
A Theory-Driven Self-Labeling Refinement Method for
Contrastive Representation Learning

(Supplementary File)

Pan Zhou∗ Caiming Xiong∗ Xiao-Tong Yuan† Steven Hoi∗
∗ Salesforce Research

† Nanjing University of Information Science & Technology
panzhou3@gmail.com {cxiong, shoi}@salesforce.com xtyuan@nuist.edu.cn

Abstract

This supplementary document contains more additional experimental details and
the technical proofs of convergence results of the NeurIPS’21 submission entitled
“A Theory-Driven Self-Labeling Refinement Method for Contrastive Representa-
tion Learning”. It is structured as follows. In Appendix A, we provides more
experimental details, including training algorithm, network architecture, optimizer
details, loss construction and training cost of SANE. Appendix B presents the proof
and details of the main results, namely, Theorem 1, in Section 2, which analyzes
the generalization performance of MoCo.

Next, Appendix C introduces the proof roadmap and details of the main results,
i.e. Theorem 2, in Section 3.1. Since the proof framework is relatively complex,
we first introduce some necessary preliminaries, including notations, conceptions
and assumptions that are verified in subsequent analysis in Appendix C.2.4. Then
we provide the proofs of Theorem 2 in Appendix C.2. Specifically, we first
introduce the proof roadmap of Theorem 2 in Appendix C.2.1. Then we present
several auxiliary theories in Appendix C.2.2. Next, we prove our Theorem 2
in Appendix C.2.3. Finally, we present all proof details of auxiliary theories in
Appendix C.2.4.

A More Experimental Details

Due to space limitation, we defer more experimental details to this appendix. Here we first introduce
the training algorithm of SANE, and then present more setting details of optimizers, architectures,
loss construction for CIFAR10 and ImageNet.

A.1 Algorithm Framework of SANE

In this subsection, we introduce the training algorithm of SANE in details, which is summarized in
Algorithm 1. Same as MoCo [1] and CLSA [2], we alternatively update the online network fw and
target network gξ via SGD optimizer. Our codes are implemented based on MoCo and CLSA. The
code of MoCo and CLSA satisfies “Creative Commons Attribution-NonCommercial 4.0 International
Public License".

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Algorithm 1 Algorithm Framework for SANE

Input: online network fw, target network gξ, dictionary B, temperature parameter τ , momentum-
update parameter ι, sharpness parameter τ ′, prior confidence µ, regularization weight λ, parameter
κ for Beta(κ, κ), weak augmentation T1, and weak or strong augmentation T2

Initialization: initialize online network fw, target network gξ, dictionary B as MoCo.
for i = 1 · · ·T do

1. sample a minibatch of vanilla samples {ci}si=1
2. use T1 to augment {ci}si=1 to obtain weak augmentations {(xi, x̃i)}si=1, i.e. xi = T1(ci)
and x̃i = T1(ci).
3. compute feature {f(xi)}si=1 and B′ = {g(x̃i)}si=1

4. compute the contrastive loss Lc
(
w,{(xi,yi)}

)
in Eqn. (9)

5. use x̃i to compute the estimated labels ȳti of query xi by self-labeling refinery (5) (∀i =
1, · · · , s)
6. if using strong augmentation for momentum mixup, use T2 to augment {ci}si=1 for obtaining
strong augmentations {x̃i}si=1 to replace the previous {x̃i}si=1 in {(xi, x̃i)}si=1
7. use momentum mixup (8) and samples {(xi, x̃i, ȳti)}si=1 to obtain new virtual queries and
labels {(x′i,y′i)}si=1

8. use {(x′i,y′i)}si=1 to compute the momentum mixup contrastive loss Lc
(
w,{(x′i,y′i)}

)
in

Eqn. (9)
9. update online network fw by minimizing (1−λ)Lc

(
w,{(xi,yi)}

)
+λLc

(
w,{(x′i,y′i)}

)
10. update target network gξ by exponential moving average
11. update the dictionary B via minibatch feature B′ in a first-in first-out order.

end for
Output:

A.2 Algorithm Parameter Settings

Experimental Settings for Linear Evaluation on CIFAR10 and ImageNet. For CIFAR10 and
ImageNet, we follow [1, 3] and use ResNet50 [4] as a backbone. Then we first pretrain SANE on
the corresponding training data, and then train a linear classifier on top of 2048-dimensional frozen
features provided by ResNet50. For pretraining on both datasets, we use SGD with an initial learning
rate 0.03 (annealed down to zero via cosine decay [5]), a momentum of 0.9, and a weight decay of
10−4. Such optimizer parameters are the same with MoCo and CLSA.

Next, we pretrain 2,000 epochs on CIFAR10 with minibatch size 256 and dictionary size 4,096. For
pretraining on Imagenet, the dictionary size is always 65,536; the batch size is often 256 on a cluster
of 8 GPUs and is linearly scaled together with learning rate on multiple clusters. For linear classifier
training, we use ADAM [6] with a learning rate of 0.01 and without weight decay to train 200 epochs
on CIFAR10, and adopt SGD with an initial learning 10 (cosine decayed to zero) and a momentum
of 0.9 to train 100 epochs on ImageNet. We use standard data augmentations in [1] for pretraining
unless otherwise stated. Specifically, for pretraining on CIFAR10 and ImageNet, we follow MoCo
and use RandomResizedCrop, ColorJitter, RandomGrayscale, GaussianBlur, RandomHorizontalFlip,
and Normalization. For CIFAR10, please find its pretraining augmentation in the example1. Except
the above random augmentation, we also use the proposed momentum mixup to generate the virtual
instances for constructing the momentum mixup loss.

For CIFAR10, to fairly compare with [7], we crop each image into two views to construct the
loss (9). Specifically, for a minibatch of vanilla samples {ci}si=1, we use weak augmentation T1 to
augment {ci}si=1 to obtain weak augmentations {(xi, x̃i)}si=1, i.e. xi = T1(ci) and x̃i = T1(ci).
Then same as MoCo, we can compute the contrastive loss by using {(xi, x̃i)}si=1. Meanwhile,
we use x̃i to compute the soft label ȳti of x̃i via (5). Next, we use momentum mixup (8) and
samples {(xi, x̃i, ȳti)}si=1 to obtain new virtual queries and labels {(x′i,y′i)}si=1, and then use
{(x′i,y′i)}si=1 to compute the momentum mixup contrastive loss Lc

(
w,{(x′i,y′i)}

)
in Eqn. (9). For

strong augmentation, after we compute the vanilla contrastive loss in MoCo, and then use strong
augmentation to augment {ci}si=1 to replace x̃i in {(xi, x̃i, ȳti)}si=1. Then we can generate virtual

1https://colab.research.google.com/github/facebookresearch/moco/blob/
colab-notebook/colab/moco_cifar10_demo.ipynb

2

https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb
https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb

query instances and their labels ({(x′i,y′i)}si=1) by using {(xi, x̃i, ȳti)}si=1. The training cost on
CIFAR10 for 2,000 epochs is about 11 days on single V100 GPU.

For ImageNet, we follow CLSA for fair comparison. For SANE-Single, we use the same way to
construct the contrastive loss, and then use augmentation T1 to augment {ci}si=1 to replace x̃i in
{(xi, x̃i, ȳti)}si=1 to construct the momentum mixup loss. Indeed, we also can do not replace x̃i in
{(xi, x̃i, ȳti)}si=1 for momentum mixup loss, which actually did not affect the performance. We do
it, since SANE-Multi crops each image into five different crops for constructing momentum mixup
loss, and thus SANE-Single and SANE-Multi will be more consistent, i.e. SANE-Multi uses 5 crops
while SANE-Single uses one crop. For strong augmentation, we replace the augmentation T1 in
momentum mixup with strong augmentation, which is the same on CIFAR10. As mentioned above,
to construct the momentum mixup loss, SANE-Multi crops each image into five sizes 224×224,
192×192, 160×160, 128×128, and 96×96 and averages their momentum mixup losses. For
the vanilla contrastive loss, SANE-Multi uses the same way in SANE-Single to compute. In this
way, SANE-Single and SANE-Multi respectively have the same settings with CLSA-Single and
CLSA-Multi. Thus, ELSE has almost the same training cost with CLSA, i.e. about 75 (188) hours
with 8 GPUs, 200 epochs, batch size of 256 for SANE-Single (-Multi). It should be mentioned that for
vanilla contrastive loss in both CLSA-Single and CLSA-Multi, we always use weak augmentations.

Transfer Evaluation Settings. We evaluate the pretrained model on ImageNet on VOC [8] and
COCO [9]. For VOC, similar to linear evaluation, we train a linear classifier upon ResNet50 100
epochs by SGD with a learning rate 0.05, a momentum 0.9, batch size 256, and without weight
and learning rate decay. For COCO, we adopt the same protocol in [1] to fine-tune the pretrained
ResNet50 based on detectron2 [10] for fairness. We evaluate the transfer ability of the cells selected
on CIFAR10 by testing them on ImageNet. Following DARTS, we use momentum SGD with an
initial learning 0.025 (cosine decayed to zero), a momentum of 0.9, a weight decay of 3×10−4, and
gradient norm clipping parameter 5.0.

B Proofs of The Results in Section 2

Lemma 1. [11] Suppose the loss ` is bounded by the range [a, b], namely `(f(x;w),y) ∈ [a, b].
Then let F be a finite class of hypotheses `(f(x;w),y) : X → R. Let

Qe(f) =
1

n

n∑
i=1

`(f(xi;w),yi), Q(f) = E(x,y)∈S [`(f(x;w),y)]

respectively denote the empirical and population risk, where S denote the unknown data distribution
and the sampled dataset D = {(xi,yi)}ni=1 ∼ S is of size n. Then for any δ ∈ (0, 1), with
probability at least 1− δ we have

Q(f) ≤Qe(f) +

√
2(b− a)2VD ln(2|F|/δ)

n
+

7(b− a)2 ln(2|F|/δ)
3(n− 1)

, (7)

where VD denotes the variance of the loss `(f(x;w),y) on the dataset D, and |F| denotes the
covering number of F in the uniform norm ‖ · ‖∞.

