used for training and the dataset used for validation come from different distributions. We
divide the sampled physical parameters x into two segments: the training set is limited to [0, 1.5],
while the test set exclusively spans [1.5, 2]. In alignment with setting of the paper, we set N tr = 100
and N te = 20. We report the RMSE of predicted correlations for both the sota baseline LLM4QPE,
and our model QuaDiM under both OOD and non-OOD (both training and fine-tuning are sampled
from the same distribution [0, 2]) conditions, with Min = 1000 and Mout = 10000. The results are
presented in the Tab. 7.

Table 7: RMSE of predicting the correlations of all subsystems of size two on the test dataset under
the out-of-distribution (OOD) condition.

Method L = 70 L = 100

no OOD OOD no OOD OOD

LLM4QPE 0.0155 0.0526 0.0152 0.0598
QuaDiM 0.0117 0.0417 0.0125 0.0465

F.4 COMPARISON WITH ADDITIONAL BASELINE

We involve RydbergGPT (Fitzek et al., 2024) as a new baseline. It utilizes autoregressive transformers,
employs KL divergence as the loss function, and learns from large quantum measurement datasets
to approximate the classical joint distribution of the quantum state. Predictions of specific quantum
properties are then made by sampling from this learned distribution. For a fair comparison, we set
the model with 4 heads, 4 layers, and a hidden dimension of 128. We also add a linear projection
layer at the transformer’s output (K output units with softmax). we report the RMSE of predicted
correlations for L = 100 and Min = 1000 in Tab. 8.

Table 8: RMSE of predicting the correlations of all subsystems of size two on the test dataset for
L = 100.

Method M = 100 1000 10000 20000

CS 0.1724 0.0547 0.0172 0.0122
RBFK 0.0493
NTK 0.0470
RNN 0.2325 0.0806 0.0251 0.0163
LLM4QPE 0.1759 0.0531 0.0152 0.0114
RydbergGPT 0.1843 0.0562 0.0170 0.0121

Ours 0.1686 0.0478 0.0125 0.0098

F.5 MODEL SENSITIVITY TO THE DENOISING STEPS AND HIDDEN DIMENSION

In this section, we study the relationship between the hyper-parameters including the number of
denoising steps Tf and the hidden dimension of QuaDiM and the prediction performance. We fix the
number of diffusion steps during training for QuaDiM while shrinking the inference steps Tf using
the approach introduced in DDIM (Song et al., 2020). We evaluate the model’s performance under
different inference step settings and compare it with both a learning-free baseline (classical shadow,
CS) and a learning-based SOTA model LLM4QPE. Due to time constraints, we only report results
for the task of predicting correlations with L = 100, Min = 1000, and Mout = 1000.
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As shown in the Tab. 9, when reducing inference to Tf = 500 diffusion steps on a single GPU
(2080Ti), QuaDiM achieves a lower RMSE score compared to the classical shadow baseline while
demonstrating an inference speed comparable to LLM4QPE.

To further investigate, we evaluate the model’s performance on the task of predicting correlations
under a fixed dataset configuration L = 10,Min = 1000,Mout = 1000 with different d values from
{64, 128, 256, 512}, and the resulting RMSE scores (lower is better) are: 0.0518, 0.0432, 0.0449,
0.0457, respectively. As the results show, setting d = 128 achieves the best performance.

Table 9: RMSE of predicting correlations and the sampling speed with L = 100, Min = 1000, and
Mout = 1000 under different denoising steps Tf .

Method RMSE Generated samples per sec.

CS 0.0547 -
LLM4QPE 0.0531 14.6
QuaDiM (Tf = 2000) 0.0478 5.7
QuaDiM (Tf = 1000) 0.0537 8.1
QuaDiM (Tf = 500) 0.0541 12.7
QuaDiM (Tf = 100) 0.0882 37.4

F.6 MODEL SENSITIVITY TO THE POSITIONAL EMBEDDINGS

Positional embeddings in our context are employed to capture the structural information among
qubits. Additionally, we further investigate the model’s predicted RMSE in predicting correlations
when using relative positional encoding (following the implementation in Shaw et al. (2018)) and no
positional encoding at all. Due to time constraints, we only report results for L = 100,Min = 1000.
The experimental results are provided in Tab. 10. Experimental results show that absolute and relative
positional embeddings yield comparable performance, but removing positional information altogether
significantly degrades the model’s ability to predict quantum correlations. This underscores the
embeddings’ role in preserving spatial relationships among qubits.

