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In this supplemental material, we first elaborate on additional de-
scriptions of datasets (i.e., PASCAL-5𝑖 and MS COCO). Then, we
explore weight settings of two loss functions we used. Afterwards,
we explore the impact of different 𝑘-shot fusion solutions on seg-
mentation. Finally, we show detailed results of some experiments,
which are shown as overall results in our manuscript due to limited
space.

1 DETAILED DESCRIPTION OF DATASETS
PASCAL VOC 2012 [1] has 21 classes (including a background class)
and three subsets (i.e., training (train), validation (val), and test with
1464, 1449, and 1456 images, respectively). Following [3], we use
PASCAL VOC 2012 and additional annotations from SDS to build an
augmented dataset PASCAL-5𝑖 , where 80 categories are divided into
4 splits and each split contains 5 categories. The category division is
shown in Table 1. MS COCO 2014 [2] contains 81 classes, including
a background class, which is divided as shown in Table 2. This
dataset contains 80K training images and 40K validation images.
Although the two datasets contain labels for object detection and
semantic segmentation, we only used image-level class labels for
the FSS task.

Table 1: The class division of the PASCAL-5𝑖 dataset.

Split Categories
0 aeroplane, bicycle, bird, boat, bottle
1 bus, car, cat, chair, cow
2 diningtable, dog, horse, motobike, person
3 potted plant, sheep, sofa, train, tv/monitor

2 SETTING THEWEIGHTS OF LOSS
FUNCTIONS

To explore the optimal weight setting for two loss functions, we
compare the results of DiffSeg training with different weights of
loss functions, as shown in Table 3.

The image loss focuses on the segmentation results, while the
latent loss pays attention to the output of perceptual comparison.
It can be seen from Table 3 that the impact of different weights on
the results is limited, but when the weights of the two losses are 2
and 1, the best results are achieved.

3 K-SHOT SOLUTIONS
In order to explore the impact of different 𝑘-shot fusion solutions
on segmentation, we compared the results with different fusion
solutions, i.e. Logical OR, Average fusion for masks (Mask-avg),
Average fusion for features (Feature-avg) and Attention.

Table 2: The class division of the MS COCO dataset.

Split Categories

0

airplane, apple, backpack, banana, baseball bat
baseball glove, bear, bed, bench, bicycle

bird, boat, book, bottle, bowl
broccoli, bus, cake, car, carrot

1

cat, cell phone, chair, clock, cow
cup, dining table, dog, donut, elephant

fire hydrant, fork, frisbee, giraffe, hair drier
handbag, horse, hot dog, keyboard, kite

2

knife, laptop, microwave, motorbike, mouse
orange, oven, parking meter, person, pizza

potted plant, refrigerator, remote, sandwich, scissors
sheep, sink, skateboard, skis, snowboard

3

sofa, spoon, sports ball, stop sign, suitcase
surfboard, teddy bear, tennis racket, tie, toaster
toilet, tooth brush, traffic light, train, truck
tv monitor, umbrella, vase, wine glass, zebra

Table 3: Results of DiffSeg training with different weights of
loss functions.

Weights 1-shot 5-shot
3,1 69.2 70.8

2,1 (ours) 69.3 72.1
1,1 68.9 69.7
1,2 69.0 71.5
1,3 68.2 70.4

The results are shown in Table 4, where mask-based fusion
methods (i.e., Logical OR and Mask-avg) perform fusion opera-
tions on segmentation results, which cannot improve the perfor-
mance. Thanks to the ability of Clip to align image with text and
the great prior knowledge of diffusion, the fusion on feature level
and attention have equivalent results, where attention is proven
to be an effective 𝑘-shot fusion method in [4]. However, compu-
tational burdens of attention operations are significantly heavier
than Feature-avg. Therefore, we select simple but effective average
fusion as our 𝑘-shot solution.

Table 4: Results of DiffSeg with different 5-shot solutions.

Method 5-shot increment
1-shot baseline 69.3 0
Logical OR 52.7 -16.6
Mask-avg 69.8 0.5

Feature-avg (ours) 72.1 2.8
Attention 72.1 2.8
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Table 5: Results of DiffSeg with different modules in 1-shot and 5-shot segmentation.