Lemma 2. [12] For any polynomials f(x) =
∑p
i=0 aix

i, x ∈ [0,] and
∑p
i=1 |ai| < 1, there exists a

multilayer neural network f̂(x) withO
(
p+ log p

ε

)
layers,O(log p

ε) binary step units andO(p log p
ε)

rectifier linear units such that |f(x)− f̂(x)| ≤ ε, ∀x ∈ [0, 1].
Assume that function f is continuous on [0, 1] and dlog 2

ε e+ 1 times differential in (0, 1). Let f (n)

denote the derivative of f of n−th order and ‖f‖ = maxx∈[0,1] f(x). If ‖f (n)‖ ≤ n! holds for all
n ∈ [dlog 2

ε e + 1], then there exists a deep network f with O
(
log 1

ε

)
layers, O(log 1

ε) binary step
units and O(log2 1

ε) rectifier linear units such that |f(x)− f̂(x)| ≤ ε, ∀x ∈ [0, 1].

For expression power analysis of deep network, more stronger results can be found in [13, 14, 15, 16]
and all show that any function can be approximately can be approximated by a deep network to
arbitrary accuracy.

3

B.1 Proof of Theorem 1

Proof. Here we use two steps to prove our results in Theorem 1.

Q̃(fw) =
1

n

∑n

i=1
`(h(fw(xi),Bi),yi), (8)

Step 1. proof for first part results. To begin with, we first define an empirical risk Qe(f):

Qe(f) =
1

n

n∑
i=1

`(h(fw(xi),Bi),y
∗
i),

where Qe(f) uses the ground truth label y∗i for training. From Lemma 1, with probability at least
1− δ, we have

Q(f) ≤Qe(f) +

√
2(b− a)2VD ln(2|F|/δ)

n
+

7(b− a)2 ln(2|F|/δ)
3(n− 1)

,

where Q(f) is the population risk, and Qe(f) is the empirical risk. Both are trained with the ground
truth y∗i . So the remaining work is to upper bound Qe(f) via Q̃(f). Towards this end, we can bound
it as follows

Qe(f)− Q̃(f) =
1

n

n∑
i=1

(`(h(fw(xi),Bi),y
∗
i)− `(h(fw(xi),Bi),yi))

¬
≤ 1

n

n∑
i=1

‖∇y`(h(fw(xi),Bi),y)‖ · ‖y∗i − yi‖2

­
≤LyEi ‖y∗i − yi‖2
­
≤LyED∼S [‖y∗ − y‖2] ,

where ¬ holds by using y = yi + θ(y∗i − yi) for certain θ ∈ (0, 1); ­ holds since we use the
Ly-Lipschitz property of `(h(fw(xi),Bi),yi). Then combining these results together, we can obtain
the desired results:

|Q(f)− Q̃(f)| ≤ +LyED∼S ‖y∗i − yi‖2 +

√
2(b− a)2VD ln(2|F|/δ)

n
+

7(b− a)2 ln(2|F|/δ)
3(n− 1)

.

Step 2. proof for second part results. Here we can construct a simple two-classification problem
for clarity. Suppose we have two classes: class one with training data D1 = {(x1,x1,y

∗
1)}n/2i=1 and

class two with training data D2 = {(x2,x2,y
∗
2)}n/2i=1, where y∗1 denotes the ground truth label of x1

on the set B1 = {x1 ∪B}, and y∗2 denotes the ground truth label of x2 on the set B2 = {x2 ∪B}.
Both training datasets D1 and D2 have n

2 samples. Here we assume there is no data augmentation
which means xi = x̃i in the manuscript. In D1, its samples are the same, namely (x1,x1,y

∗
1).

Similarly, D2 also has the same samples, namely (x2,x2,y
∗
2). Then the predicted class probability

yij of sample xi on class j is as follows:

yi0 =
eδ(xi,xi)/t

eδ(xi,xi)/τ +
∑k
j=1 e

δ(xi,bj)/τ
, yij =

eδ(xi,bj)/τ

eδ(xi,xi)/τ +
∑k
j=1 e

δ(xi,bj)/τ
(j = 1, · · · , k),

(9)
where δ(xi, x̃i) = − 〈f(xi),g(x̃i)〉

‖f(xi)‖2·‖g(x̃i)‖2 , τ denotes a temperature. For simplicity, we let dictionary
B = {x1,x2}. In this way, we have for both ground truth label y∗1 and y∗2 that satisfy y∗10 = y∗11,
y∗10 +y∗11 +y∗12 = 1, y∗20 = y∗22, y∗20 +y∗21 +y∗22 = 1. For this setting, here we assume the training
labels are denoted by y1 and y2. Moreover, they satisfy y10 = y11 > 0, y10 + y11 + y12 = 1,
y20 = y22 > 0, y20 + y21 + y22 = 1. The reason that we do not use one-hot labels. This is because
for dictionary B = {x1,x2}, given a sample xi (i = 1, 2), xi needs to predict the labels on the set
{xi ∪B} = {xi,x1,x2}, where the labels are not one-hot obviously and satisfy yi1 = yii > 0. In
the following, we will train the model on the training data D̃ = D̃1∪D̃2 where D̃1 = {(x1,x1,y1)}
and D̃2 = {(x2,x2,y2)}. We use ỹi to denote the model predicted label of xi.

4

Then for the test samples, we assume that half of samples are (x1,x1,y
∗
1) and remaining samples

are (x2,x2,y
∗
2). Then for any network f , we always have

Q(f)−Qe(f) =
1

n

n∑
i=1

(E[`(h(fw(xi),Bi),y
∗
i)]− `(h(fw(xi),Bi),y

∗
i)) = 0.

Then we attempt to lower bound Qe(f) − Q̃(f). Our training dataset is D̃ = D̃1 ∪ D̃2 where
D̃1 = {(x1,x1,y1)} and D̃2 = {(x2,x2,y2)}. Then we discuss whether the network f can
perfectly fit the labels (9) of data D̃. For both cases, our results can hold.

Perfectly fitting. Network f has the capacity to perfectly fit the label ỹ1 in D̃1 and the label ỹ2 in
D̃2 when x1 are different x2. In this case, we have

Qe(f)− Q̃(f)

=
1

n

n∑
i=1

(`(h(fw(xi),Bi),y
∗
i)− `(h(fw(xi),Bi),yi))

=
1

n

n∑
i=1

k∑
s=1

(y∗i,s log(h(fw(xi),Bi))− yi,s log(h(fw(xi),Bi)))

=
1

n

n∑
i=1

k∑
s=1

(y∗i,s − yi,s) log(ỹi,s)

¬
=

1

n

n∑
i=1

k∑
s=1

(y∗i,s − yi,s) log(yi,s)

=
1

6
[(y∗10 − y10) log(y10) + (y∗11 − y11) log(y11) + (y∗12 − y12) log(y12)

+(y∗20 − y20) log(y20) + (y∗21 − y21) log(y21) + (y∗22 − y22) log(y22)]

=
1

6
[2(y∗10 − y10) log(y10) + (y∗12 − y12) log(y12) + 2(y∗20 − y20) log(y20) + (y∗21 − y21) log(y21)]

­
=

1

3

[
(y∗10 − y10) log

y10

1− 2y10
+ (y∗20 − y20) log

y20

1− 2y20

]
,

where ¬ holds since ỹi,s = yi,s, and ­ uses y∗10 = y∗11, y∗10 + y∗11 + y∗12 = 1, y∗20 = y∗22,
y∗20 + y∗21 + y∗22 = 1, y10 = y11, y10 + y11 + y12 = 1, y20 = y22, y20 + y21 + y22 = 1. Then we
can choose proper values such that

y∗10 = y∗11 > y10 = y11 >
1

3
,y∗20 = y∗22 > y20 = y22 >

1

3
.

For example, we can let y1 = (0.4, 0.4, 0.2), y∗1 = (0.45, 0.45, 0.1), y2 = (0.4, 0.2, 0.4), y∗2 =
(0.45, 0.1, 0.45). In this way, we have (y∗10 − y10) log y10

1−2y10
≥ c1(y∗10 − y10) > 0 and (y∗20 −

y20) log y20

1−2y20
≥ c2(y∗20 − y20) > 0. So this means that there exists a constant C such that

Qe(f)− Q̃(f) ≥ C · Ei [‖y∗i − yi‖2] = C · ED∼S [‖y∗ − y‖2] .

So combining the above results gives the following desired result:

Q(f)− Q̃(f) ≥ C · ED∼S [‖y∗ − y‖2] .

Non-perfectly fitting. From Lemma 2 (other more results in [13, 14, 15, 16]), one can approximate
any function by a deep network to arbitrary accuracy. Specifically, for the polynomial function
in Eqn. (9), there exists a multilayer neural network f̂(x) with proper width and depth such that
‖y1 − ỹ1‖1 ≤ ε and ‖y2 − ỹ2‖1 ≤ ε, where ỹ1 and ỹ2 are the predicted labels of samples x1 and
x2 by using (9). The labels y1 and y2 are associated with our training dataset D̃ = D̃1 ∪ D̃2 where

5

D̃1 = {(x1,x1,y1)} and D̃2 = {(x2,x2,y2)}. In this case, we have

Qe(f)− Q̃(f)

=
1

n

n∑
i=1

(`(h(fw(xi),Bi),y
∗
i)− `(h(fw(xi),Bi),yi))

=
1

n

n∑
i=1

k∑
s=1

(y∗i,s log(h(fw(xi),Bi))− yi,s log(h(fw(xi),Bi)))

=
1

n

n∑
i=1

k∑
s=1

(y∗i,s − yi,s) log(ỹi,s)

=
1

6
[(y∗10 − y10) log(ỹ10) + (y∗11 − y11) log(ỹ11) + (y∗12 − y12) log(ỹ12)

+(y∗20 − y20) log(ỹ20) + (y∗21 − ỹ21) log(ỹ21) + (y∗22 − y22) log(ỹ22)]

=
1

6
[2(y∗10 − y10) log(ỹ10) + (y∗12 − y12) log(ỹ12) + 2(y∗20 − y20) log(ỹ20) + (y∗21 − y21) log(ỹ21)]

¬
=

1

3

[
(y∗10 − y10) log

ỹ10

1− 2ỹ10
+ (y∗20 − y20) log

ỹ20

1− 2ỹ20

]
,

where ¬ uses y∗10 = y∗11, y∗10 + y∗11 + y∗12 = 1, y∗20 = y∗21, y∗20 + y∗21 + y∗22 = 1, y10 = y11,
y10 +y11 +y12 = 1, y20 = y22, y20 +y21 +y22 = 1. Then we can choose proper values such that

y∗10 = y∗11 > y10 = y11 >
1

3
+ ε,y∗20 = y∗22 > y20 = y22 >

1

3
+ ε.