Table 10: QuaDiM’s RMSE of predicting correlations using different positional embedding (PE)
techniques.

Absolute PE Relative PE No PE

Mout = 100 0.1686 0.1681 0.4527
Mout = 1000 0.0478 0.0482 0.3269
Mout = 10000 0.0125 0.0139 0.2895
Mout = 20000 0.0098 0.0110 0.2148

We acknowledge that the current positional encoding method may not perfectly reflect quantum
system-specific structures. As a step forward, we plan to explore customized positional encoding
tailored to quantum systems in future work.

F.7 EXPERIMENTS ON TETRAHEDRAL POVM

In the main text of the paper, Pauli-6 POVM is used for data collection because this measurement
protocol is easy to implement on current quantum devices (NISQ devices) and is informationally
complete (IC). This means that all the information of the quantum state can be recovered classically
with a sufficiently large number of IC-POVM measurements. In other words, given the probability of
each measurement outcome of IC-POVM, the quantum state can be uniquely determined.

To further validate our method, here we consider another type of IC-POVM: the tetrahedral POVM, to
collect measurement data. The corresponding measurement operators are { 14 (I+s(a) ·P)}a∈{0,1,2,3},
where I is the identity matrix, P represents the ensemble of Pauli operators (X,Y, Z) and s(0) =

(0, 0, 1),s(1) = ( 2
√
2

3 , 0,− 1
3 ),s

(2) = (−
√
2
3 ,
√

2
3 ,−

1
3 ),s

(3) = (−
√
2
3 ,−

√
2
3 ,−

1
3 ). It is easy to check

that K = 4 for the tetrahedral POVM. Due to time constraints, we fixed L = 10 with Min = 1000,
re-run the simulations to collect data, and re-train our model and the baselines. The numerical results
are reported in Tab. 11. As shown, QuaDiM still outperforms the baselines in this scenario.
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Table 11: RMSE of predicting correlations using tetrahedral POVM.
Method M=1000 M=10000

CS 0.0512 0.0164
RBFK 0.0735
NTK 0.0747
RNN 0.0514 0.0163
LLM4QPE 0.0503 0.0141

QuaDiM 0.0433 0.0107

G DISTINCTION FROM THE STUDY IN ZHU ET AL. (2024)

The impracticality of using full density matrix as input in Zhu et al. (2024). One of the principal
features distinguishing classical systems from quantum many-body systems is that quantum systems
require exponentially many parameters in the system size to fully specify the state (Cramer et al.,
2010).

To obtain information from a real quantum system, measurement is required (such as the Pauli
measurement used in our paper). Measurement results in discrete outcomes due to the collapse of
quantum states. Reconstructing the full density matrix typically demands an exponentially large
number of quantum measurements on an actual quantum computer, followed by extensive post-
processing of these outcomes, which generally entails exponential overhead (Cramer et al., 2010). As
a result, in Zhu et al. (2024) each sample in the training set (i.e., a full density matrix representing a
specific quantum state) would require exponential storage space and computational resources, making
this approach impractical for real-world applications.

The orthogonality of our task (quantum state property estimation, QPE) to quantum state
tomography (QST). The task in Zhu et al. (2024) is more aligned with QST, which seeks to recon-
struct the full density matrix. Neural network-based QST (Torlai et al., 2018) generally approximates
the probability distribution over the outcomes of an informationally complete measurement using
a variational manifold represented by a neural network. However, Zhu et al. (2024) bypasses mea-
surement data entirely and directly uses the density matrix as input. To the best of our knowledge,
this approach is impractical, as it contradicts the fundamental constraints of data acquisition, i.e.,
quantum measurement in quantum systems.

Our focus on QPE. Unlike QST, QPE specifically targets the prediction of specific properties
of quantum states without reconstructing the full density matrix. This task has recently garnered
significant attention in the quantum physics and machine learning communities, with several cutting-
edge theoretical (Huang et al., 2022; Lewis et al., 2023) and empirical (Chen et al., 2023; Tang
et al., 2024) studies already published. In terms of model design, unlike the approach of directly
modeling the density matrix using generative models, our work delves into bridging the gap between
quantum states and the classical joint distributions modeled by generative models. Additionally, we
explore how the continuous latent variables of diffusion models can be decoded into discrete quantum
measurement data while preserving physical validity.
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