UNet ECM PCM 1-shot 5-shot
split-1 split-2 split-3 split-4 mean split-1 split-2 split-3 split-4 mean

× × √
54.9 59.5 51.0 49.5 53.7 57.8 61.7 50.8 53.6 56.0√ × √
65.8 71.1 63.9 62.3 65.8 69.3 74.7 65.7 59.9 67.4√ √ × 43.8 49.5 38.9 36.5 42.2 45.3 52.0 41.6 39.5 44.6√ √ √
70.5 75.6 67.9 63.2 69.3 72.8 77.6 68.7 69.3 72.1

Table 6: Results of DiffSeg in 1-shot and 5-shot segmentation when different features are selected as prior knowledge.

Methods SA CA 1-shot 5-shot
split-1 split-2 split-3 split-4 mean split-1 split-2 split-3 split-4 mean

Attention

√ × 61.8 66.0 59.4 50.4 59.4 61.7 68.6 57.5 63.0 62.7
× √

65.5 73.2 64.6 57.9 65.3 66.1 73.4 63.0 65.1 66.9√ √
70.5 75.6 67.9 63.2 69.3 72.8 77.6 68.7 69.3 72.1

FRB — — 51.4 57.6 47.4 44.0 50.1 53.5 58.7 47.7 51.3 52.8
FST — — 54.8 57.4 52.9 45.3 52.6 55.4 61.0 52.6 47.8 54.2

Table 7: Results of DiffSeg in 1-shot and 5-shot segmentation when certain attention operations are removed or changed in
PAM. “×” and “⃝” present removing attention and changing attention to convolutional operations, respectively.

Att_1 Att_2 Att_3 1-shot 5-shot
split-1 split-2 split-3 split-4 mean split-1 split-2 split-3 split-4 mean

× × × 45.2 48.3 41.9 41.8 44.3 47.7 50.7 44.5 43.1 46.5
× √ √

58.3 59.1 61.3 55.7 58.6 60.4 61.3 63.4 56.6 60.4√ × √
51.6 57.1 54.7 45.0 52.1 53.4 58.9 56.6 45.9 53.7√ √ × 64.0 70.5 64.1 58.2 64.2 67.0 73.4 67.2 59.5 66.8

⃝ ⃝ ⃝ 58.2 65.1 56.8 56.7 59.2 60.0 66.7 59.0 58.8 61.1
⃝ √ √

63.1 68.5 59.2 58.8 62.4 64.6 69.6 60.6 60.0 63.7√ ⃝ √
59.9 67.8 55.6 56.3 59.9 61.3 69.2 57.3 58.3 61.5√ √ ⃝ 66.3 71.2 63.8 60.3 65.4 68.4 72.7 65.9 61.8 67.2√ √ √
70.5 75.6 67.9 63.2 69.3 72.8 77.6 68.7 69.3 72.1

Table 8: Results of DiffSeg in 1-shot and 5-shot segmentation when SCM is inserted into different levels of diffusion UNet.

8×8 16×16 32×32 Params sharing 1-shot 5-shot
split-1 split-2 split-3 split-4 mean split-1 split-2 split-3 split-4 mean

× √ √ √
63.0 68.5 63.2 55.3 62.5 65.6 71.2 66.9 59.1 65.7√ × √ √
61.3 67.1 59.6 53.2 60.3 63.2 68.7 61.1 55.5 62.1√ √ × √
67.9 74.5 66.4 62.8 67.9 70.5 76.4 68.4 65.5 70.2√ √ √ × 70.2 75.1 68.4 63.1 69.2 72.7 77.2 70.9 67.6 72.1√ √ √ √
70.5 75.6 67.9 63.2 69.3 72.8 77.6 68.7 69.3 72.1

4 DETAILED EXPERIMENTAL RESULTS
Due to limited space in ourmanuscript, we only show overall results
for some experiments. In this supplementary, we present detailed
results of these experiments.

The detailed results of our method with different modules, dif-
ferent selection of prior knowledge are shown in Tables 5 and 6,
respectively. Results of DiffSeg when certain attention operations
are removed or changed in PAM and when SCM is inserted into
different levels of diffusion UNet are shown in Tables 7 and 8, re-
spectively. Fig. 1 and 2 show some additional qualitative results of
DiffSeg.
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Figure 1: Additional qualitative results of our method. (Part 1)
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Figure 2: Additional qualitative results of our method. (Part 2)
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