For example, we can let y1 = (0.4, 0.4, 0.2), y∗1 = (0.45, 0.45, 0.1), y2 = (0.4, 0.2, 0.4), y∗2 =

(0.45, 0.1, 0.45), and ε = 0.0001. In this way, we have (y∗10−y10) log ỹ10

1−2ỹ10
≥ c1(y∗10−y10) > 0

and (y∗20 − y20) log ỹ20

1−2ỹ20
≥ c2(y∗20 − y20) > 0. So this means that there exists a constant C such

that

Qe(f)− Q̃(f) ≥ C · Ei [‖y∗i − yi‖2] = C · ED∼S [‖y∗ − y‖2] .

So combining the above results gives the following desired result:

Q(f)− Q̃(f) ≥ C · ED∼S [‖y∗ − y‖2] .

The proof is completed.

C Proof of Results in Section 3.1

In this section, we first introduce some necessary preliminaries, including notations, conceptions and
assumptions that are verified in subseqent analysis in Appendix C.2.4. Then we provide the proofs of
Theorem 2 in Appendix C.2. Specifically, we first introduce the proof roadmap in Appendix C.2.1.
Then we present several auxiliary theories in Appendix C.2.2. Next, we prove our Theorem 2 in
Appendix C.2.3. Finally, we present all proof details of auxiliary theories in Appendix C.2.2.

C.1 Preliminaries

C.1.1 General Model Formulation

In this section, we outline our approach to proving robustness of overparameterized neural networks.
Towards this goal, we consider a general formulation where we aim to fit a general nonlinear model
of the form x 7→ f(w,x) with w ∈ Rp denoting the parameters of the model. For instance
in the case of neural networks w represents its weights. Given a data set of n input/label pairs
{(xi,yi)}ni=1 ⊂ Rd × R, we fit to this data by minimizing a nonlinear least-squares loss of the form

Lt(w) =
1

2

n∑
i=1

(ȳti − f(w,xi))
2.

6

where ȳti = (1−αt)yi+αtp
t = (1−αt)yi+αtf(wt,xi) denotes the estimated label of sample xi.

In Assumption 2 we assume βt=0 and τ ′ = 1 for simplicity, since performing nonlinear mapping on
network output greatly increases analysis difficulty. But we will show that even though βt=0 and
τ ′ = 1, our refinery (5) is still sufficient to refine labels. It can also be written in the more compact
form

Lt(w) =
1

2

∥∥f(w)− ȳt
∥∥2

`2
with f(w) :=


f(w,x1)
f(w,x2)

...
f(w,xn)

 . (10)

To solve this problem we run gradient descent iterations with a constant learning rate η starting from
an initial point w0. These iterations take the form

wt+1 = wt − η∇Lt(wt) with ∇L(w) = J T (w)
(
f(w)− ȳt

)
. (11)

Here, J (w) is the n× p Jacobian matrix associated with the nonlinear mapping f defined via

J (w) =
[
∂f(w,x1)

∂w . . . ∂f(w,xn)
∂w

]T
. (12)

Define the n-dimensional residual vector and corrupted residual vector e where

rt = rt(w) =
[
f(x1,wt)− ȳt1 . . . f(xn,wt)− ȳtn

]T
and et = ȳt − y∗.

A key idea in our approach is that we argue that (1) in the absence of any corruption r(w) approxi-
mately lies on the subspace S+ and (2) if the labels are corrupted by a vector e, then e approximately
lies on the complement space.

Throughout, σmin(·) denotes the smallest singular value of a given matrix. We first introduce helpful
definitions that will be used in our proofs. Given a matrix X ∈ Rn×d and a subspace S ⊂ Rn, we
define the minimum singular value of the matrix over this subspace by σmin(X,S) which is defined
as

σmin(X,S) = sup
‖v‖2=1,UUT=PS

‖vTUTX‖2.

Here, PS ∈ Rn×n is the projection operator to the subspace. Hence, this definition essentially
projects the matrix on S and then takes the minimum singular value over that projected subspace.

Since augmentations are produced by using the vanilla sample ci and the augmentation x obeys
‖x− ci‖2 ≤ ε0. So in this sense, we often call the vanilla sample and its augmentations as cluster,
and call the vanilla sample as cluster center.

C.1.2 Definitions and Assumptions

To begin with, we define (ε, δ)-clusterable dataset. As aforementioned, we often call the vanilla
sample and its augmentations as cluster, and call the vanilla sample as cluster center, because augmen-
tations are produced by using the vanilla sample ci and the augmentation x obeys ‖x− ci‖2 ≤ ε0.
Definition 1 ((ε, δ)-clusterable dataset). Suppose {(xi,y∗i)}ni=1 denote the pairs of augmentation and
ground-truth label, where augmentation xi generated from the t-th sample ct obeys ‖x− ct‖2≤ε
with a constant ε, and y∗i ∈ {γ1, γ2, . . . , γK̄} of xi is the label of ct. Moreover, samples and its
augmentations are normalized, i.e. ‖ci‖2 =‖xi‖2 =1. Each vanilla sample ci has ni augmentations,
where cl nK ≤ ni ≤ cu

n
K with two constants cl and cu. Moreover, the classes are separated such that

|γr − γs| ≥ δ, ‖cr − cs‖2 ≥ 2ε, (∀r 6= s),

where δ is the label separation.
Our approach is based on the hypothesis that the nonlinear model has a Jacobian matrix with
bimodal spectrum where few singular values are large and remaining singular values are small. This
assumption is inspired by the fact that realistic datasets are clusterable in a proper, possibly nonlinear,
representation space. Indeed, one may argue that one reason for using neural networks is to automate
the learning of such a representation (essentially the input to the softmax layer). We formalize the
notion of bimodal spectrum below.

7

Assumption 1 (Bimodal Jacobian). Let β ≥ α ≥ ε > 0 be scalars. Let f : Rp → Rn be a nonlinear
mapping and consider a set D ⊂ Rp containing the initial point w0 (i.e. w0 ∈ D). Let S+ ⊂ Rn be
a subspace and S− be its complement. We say the mapping f has a Bimodal Jacobian with respect
to the complementary subpspaces S+ and S− as long as the following two assumptions hold for all
w ∈ D.

• Spectrum over S+: For all v ∈ S+ with unit Euclidian norm we have

α ≤
∥∥J T (w)v

∥∥
`2
≤ β.

• Spectrum over S−: For all v ∈ S− with unit Euclidian norm we have∥∥J T (w)v
∥∥
`2
≤ ε.

We will refer to S+ as the signal subspace and S− as the noise subspace.

When ε << α the Jacobian is approximately low-rank. An extreme special case of this assumption is
where ε = 0 so that the Jacobian matrix is exactly low-rank. We formalize this assumption below for
later reference.
Assumption 2 (Low-rank Jacobian). Let β ≥ α > 0 be scalars. Consider a set D ⊂ Rp containing
the initial point w0 (i.e. w0 ∈ D). Let S+ ⊂ Rn be a subspace and S− be its complement. For all
w ∈ D, v ∈ S+ and v′ ∈ S− with unit Euclidian norm, we have that

α ≤
∥∥J T (w)v

∥∥
`2
≤ β and

∥∥J T (w)v′
∥∥
`2

= 0.

In Theorem 7, we verify that the Jacobian matrix of real datasets indeed have a bimodal structure
i.e. there are few large singular values and the remaining singular values are small which further
motivate Assumption 2. This is inline with earlier papers which observed that Hessian matrices of
deep networks have bimodal spectrum (approximately low-rank) [17] and is related to various results
demonstrating that there are flat directions in the loss landscape [18].

Our dataset model in Definition 1 naturally has a low-rank Jacobian when ε0 = 0 and each
augmentation is equal to one of the K centers (vanilla samples) {c`}K`=1. In this case, the Ja-
cobian will be at most rank K since each row will be in the span of

{∂f(c`,w)
∂w

}K
`=1

. The sub-
space S+ is dictated by the membership of each cluster center (vanilla example) as follows: Let
Λ` ⊂ {1, . . . , n} be the set of coordinates i such that xi = c`. Then, subspace is characterized by
S+ = {v ∈ Rn

∣∣vi1 = vi2 for all i1, i2 ∈ Λ` and 1 ≤ ` ≤ K}.When ε0 > 0 and the augmentation
points of each cluster (vanilla sample) are not the same as the cluster we have the bimodal Jacobian
structure of Assumption 1 where over S− the spectral norm is small but nonzero.
Definition 2 (Support subspace). Let {xi}ni=1 be an input dataset generated according to Definition
1. Also let {x̃i}ni=1 be the associated vanilla samples, that is, x̃i = c` iff xi is from the `th vanilla
sample. We define the support subspace S+ as a subspace of dimension K, dictated by the cluster
center membership as follows. Let Λ` ⊂ {1, . . . , n} be the set of coordinates i such that x̃i = c`.
Then, S+ is characterized by

S+ = {v ∈ Rn
∣∣vi1 = vi2 for all i1, i2 ∈ Λ` and for all 1 ≤ ` ≤ K}.

Before we state our general result we need to discuss another assumption and definition.
Assumption 3 (Smoothness). The Jacobian mapping J (w) associated to a nonlinear mapping
f : Rp → Rn is L-smooth if for all w1,w2 ∈ Rp we have ‖J (w2)− J (w1)‖ ≤ L ‖w2 −w1‖`2 .

In Theorem 7, we verify this assumption. Note that, if ∂J (w)
∂w is continuous, the smoothness condition

holds over any compact domain (albeit for a possibly large L.

Additionally, to connect our results to the number of corrupted labels, we introduce the notion of
subspace diffusedness defined below.
Definition 3 (Diffusedness). S+ is ζ diffused if for any vector v ∈ S+

‖v‖∞ ≤
√
ζ/n‖v‖2,

holds for some ζ > 0.

8

We begin by defining the average Jacobian which will be used throughout our analysis.

Definition 4 (Average Jacobian). We define the average Jacobian along the path connecting two
points x,y ∈ Rp as

J (y,x) :=

∫ 1

0

J (x + α(y − x))dα.

Definition 5 (Neural Net Jacobian). Given input samples (xi)
n
i=1, form the input matrix X =

[x1 . . . xn]T ∈ Rn×d. The Jacobian of our learning problem, i.e. x 7→ f(W ,x) = vTφ(Wx)
and Lt(W) = 1

2

∑n
i=1(yti − f(W ,xi))

2, at a matrix W is denoted by J (W ,X) ∈ Rn×kd and
is given by

J (W ,X)T = (diag(v)φ′(WXT)) ∗XT .

Here ∗ denotes the Khatri-Rao product.

C.1.3 Auxiliary Lemmas

Lemma 3 (Linearization of the residual). For the general problem (10) in Appendix C.1.1, we define

G(wt) = J (wt+1,wt)J (wt)
T .

where J (wt) denotes the Jacobian matrix defined in Eqn. (12), and J (wt+1,wt) =
∫ 1

0
J (wt +

α(wt+1 −wt))dα denotes the average Jacobian matrix defined in Definition (4). When using the
gradient descent iterate wt+1 = wt − η∇Lt(wt), then residuals

rt+1 = f(wt+1)− ȳt+1, rt = f(wt)− ȳt

obey the following equation

rt+1 = (I − ηG(wt))rt + ȳt − ȳt+1.

Proof. Here we follow [19] to prove our result. Following Definition 4, denoting rt+1 = f(wt+1)−
ȳt+1 and rt = f(wt)− ȳt , we find that

rt+1 =rt − f(wt) + f(wt+1) + ȳt − ȳt+1

¬
=rt + J (wt+1,wt)(wt+1 −wt) + ȳt − ȳt+1

­
=rt − ηJ (wt+1,wt)J (wt)

Trt + ȳt − ȳt+1

= (I − ηG(wt))rt + ȳt − ȳt+1.

where ¬ uses the fact that Jacobian is the derivative of f and ­ uses the fact that ∇Lt(w) =
J (w)Trt.

Using Assumption 3, one can show that sparse vectors have small projection on S+.

Lemma 4. [19] Suppose Assumption 3 holds. If r ∈ Rn is a vector with s nonzero entries, we have
that

‖PS+
(r)‖∞ ≤

ζ
√
s

n
‖r‖2,

where PS+
(r) projects r onto the space S+.

Lemma 5. For the general problem (10) in Appendix C.1.1, let rt = f(wt)− ȳt and r̂t = PS+(rt).
Suppose Assumption 2 holds and η ≤ 1

β2 . If ‖wt −w0‖2 + ‖r̂t‖2
α ≤ 4(1+ψ)‖r0‖2

α , then

wt+1 ∈ D =
{
w ∈ Rp

∣∣ ‖w −w0‖2 ≤
4(1 + ψ)‖r0‖2

α

}
.

9

Proof. Since range space of Jacobian is in S+ and η ≤ 1/β2, we can easily obtain

‖wt+1 −wt‖2 = η‖J T (wt)
(
f(wt)− ȳt

)
‖2

¬
= η‖J T (wt)

(
PS+

(f(wt)− ȳt)
)
‖2

­
= η‖J T (wt)r̂t‖2
®
≤ ηβ‖r̂t‖2
¯
≤ ‖r̂t‖2

β
°
≤ ‖r̂t‖2

α

In the above, ¬ follows from the fact that row range space of Jacobian is subset of S+ via Assumption
2. ­ follows from the definition of r̂t = PS+

(f(wt)− ȳt). ® follows from the upper bound on the
spectral norm of the Jacobian over D per Assumption 2, ¯ from the fact that η ≤ 1

β2 , ° from α ≤ β.
The latter combined with the triangular inequality and the assumption

‖wt+1 −w0‖2 ≤ ‖wt+1 −wt‖2 + ‖w0 −wt‖2 ≤ ‖wt −w0‖2 +
‖r̂t‖2
α
≤ 4(1 + ψ)‖r0‖2

α
,

concluding the proof of rt+1 ∈ D.

Lemma 6. [19] Let PS+ ∈ Rn×n be the projection matrix to S+ i.e. it is a positive semi-definite
matrix whose eigenvectors over S+ is 1 and its complement is 0. Let rt = f(wt)−yt, r̂t = PS+(rt),
and G(wt) = J (wt+1,wt)J (wt)

T . Suppose Assumptions 2 and 3 hold, the learning rate η satisfies
η ≤ α

Lβ‖r0‖2 , ‖r̂t‖2 ≤ ‖r̂0‖2, then it holds

β2PS+ � G(wt) �
1

2
J (wt)J (wt)

T � α2

2
PS+ .

In the above context, we focus on introducing theoretical results for the general problem (10) in
Appendix C.1.1. Now we introduce lemmas and theories for our network learning problem, i.e.
x 7→ f(W ,x) = vTφ(Wx) and Lt(W) = 1

2

∑n
i=1(ȳti − f(W ,xi))

2 used in our manuscript.
Specifically, we introduce some theoretical results in [20] and characterizes three key properties of
the neural network Jacobian. These are smoothness, spectral norm, and minimum singular value at
initialization which correspond to Lemmas 6.6, 6.7, and 6.8 in that paper.
Theorem 3 (Jacobian Properties at Cluster Center). [20] Suppose X = [x1 . . . xn]T ∈ Rn×d be
an input dataset satisfying λ(X) > 0, where λ(X) denotes the smallest eigenvalue of matrix X .
Suppose |φ′|, |φ′′| ≤ Γ where φ′ and φ′′ respectively denotes the first and second order derivatives.
The Jacobian mapping with respect to the input-to-hidden weights obey the following properties. Let
J (W ,X) denote the neural net Jacobian defined in Definition 5.

(1) Smoothness is bounded by∥∥∥J (W̃ ,X)− J (W ,X)
∥∥∥ ≤ Γ√

k
‖X‖

∥∥∥W̃ −W
∥∥∥
F

for all W̃ ,W ∈ Rk×d.

(2) Top singular value is bounded by

‖J (W ,X)‖ ≤ Γ ‖X‖ .

(3) Let C > 0 be an absolute constant. As long as

k ≥ CΓ2log n ‖X‖2

λ(X)

At random Gaussian initialization W0 ∼N (0, 1)k×d, with probability at least 1− 1/K100,
we have

σmin (J (W0,X)) ≥
√
λ(X)/2.

10

The following theorem states the properties of the Jacobian at a (ε0, δ) clusterable dataset defined in
Definition 1. That is, (xi)

n
i=1 are generated from (ci)

K
i=1, and their augmentation distance is at most

ε0 and label separation is at least δ.
Theorem 4 (Jacobian Properties at Cluster Center). [19] Let input samples (xi)

n
i=1 be generated

according to (ε0, δ) clusterable dataset model of Definition 1. Define X = [x1 . . . xn]T and
C = [c1 . . . ck]T . Let S+ be the support space and (x̃i)

n
i=1 be the associated clean dataset as

described by Definition 2. Set X̃ = [x̃1 . . . x̃n]T . Assume |φ′|, |φ′′| ≤ Γ and λ(C) > 0. Let
J (W ,X) denote the neural net Jacobian defined in Definition 5. The Jacobian mapping at X̃ with
respect to the input-to-hidden weights obey the following properties.

(1) Smoothness is bounded by∥∥∥J(W̃ , X̃)− J (W , X̃)
∥∥∥ ≤ Γ

√
cupn

kK
‖C‖

∥∥∥W̃ −W
∥∥∥
F

for all W̃ ,W ∈ Rk×d.

(2) Top singular value is bounded by∥∥∥J (W , X̃)
∥∥∥ ≤√cupn

K
Γ ‖C‖ .

(3) As long as

k ≥ CΓ2logK ‖C‖2

λ(C)

At random Gaussian initialization W0 ∼N (0, 1)k×d, with probability at least 1− 1/K100,
we have

σmin

(
J (W0, X̃),S+

)
≥
√
clownλ(C)

2K

(4) The range space obeys range(J (W0, X̃)) ⊂ S+ where S+ is given by Definition 2.
Lemma 7 (Upper bound on initial misfit). [19] Consider a one-hidden layer neural network model of
the form x 7→ vTφ (Wx) where the activation φ has bounded derivatives obeying |φ(0)|, |φ′(z)| ≤
Γ. Suppose entries of v ∈ Rk are half 1/

√
k and half −1/

√
k so that ‖v‖2 = 1. Also assume

we have n data points x1,x2, . . . ,xn ∈ Rd with unit euclidean norm (‖xi‖2 = 1) aggregated as
rows of a matrix X ∈ Rn×d and the corresponding labels given by y ∈ Rn generated accoring to
(ρ, ε = 0, δ) noisy dataset (Definition 1). Then for W0 ∈ Rk×d with i.i.d. N (0, 1) entries

‖vTφ
(
W0X

T
)
− y‖2 ≤ O

(
Γ
√
n logK

)
,

holds with probability at least 1−K−100.

Then we introduce a lemma regarding the projection of label noise on the vanilla sample (cluster)
induced subspace. Since augmentations are produced by using the vanilla sample ci and the aug-
mentation x obeys ‖x− ci‖2 ≤ ε0. So in this sense, we sometimes call the vanilla sample and its
augmentations as cluster, and call the vanilla sample as cluster center.
Lemma 8. [19] Let {(xi,yi)}ni=1 be an (ρ, ε = 0, δ) clusterable noisy dataset as described in
Definition 1. Let {y∗i }ni=1 be the corresponding ground truth labels. Let J (W ,C) be the Jacobian at
the cluster center matrix which is rank K and S+ be its column space. Then, the difference between
noiseless and noisy labels satisfy the bound

‖PS+
(y − y∗)‖∞ ≤ 2ρ.

Theorem 5. [19] Assume |φ′| , |φ′′| ≤ Γ and k & d. Suppose W0 ∼ N (0, 1). Let c1, . . . , cK be
cluster centers. Then, with probability at least 1− 2e−(k+d) −Ke−100d over W0, any matrix W
satisfying ‖W −W0‖F .

√
k satisfies the following. For all 1 ≤ i ≤ K,

sup
‖x−ci‖2,‖x̃−ci‖2≤ε

|f(W ,x)− f(W , x̃)| ≤ CΓε(‖W −W0‖+
√
d).

11

Lemma 9 (Perturbed Jacobian Distance). [19] Let X = [x1 . . . xn]T be the input matrix obtained
from Definition 1. Let X̃ be the noiseless inputs where x̃i is the cluster center corresponding to xi.
Let J (W ,X) denote the neural net Jacobian defined in Definition 5 and define J (W1,W2,X) =∫ 1

0
J (αW1 + (1− α)W2,X)dα. Given weight matrices W1,W2, W̃1, W̃2, we have that

‖J (W ,X)− J (W̃ , X̃)‖ ≤ Γ
√
n

(
‖W̃ −W ‖F√

k
+ ε

)
.

and

‖J (W1,W2,X)− J (W̃1, W̃2, X̃)‖ ≤ Γ
√
n

(
‖W̃1 −W1‖F + ‖W̃2 −W2‖F

2
√
k

+ ε

)
.

C.2 Proof of Theorem 2

The subsection has four parts. In the first part, we introduce the proof roadmap in Appendix C.2.1.
Then in the second part, we present several auxiliary theories in Appendix C.2.2. Next, we prove
our Theorem 2 in Appendix C.2.3. Finally, we present all proof details of auxiliary theories in
Appendix C.2.2.

C.2.1 Proof roadmap

Before proving Theorem 2, we first briefly introduce our main idea. In the first step, we ana-
lyze the general model introduced in Appendix C.1.1. For the solution wt at the t-th iteration,
Theorem 6 proves that (1) the distance of ‖wt −w0‖2 can be upper bounded; (2) both residual
‖PS+

(f(wt)− ȳt)‖2 and ‖f(wt)− y∗‖∞ can be upper bound. Result (1) means that the gradient
descent algorithm gives solutions in a ball around the initialization w0, and helps us verify our
assumptions, e.g. Assumptions 3 and 2 and upper bound some variables in our analysis. Results (2)
directly bound the label estimation error which plays key role in subsequent analysis.

In the second step, we prove Theorem 7 for the perfectly clustered data (ε0 = 0) by using Theorem 6.
We consider ε0 → 0 which means that the input data set is perfectly clean. In this setting, let
X̃ = [x̃1, · · · , x̃n] be the clean input sample matrix obtained by mapping xi to its associated cluster
center, i.e. x̃i = c` if xi belongs to the `-th cluster. In this way, we update network parameter W̃t as
follows:

W̃t+1 = W̃t −∇L̃t(W̃t) where L̃t(W̃) =
1

2

n∑
i=1

(yti − f(W̃ , x̃i))
2

Theorem 7 shows that for neural networks, our method still can upper bound the distance ‖W̃t −
W̃0‖F and the residuals ‖f(W̃t)− ỹ‖∞ if the network, learning rate, the weight αi for refining
label satisfy certain conditions.

In the third step, we consider the realistic setting, where we update the parameters on the corrupted
data X = [x1, · · · ,xn] as follows:

Wt+1 = Wt − η∇Lt(Wt) where Lt(W) =
1

2

n∑
i=1

(yti − f(W ,xi))
2. (13)

Then to upper bound ‖f(Wt)− ỹ‖∞ which measures the error between the predicted label f(Wt)

and the ground truth label ỹ, we upper bound ‖f(Wt,X)− f(W̃t, X̃)‖2 and ‖Wt − W̃t‖F . These
results are formally stated in Theorem 8.

In the fourth step, we combine the above results together. Specifically, Theorem 7 upper bounds the
residuals ‖f(W̃t, X̃)− ỹ‖∞ and Theorem 8 upper bounds ‖f(Wt,X)− f(W̃t, X̃)‖2. So com-
bining these two results and other results in Theorem 7 & 8, we can upper bound ‖f(Wt,X)− ỹ‖∞
which is our desired results. At the same time, by using similar method, we can also bound the label
estimation error by our self-labeling refinery, since ‖ȳt − y∗‖2 = ‖(1− αt)y + αtf(w)− y∗‖2 ≤
(1− αt)‖y − y∗‖2 + αt‖f(w)− y∗‖2. The term ‖y − y∗‖2 denotes the initial label error and can
be bounded by a factor related to ρ, while the second term is well upper bounded by the above results.

12

It should be note that our proof framework follows the recent works [21, 19] which shows that
gradient descent is robust to label corruptions. The main difference is that this work uses the label
estimation ȳt = αty + (1−αt)f(w) and minimizes the squared loss, while both works [21, 19] use
the corrupted label y and then minimize the squared loss. By comparison, our method is much more
complicated and gives different proofs.

C.2.2 Auxiliary Theories

The following theorem is to analyze the general model introduced in Appendix C.1.1. It guarantees
that the estimated label by our method is close to the ground truth label when the Jacobian mapping
is exactly low-rank. By using this results, one can obtain Theorem 7 for the perfectly clustered data
(ε0 = 0) which will be stated later.
Theorem 6 (Gradient descent with label corruption). Consider a nonlinear least squares problem
of the form Lt(w) = 1

2 ‖f(w)− ȳt)‖2`2 with the nonlinear mapping f : Rp → Rn obeying

assumptions 2 and 3 over a unit Euclidian ball of radius 4(1+ψ1)‖f(w0)−y‖2
α around an initial point

w0 and y = [y1 . . . yn] ∈ Rn denoting the corrupted labels. We also assume αt ≥ 1 − α2

4β2 and

2
√
n limt→+∞

∑t
t=0 |αt − αt+1| ≤ ψ1‖f(w0)− ȳ0‖2. Also let y∗ = [y∗1 . . . y∗n] ∈ Rn denote

the ground truth labels and e = y − y∗ the corruption. Furthermore, suppose the initial residual
f(w0)− ỹ with respect to the uncorrupted labels obey f(w0)− y∗ ∈ S+. Then, running gradient

descent updates of the from (11) with a learning rate η ≤ 1
2β2 min

(
1, αβ

L‖f(w0)−ȳ0‖2

)
, all iterates

obey

‖wt −w0‖2 ≤
4‖r0‖2
α

+ 2
√
n lim
t→+∞

t∑
t=0

|αt − αt+1| ≤
4(1 + ψ)‖f(w0)− ȳ0‖2

α
.

and

‖r̂t‖22 ≤
(

1− ηα2

4

)t
‖r̂0‖22 + 2

√
n

t−1∑
i=0

(
1− ηα2

4

)t−i
|αi − αi+1|,

where rt = f(wt) − ȳt and let r0 = f(w0) − ȳ0 be the initial residual, and r̂t = PS+
(rt).

Furthermore, assume ν > 0 is a precision level obeying ν ≥ ‖PS+(e)‖∞. Then, after t ≥
5
ηα2 log

(
‖f(w0)−ȳ0‖2

(1−αmax)ν

)
iterations where αmax = maxt αt, wt achieves the following error bound

with respect to the true labels

‖f(wt)− y∗‖∞ ≤ 2ν +
2
√
n

1− αt

t−1∑
i=0

(
1− ηα2

4

)t−i
|αi − αi+1|.

Furthermore, if e has at most s nonzeros and S+ is ζ diffused per Definition 3, then using ν =
‖PS+

(e)‖∞

‖f(wt)− y∗‖∞≤2‖PS+
(e)‖∞ +

2
√
n

1− αt

t−1∑
i=0

(
1− ηα2

4

)t−i
|αi − αi+1|

≤ζ
√
s

n
‖e‖2 +

2
√
n

1− αt

t−1∑
t=0

(
1− ηα2

4

)t−i
|αi − αi+1|,

where PS+
(e) denotes projection of e on S+.

See its proof in Appendix C.2.5. This result shows that when the Jacobian of the nonlinear mapping
is low-rank, our method enjoys two good properties.

For the solution wt at the t-th iteration, (1) the distance of ‖wt −w0‖2 can be upper bounded; (2)
both residual ‖PS+(f(wt)− yt)‖2 and ‖f(wt)− ỹ‖∞ can be upper bound. Result (1) means that
the gradient descent algorithm gives solutions in a ball around the initialization w0, and helps us
verify our assumptions, e.g. Assumptions 3 and 2 and upper bound some variables in our analysis.
Results (2) directly bound the label estimation error which plays key role in subsequent analysis.
This theorem is the key result that allows us to prove Theorem 7 when the data points are perfectly

13

clustered (ε0 = 0). Furthermore, this theorem when combined with a perturbation analysis allows us
to deal with data that is not perfectly clustered (ε0 > 0) and to conclude the recovery ability of our
method (Theorem 2).

When ε0 → 0 which means that the input data set is perfectly clustered, our method can be expected
to exactly recover the ground truth label by using neural networks.

Theorem 7 (Training with perfectly clustered data). Consider the setting and assumptions of Theorem
6 with ε0 = 0. Starting from an initial weight matrix w0 selected at random with i.i.d.N (0, 1) entries
we run gradient descent updates of the form Wt+1 = Wt − η∇Lt(Wt) on the least-squares loss in
the manuscript with step size η ≤ K

2cupnΓ2‖C‖2 . Furthermore, assume the number of hidden nodes
obey

k ≥ C(1 + ψ1)2Γ4K log(K)‖C‖2

λ(C)2
,

with λ(C) is the minimum eigenvalue of Σ(C) in Assumption 2. Then, with probability at least
1−2/K100 over randomly initialized W0

i.i.d.∼ N (0, 1), the iterates Wt obey the following properties.

(1) The distance to initial pointW0 is upper bounded by

‖Wt −W0‖F ≤ cΓ

√
K logK

λ(C)
.

(2) After t ≥ t0 := cK
ηnλ(C) log

(
Γ
√
n logK

(1−αmax)ρ

)
iterations where αmax = max0≤t≤t0 αt, the

entrywise predictions of the learned network with respect to the ground truth labels {y∗i }ni=1
satisfy

|f(Wt,xi)− y∗i | ≤ 4ρ,

for all 1 ≤ i ≤ n. Furthermore, if the noise level ρ obeys ρ ≤ δ/8 the network predicts the
correct label for all samples i.e.

arg min
i:1≤i≤K̄

|f(Wt,xi)− γi| = y∗i for i = 1, 2, . . . , n. (14)

See its proof in Appendix C.2.6. This result shows that in the limit ε0 → 0 where the data points are
perfectly clustered, if the width of network and the iterations satisfy k ≥ C(1 +ψ1)2Γ4K log(K)‖C‖2

λ(C)2

and t ≥ t0 := cK
ηnλ(C) log

(
Γ
√
n logK
α̃ρ

)
, then our method can exactly recover the ground truth label.

This result can be interpreted as ensuring that the network has enough capacity to fit the cluster
centers {c`}K`=1 and the associated true labels.

Then we consider the perturbed data X = [x1, · · · ,xn] instead of the perfectly clustered data
X̃ = [x̃1, · · · , x̃n] obtained by mapping xi to its associated cluster center, i.e. x̃i = c` if xi belongs
to the `-th cluster. In Theorem 8, we upper bound the parameter distance and output distance under
the two kinds of data X and X̃ .

Theorem 8 (Robustness of gradient path to perturbation). Generate samples (xi,yi)
n
i=1 according

to (ρ, ε, δ) corrupted dataset and form the concatenated input/labels X ∈ Rd×n,y ∈ Rn. Let X̃ be
the clean input sample matrix obtained by mapping xi to its associated cluster center. Set learning
rate η ≤ K

2cupnΓ2‖C‖2 and maximum iterations t0 satisfying

ηt0 = C1
K

nλ(C)
log(

Γ
√
n logK

ρ
).

where C1 ≥ 1 is a constant of our choice. Suppose input noise level ε and number of hidden nodes
obey

ε ≤ O

(
λ(C)

Γ2K log(Γ
√
n logK
ρ)

)
and k ≥ O

(
Γ10 K2‖C‖4

α2
maxλ(C)4

log(
Γ
√
n logK

ρ
)6

)
.

14

where αmax = max1≤t≤t0 αt. Assume 2
√
n
∑t−1
i=0

(
1− ηα2

4

)t−i
|αi − αi+1| ≤ ψ2‖r0‖22 and

2
√
n
∑t−1
i=0 |αi − αi+1| ≤ ψ1‖r0‖2. Set W0 ∼ N (0, 1). Starting from W0 = W̃0 consider the

gradient descent iterations over the losses

Wt+1 = Wt − η∇Lt(Wt) where Lt(W) =
1

2

n∑
i=1

(yti − f(W ,xi))
2 (15)

W̃t+1 = W̃t −∇L̃t(W̃t) where L̃t(W̃) =
1

2

n∑
i=1

(yti − f(W̃ , x̃i))
2 (16)

Then, for all gradient descent iterations satisfying t ≤ t0, we have that

‖f(Wt,X)− f(W̃t, X̃)‖2 ≤ c0ψ′tηεΓ3n3/2
√

logK,

and

‖Wt − W̃t‖F ≤ O

(
tψ′ηε

Γ4Kn

λ(C)
log

(
Γ
√
n logK

ρ

)2
)
.

where ψ′ = 1 + ψ1

2 +
√
ψ2.

See its proof in Appendix C.2.7. Theorem 2 is obtained by combining the above results together.

C.2.3 Proof of Theorem 2

Proof of Theorem 2. Here we prove our results by three steps. In these steps, each step proves one
of the three results in our theory. To begin with, we consider two parameter update settings with
initialization as W0:

W̃t+1 =W̃t −∇L̃t(W̃t) where L̃t(W̃) =
1

2

n∑
i=1

(ỹti − f(W̃ , x̃i))
2,

Wt+1 =Wt − η∇Lt(Wt) where Lt(W) =
1

2

n∑
i=1

(ȳti − f(W ,xi))
2,

where ỹti = (1−αt)y +αtf(W̃t, x̃i), ȳti = (1−αt)y +αtf(Wt,xi), X̃ = [x̃1, · · · , x̃n] denotes
the clean input sample matrix obtained by mapping xi to its associated cluster center, i.e. x̃i = c`
if xi belongs to the `-th cluster, and X = [x1, · · · ,xn] denotes corrupted data matrix. Denote the
prediction residual vectors of the noiseless and original problems with respect true ground truth labels
y∗ by r̃t = f(W̃t, X̃)− y∗ and rt = f(Wt,X)− y∗ respectively.

Theorem 7 shows that if number of iterations t and network width receptively satisfy t ≥ t0 :=
cK

ηnλ(C) log
(

Γ
√
n logK
α̃ρ

)
and k ≥ C(1 + ψ1)2Γ4K log(K)‖C‖2

λ(C)2 , then it holds

‖r̃t‖∞ = ‖f(W̃t, X̃)− y∗‖∞ ≤ 4ρ and ‖W̃t −W0‖F ≤ cΓ

√
K logK

λ(C)
.

Meanwhile, Theorems 8 proves that if ε ≤ O

(
λ(C)

Γ2K log(
Γ
√
n logK

ρ)

)
and k ≥

O
(

Γ10 K2‖C‖4
α2

maxλ(C)4 log(Γ
√
n logK
ρ)6

)
, then it holds

‖r̃t − rt‖2 ≤ cε
ψ′K

nλ(C)
log(

Γ
√
n logK

ρ
)Γ3n3/2

√
logK = c

ψ′εΓ3K
√
n logK

λ(C)
log(

Γ
√
n logK

ρ
)

and

‖Wt − W̃t‖F ≤ O

(
tψ′ηε

Γ4Kn

λ(C)
log

(
Γ
√
n logK

ρ

)2
)
.

15

where ψ′ = 1 + ψ1

2 +
√
ψ2.

Step 1. By using the above two results, we have

‖f(Wt,X)− ỹ‖2√
n

=
1√
n

(‖r̃t‖2 + ‖rt − r̃t‖2) ≤ 4ρ+ c
εψ′Γ3K

√
logK

λ(C)
log

(
Γ
√
n logK

ρ

)
.

Moreover, we can also upper bound

‖ȳt − y∗‖2√
n

≤ (1− αt)‖y − y∗‖2√
n

+
αt‖f(Wt,X)− y∗‖2√

n

=
(1− αt)‖y − y∗‖2√

n
+ 4αtρ+ cαt

εψ′Γ3K
√

logK

λ(C)
log

(
Γ
√
n logK

ρ

)
.

Step 2. Now we consider what cases that our method can exactly recover the ground truth label.
Assume an input x is within ε-neighborhood of one of the cluster centers c ∈ (c`)

K
`=1. Then we try

to upper bound |f(Wt,x) − f(W̃t, c)| where f(W̃t, c) corresponds to f(W̃t, x̃). To begin with,
we have

|f(Wt,x)− f(W̃t, c)| ≤ |f(Wt,x)− f(W̃t,x)|+ |f(W̃t,x)− f(W̃t, c)|

We upper bound the first term as follows:

|f(Wt,x)− f(W̃t,x)| = |vTφ(Wtx)− vTφ(W̃tx)| ≤ ‖v‖2‖φ(Wtx)− φ(W̃tx)‖2
≤ Γ‖Wt − W̃t‖F

≤ O
(
εψ′

Γ5K2

λ(C)2
log(

Γ
√
n logK

ρ
)3

)
where we use the results ‖Wt − W̃t‖F ≤ O

(
tψ′ηεΓ4Kn

λ(C) log
(

Γ
√
n logK
ρ

)2
)

with ψ′ = 1 + ψ1

2 +
√
ψ2 in Theorem 8, and t = t0. Next, we need to bound

|f(W̃t,x)− f(W̃t, c)| ≤ |vTφ(W̃tx)− vTφ(W̃tc)|.

On the other hand, we have ‖W̃t −W0‖F ≤ O
(

Γ
√

K logK
λ(C)

)
in Theorem 7, ‖x− c‖2 ≤ ε and

W0 ∼N (0, I) in assumption. Moreover, using by assumption we have

k ≥ O
(
‖W̃t −W0‖2F

)
= O

(
Γ2K logK

λ(C)

)
.

By using the above results, Theorem 5 guarantees that with probability at 1−K exp(−100d), for all
inputs x lying ε neighborhood of cluster centers, it holds that

|f(Wt,x)− f(W̃t, c)| ≤ C ′Γε(‖W̃t −W0‖F +
√
d) ≤ CΓε

(
Γ

√
K logK

λ(C)
+
√
d

)
. (17)

Combining the two bounds above we get

|f(Wt,x)− f(W̃t, c)| ≤ εO

(
ψ′Γ5K2

λ(C)2
log(

Γ
√
n logK

ρ
)3 + Γ(Γ

√
K logK

λ(C)
+
√
d)

)

≤ εO
(
ψ′Γ5K2

λ(C)2
log(

Γ
√
n logK

ρ
)3

)
.

Hence, if ε ≤ c′δmin

(
λ(C)2

ψ′Γ5K2 log(
Γ
√
n logK

ρ)3
, 1

Γ
√
d

)
, we obtain that, for all x, the associated cluster

c and true label assigned to cluster y∗ = y∗(c), we have that

|f(Wt,x)− y∗| < |f(W̃t, c)− f(Wt,x)|+ |f(W̃t, c)− y∗| ≤ 4ρ+
δ

8
.

16

Meanwhile, we can upper bound

|ȳtx − y∗x| ≤ (1− αt)|yx − y∗x|+ αt|f(Wt,x)− y∗| ≤ (1− αt)|yx − y∗x|+ αt(4ρ+
δ

8
).

where ȳtx = (1− αt)yx + αtf(Wt,x) and y∗x receptively denote the estimated label by our label
refinery and the ground truth label of sample x. Since |yx − y∗x| < 1, by setting 1 ≥ αt ≥ 1− 3

4δ
and ρ ≤ δ/32, we have

|ȳtx − y∗x| <
δ

2

This means that for any sample xi, we have |ȳti − y∗i | < δ/2. Therefore, our label refinery gives the
correct estimated labels for all samples. By using the same setting, we obtain

|f(Wt,x)− y∗| < δ/2.

This means that for any sample xi, we have |f(Wt,xi) − y∗i | < δ/2. Therefore, Wt gives the
correct estimated labels for all samples. This competes all proofs.

C.2.4 Proofs of Auxiliary Theories in Appendix C.2

C.2.5 Proof of Theorem 6

Proof. The proof will be done inductively over the properties of gradient descent iterates and is
inspired from the recent work [21, 19]. The main difference is that this work uses the label estimation
ȳt = (1− αt)y + αtf(wt) and minimizes the squared loss, while both [21, 19] use the corrupted
label y and then minimize the squared loss. By comparison, our method is much more complicated
and gives different proofs. Let us introduce the notation related to the residual. Set rt = f(wt)− ȳt

and let r0 = f(w0) − ȳ0 be the initial residual. We keep track of the growth of the residual by
partitioning the residual as rt = r̂t + êt where

êt = PS−(rt) , r̂t = PS+(rt).

We claim that for all iterations t ≥ 0, the following conditions hold.

‖êt‖2 ≤‖ê0‖2 +
√
n

t∑
i=0

|αi − αi+1| ≤ ‖ê0‖2 +
ψ1

2
‖r0‖2, (18)

‖r̂t‖22 ≤
(

1− ηα2

4

)t
‖r̂0‖22 + 2

√
n

t−1∑
t=0

(
1− ηα2

4

)t−t
|αt − αt+1|, (19)

α

4
‖wt −w0‖2 + ‖r̂t‖2 ≤‖r̂0‖2 + 2

√
n

t∑
i=0

|αi − αi+1| ≤ ‖r0‖2 + 2
√
n

t∑
i=0

|αi − αi+1|

≤(1 + φ)‖r0‖2, (20)

where the last line uses the assumption that 2
√
n limt→+∞

∑t
i=0 |αi−αi+1| ≤ ψ1‖r0‖2. Assuming

these conditions hold till some t > 0, inductively, we focus on iteration t + 1. First, note that
these conditions imply that for all t ≥ i ≥ 0, wi ∈ D where D =

{
w ∈ Rp

∣∣ ‖w −w0‖2 ≤
4(1+ψ1)‖r0‖2

α

}
is the Euclidian ball around w0 of radius 4(1+ψ1)‖r0‖2

α . This directly follows from
(20) induction hypothesis. Next, we claim that wt+1 is still within the set D. From Lemma 5, we
have that if the results in Eqn. (20) holds, then it holds that

wt+1 ∈ D =
{
w ∈ Rp

∣∣∣ ‖w −w0‖2 ≤
4(1 + ψ1)‖r0‖2

α

}
.

In this way, we can directly use the results in previous lemmas and assumptions. Then we will prove
that (19) and (20) hold for t+ 1 as well. Note that, following Lemma 3, gradient descent iterate can
be written as

rt+1 = (I − ηG(wt))rt + ȳt − ȳt+1.

17

Since both column and row space of G(wt) is subset of S+, we have that

êt+1 = PS−((I − ηG(wt))rt + ȳt − ȳt+1) (21)

= PS−(rt) + PS−(ȳt − ȳt+1) (22)

= êt + PS−(ȳt − ȳt+1) (23)
= êt + PS−((αt+1 − αt)y) (24)

= ê0 +

t∑
t=0

PS−((αt+1 − αt)y) (25)

(26)

So we can upper bound

‖êt‖2 ≤ ‖ê0‖2 + 2
√
n

t∑
i=0

|αi − αi+1| ≤ ‖ê0‖2 + ψ1‖r0‖2. (27)

This shows the first statement of the induction. Next, over S+, we have

r̂t+1 = PS+
((I − ηG(wt))rt + ȳt − ȳt+1) (28)

= PS+
((I − ηG(wt))r̂t) + PS+

((I − ηG(wt))êt) + PS+
(ȳt − ȳt+1) (29)

= PS+((I − ηG(wt))r̂t) + PS+(ȳt − ȳt+1) (30)

= (I − ηG(wt))r̂t + ȳt − ȳt+1 (31)

where the second line uses the fact that êt ∈ S− and last line uses the fact that r̂t ∈ S+, in the last
line, we let ŷt = PS+(ȳt). Then we can rewrite ȳt − ȳt+1 as

ŷt − ŷt+1 =(1− αt)y + αtf(wt)− (1− αt+1)y + αt+1f(wt+1)

=(αt+1 − αt)y + αt(f(wt)− f(wt+1))− (αt+1 − αt)f(wt+1).

At the same time, we can upper bound

‖wt+1 −wt‖F = η‖J (wt)
Trt‖2

¬
≤ η‖J (wt)

T r̂t‖2 ≤ ηβ‖r̂t‖2.
In this way, we can obtain

‖r̂t+1‖2
≤‖(I − ηG(wt))r̂t‖2 + ‖(αt − αt+1)y‖2 + αt‖f(wt)− f(wt+1)‖2 + ‖(αt+1 − αt)f(wt+1)‖2
¬
≤
(

1− ηα2

2

)
‖r̂t‖2 + αtβ‖wt −wt+1‖2 + 2

√
n · |αt − αt+1|

≤
(

1− ηα2

2

)
‖r̂t‖2 + αtβ

2η‖r̂t‖2 + 2
√
n · |αt − αt+1|

­
≤
(

1− ηα2

4

)
‖r̂t‖2 + 2

√
n · |αt − αt+1|

where ¬ uses in Lemma 6, ‖y‖2 ≤
√
n and ‖f(wt+1)‖2 ≤

√
n, ­ uses αt ≤ α2

4β2 . This result
further yields

‖r̂t‖2 ≤
(

1− ηα2

4

)t
‖r̂0‖2 + 2

√
n

t−1∑
t=0

(
1− ηα2

4

)t−t
|αt − αt+1|

On the other hand, we have

‖(I − ηG(wt))r̂t‖22 ≤‖r̂t‖22 − 2ηr̂Tt G(wt)r̂t + η2r̂Tt G
T (wt)G(wt)r̂t

≤‖r̂t‖22 − 2ηr̂Tt J (wt)J T (wt)r̂t + η2β2r̂Tt J (wt)J T (wt)r̂t

=‖r̂t‖22 − η(2− ηβ2)‖J T (wt)r̂t‖22
≤‖r̂t‖22 − η‖J T (wt)r̂t‖22,

18

where the last line use η ≤ 1
β2 . This further gives

‖(I − ηG(wt))r̂t‖2 ≤
√
‖r̂t‖22 − η‖J T (wt)r̂t‖22 ≤ ‖r̂t‖2 −

η

2

‖J T (wt)r̂t‖22
‖r̂t‖2

.

Therefore, we can upper bound ‖r̂t‖2 in another way which can help to bound ‖wt+1 −w0‖2:

‖r̂t+1‖2
≤‖(I − ηG(wt))r̂t‖2 + ‖(αt − αt+1)y‖2 + (1− αt)‖f(wt)− f(wt+1)‖2 + ‖(αt+1 − αt)f(wt+1)‖2
≤‖(I − ηG(wt))r̂t‖2 + (1− αt)β‖wt −wt+1‖2 + 2

√
n · |αt − αt+1|

=‖(I − ηG(wt))r̂t‖2 + (1− αt)βη‖J T (wt)rt‖2 + 2
√
n · |αt − αt+1|

≤‖r̂t‖2 −
η

2

‖J T (wt)r̂t‖22
‖r̂t‖2

+ (1− αt)βη‖J T (wt)rt‖2 + 2
√
n · |αt − αt+1|.

Since the distance of wt+1 to initial point satisfies :

‖wt+1 −w0‖2 ≤ ‖wt+1 −wt‖2 + ‖wt −w0‖2 ≤ ‖wt −w0‖2 + η‖J T (wt)rt‖2,
we can further bound
α

4
‖wt+1 −w0‖2 + ‖r̂t+1‖2

≤α
4

(
‖wt −w0‖2 + η‖J T (wt)rt‖2

)
+ ‖r̂t‖2 −

η

2

‖J T (wt)r̂t‖22
‖r̂t‖2

+ (1− αt)βη‖J T (wt)rt‖2 + 2
√
n · |αt − αt+1|

≤α
4
‖wt −w0‖2 + ‖r̂t‖2 +

η

4
‖J T (wt)rt‖2

(
α+ 4(1− αt)β − 2

‖J T (wt)r̂t‖2
‖r̂t‖2

)
+ 2
√
n · |αt − αt+1|

¬
≤α

4
‖wt −w0‖2 + ‖r̂t‖2 + 2

√
n · |αt − αt+1|

≤‖r̂0‖2 + 2
√
n

t∑
i=0

|αi − αi+1| ≤ ‖r0‖2 + 2
√
n

t∑
i=0

|αi − αi+1|,

where ¬ uses ‖J
T (wt)r̂t‖2
‖r̂t‖2 ≥ α and αt ≤ α

4β .

By setting t ≥ 5
ηα2 log

(
‖r0‖2

(1−αmax)ν

)
and ηα2

4 ≤ ηβ2

4 ≤ 1
8 where αmax = maxt αt, then we have

log 1

1− ηα2

4

≥ log
(

1 + ηα2

4

)
≥ ηα2

5 and thus(
1− ηα2

4

)t
‖r̂0‖2 ≤

(
1− ηα2

4

)t
‖r0‖2 ≤

(
1− ηα2

4

)t
‖r0‖2 ≤ (1− αmax)ν.

In this way, we can further obtain

‖r̂t‖∞ ≤ ‖r̂t‖2 ≤ (1− αmax)ν + 2
√
n

t−1∑
i=0

(
1− ηα2

4

)t−i
|αi − αi+1|

and
(1− αt)‖PS+

(f(wt)− y)‖∞ =‖PS+
(f(wt)− (1− αt)y − αtf(wt))‖∞ = ‖r̂t‖∞ ≤ ‖r̂t‖2

≤(1− αmax)ν + 2
√
n

t−1∑
t=0

(
1− ηα2

4

)t−t
|αt − αt+1|

Finally, we can obtain the desired results:

‖f(wt)− y∗‖∞
¬
=‖PS+

(f(wt))− PS+
(y∗)‖∞

≤‖PS+(f(wt)− y)‖∞ + ‖PS+(y − y∗)‖∞

≤2ν +
2
√
n

1− αt

t−1∑
i=0

(
1− ηα2

4

)t−i
|αi − αi+1|,

19

where ¬ holds since f(wt)− y∗ ∈ S+ and ‖PS+(f(wt)− y)‖∞ = ‖PS+(f(wt)− y)‖∞. If e is
s sparse and S+ is diffused, applying Definition 3 we have

‖PS+
(e)‖∞ ≤

γ
√
s

n
‖e‖∞.

The proof is completed.

C.2.6 Proof of Theorem 7

Proof. The proof is based on the meta Theorem 6, hence we need to verify its Assumptions 2 and
3 with proper values and apply Lemma 8 to get ‖PS+

(e)‖∞. We will also make significant use of
Corollary 4.

Using Corollary 4, Assumption 3 holds with L = Γ
√

cupn
kK ‖C‖ where L is the Lipschitz constant

of Jacobian spectrum. Denote Using Lemma 7 with probability 1−K−100, we have that ‖r0‖2 =

‖ȳ0 − f(W0)‖2 = ‖y − f(W0)‖2 ≤ Γ
√
c0n logK/128 for some c0 > 0. Corollary 4 guarantees

a uniform bound for β, hence in Assumption 2, we pick

β ≤
√
cupn

K
Γ ‖C‖ .

We shall also pick the minimum singular value over S+ to be

α =
α′

2
where α′ =

√
clownλ(C)

2K
,

We wish to verify Assumption 2 over the radius of

R =
4‖f(W0)− y‖2

α
≤

Γ
√
c0n logK/8

α
= Γ

√
c0n logK/2
clownλ(C)

2K

= Γ

√
c0K logK

clowλ(C)
,

neighborhood of W0. What remains is ensuring that Jacobian over S+ is lower bounded by α. Our
choice of k guarantees that at the initialization, with probability 1−K−100, we have

σ(J (W0,X),S+) ≥ α′.

Suppose LR ≤ α = α′/2 which can be achieved by using large k. Using triangle inequality on
Jacobian spectrum, for any W ∈ D, using ‖W −W0‖F ≤ R, we would have

σ(J (W ,X),S+) ≥ σ(J (W0,X),S+)− LR ≥ α′ − α = α.

Now, observe that

LR =(1 + ψ1)Γ

√
cupn

kK
‖C‖Γ

√
c0K log(K)

clowλ(C)
= (1 + ψ1)Γ2‖C‖

√
cupc0n logK

clowkλ(C)
(32)

≤α
′

2
=

√
clownλ(C)

8K
, (33)

as k satisfies

k ≥ O
(

(1 + ψ1)2Γ4‖C‖2 cupK log(K)

c2lowλ(C)2

)
≥ O

(
(1 + ψ1)2Γ4K log(K) ‖C‖2

λ(C)2

)
.

Finally, since LR = 4(1 + ψ1)L‖r0‖2/α ≤ α, the learning rate is

η ≤ 1

2β2
min(1,

αβ

L‖r0‖2
) =

1

2β2
=

K

2cupnΓ2 ‖C‖2
.

Overall, the assumptions of Theorem 6 holds with stated α, β, L with probability 1− 2K−100 (union
bounding initial residual and minimum singular value events). This implies for all t > 0 the distance
of current iterate to initial obeys

‖Wt −W0‖F ≤ R.

20

The final step is the properties of the label corruption. Using Lemma 8, we find that

‖PS+
(y∗ − y)‖∞ ≤ 2ρ.

Substituting the values corresponding to α, β, L yields that, for all gradient iterations with

5

ηα2
log

(
‖r0‖2

2(1− αmax)ρ

)
≤ 5

ηα2
log

(
Γ
√
c0n logK/32

2(1− αmax)ρ

)
= O

(
K

ηnλ(C)
log

(
Γ
√
n logK

(1− αmax)ρ

))
≤ t,

denoting the clean labels by ỹ and applying Theorem 6, we have that, the infinity norm of the residual
obeys (using ‖PS+(e)‖∞ = ‖PS+(y − y∗)‖∞ ≤ 2ρ)

‖f(W)− y∗‖∞ ≤ 4ρ.

This implies that if ρ ≤ δ/8, the network will miss the correct label by at most δ/2, hence all labels
(including noisy ones) will be correctly classified.

C.2.7 Proof of Theorem 8

Proof. Since W̃t are the noiseless iterations, with probability 1−2K−100, the statements of Theorem
7 hold on W̃t. To proceed with proof, we first introduce short hand notations. We use

ri = f(Wi,X)− ȳi, r̃i = f(W̃i, X̃i)− ỹi (34)

Ji = J (Wi,X), Ji+1,i = J (Wi+1,Wi,X), J̃i = J (W̃i, X̃), J̃i+1,i = J (W̃i+1, W̃i, X̃)
(35)

di = ‖Wi − W̃i‖F , pi = ‖ri − r̃i‖2, β = Γ‖C‖
√
cupn/K, L = Γ‖C‖

√
cupn/Kk. (36)

Here β is the upper bound on the Jacobian spectrum and L is the spectral norm Lipschitz constant as
in Theorem 4. Applying Lemma 9, note that

‖J (Wt,X)− J (W̃t, X̃)‖ ≤ L‖W̃t −Wt‖2 + Γ
√
nε ≤ Ldt + Γ

√
nε (37)

‖J (Wt+1,Wt,X)− J (W̃t+1, W̃t, X̃)‖ ≤ L(dt + dt+1)/2 + Γ
√
nε. (38)

By defining
êt = PS−(r̃t) , r̂t = PS+

(r̃t),

then we can use Theorem 6 and the assumption that 2
√
n
∑t−1
i=0

(
1− ηα2

4

)t−i
|αi − αi+1| ≤

ψ2‖r0‖22 to obtain

‖êt‖2 ≤‖ê0‖2 +
√
n

t∑
i=0

|αi − αi+1| ≤ ‖ê0‖2 +
ψ

2
‖r0‖2, (39)

‖r̂t‖22 ≤
(

1− ηα2

4

)t
‖r̂0‖22 + 2

√
n

t−1∑
i=0

(
1− ηα2

4

)t−i
|αi − αi+1| ≤ ‖r̂0‖22 + ψ2‖r0‖22. (40)

Therefore, we can upper bound

‖r̃t‖2 = ‖êt‖2 + ‖r̂t‖2 ≤ ‖ê0‖2 +
ψ

2
‖r0‖2 + ‖r̂0‖2 +

√
ψ2‖r0‖2 =

(
1 +

ψ

2
+
√
ψ2

)
‖r0‖2.

(41)

Following this and setting ‖r̃t‖2 ≤ ψ′‖r0‖2, note that parameter satisfies

Wi+1 = Wi − ηJiri , W̃i+1 = W̃i − ηJ̃ Ti r̃i (42)

‖Wi+1 − W̃i+1‖F ≤ ‖Wi − W̃i‖F + η‖Ji − J̃i‖‖ri‖F + η‖Ji‖‖ri − r̃i‖2 (43)

di+1 ≤ di + η(ψ′(Ldi + Γ
√
nε)‖r0‖2 + βpi), (44)

21

and residual satisfies (using I � J̃i+1,iJ̃ Ti /β2 � 0)

ri+1 = ri − ηJi+1,iJ Ti ri =⇒ (45)
ri+1 − r̃i+1 (46)

= (ri − r̃i)− η(Ji+1,i − J̃i+1,i)J Ti ri − ηJ̃i+1,i(J Ti − J̃ Ti)ri − ηJ̃i+1,iJ̃ Ti (ri − r̃i).
(47)

ri+1 − r̃i+1 = (I − ηJ̃i+1,iJ̃ Ti)(ri − r̃i)− η(Ji+1,i − J̃i+1,i)J Ti ri − ηJ̃i+1,i(J Ti − J̃ Ti)ri.
(48)

‖ri+1 − r̃i+1‖2 ≤ ‖ri − r̃i‖2 + ηβ‖ri‖2(L(3dt + dt+1)/2 + 2Γ
√
nε). (49)

‖ri+1 − r̃i+1‖2 ≤ ‖ri − r̃i‖2 + ηβ(‖r̃0‖2 + pi)(L(3dt + dt+1)/2 + 2Γ
√
nε). (50)

where we used ‖ri‖2 ≤ pi + ψ′‖r0‖2 and ‖(I − ηJ̃i+1,iJ̃ Ti)v‖2 ≤ ‖v‖2 which follows from
Lemma 6. This implies

pi+1 ≤ pi + ηβ(ψ′‖r0‖2 + pi)(L(3dt + dt+1)/2 + 2Γ
√
nε). (51)

Finalizing proof: Next, using Lemma 7, we have ‖r0‖2 ≤ Θ := C0Γ
√
n logK. We claim that if

ε ≤ O
(

1

t0ηΓ2n

)
≤ 1

8t0ηβΓ
√
n

and L ≤ 2

5t0ηΘ(1 + 8ηt0β2)
≤ 1

30(t0ηβ)2Θ
, (52)

(where we used ηt0β2 ≥ 1), for all t ≤ t0, we have that

pt ≤ 8t(1 + ψ′)ηΓ
√
nεΘβ ≤ Θ , dt ≤ 2tηΓ

√
nεΘ(ψ′ + 8ηt0β

2). (53)

The proof is by induction. Suppose it holds until t ≤ t0 − 1. At t+ 1, via (44) we have that

dt+1 − dt
η

≤ ψ′(LdtΘ + Γ
√
nεΘ) + 8t0ηβ

2Γ
√
nεΘ

?
≤ 2Γ

√
nεΘ(ψ′ + 8ηt0β

2).

Right hand side holds since L ≤ 1
2ηt0Θ . This establishes the induction for dt+1.

Next, we show the induction on pt. Observe that 3dt + dt+1 ≤ 10t0ηΓ
√
nεΘ(ψ′ + 8ηt0β

2).
Following (51) and using pt ≤ Θ, we need

pt+1 − pt
η

≤ β(1 + ψ′)Θ(L(3dt + dt+1) + 4Γ
√
nε)

?
≤ 8

αmax
(1 + ψ′)Γ

√
nεΘβ ⇐⇒ (54)

L(3dt + dt+1) + 4Γ
√
nε

?
≤ 8

αmax
Γ
√
nε ⇐⇒ (55)

L(3dt + dt+1)
?
≤ 4

αmax
Γ
√
nε ⇐⇒ (56)

10αmaxLt0η(1 + 8ηt0β
2)Θ

?
≤ 4 ⇐⇒ (57)

L
?
≤ 2

5t0αmaxη(1 + 8ηt0β2)Θ
, (58)

where αmax = max1≤t≤t0 αt. Concluding the induction since L satisfies the final line. Consequently,
for all 0 ≤ t ≤ t0, we have that

pt =‖ri − r̃i‖2 = ‖f(Wi,X)− ȳi − f(W̃i, X̃i) + ỹi‖2
¬
≤αmax‖f(Wi,X)− f(W̃i, X̃i)‖2
≤8t(1 + ψ′)ηΓ

√
nεΘβ = c0t(1 + ψ′)ηεΓ3n3/2

√
logK.

where ¬ uses the definition of ȳi = (1−αi)y +αif(Wi,X) and ỹi=(1−αi)y +αif(W̃i, X̃). In
this way, we can obtain

‖f(Wi,X)− f(W̃i, X̃i)‖2 ≤ c0t(1 + ψ′)ηεΓ3n3/2
√

logK.

22

Next, note that, condition on L is implied by

k ≥ 1000Γ2n(t0ηβ)4Θ2/α2
max (59)

= O
(

Γ4n
K4

α2
maxn

4λ(C)4
log(

Γ
√
n logK

ρ
)4(‖C‖Γ

√
n/K)4(Γ

√
n logK)2

)
(60)

= O
(

Γ10 K2‖C‖4

α2
maxλ(C)4

log(
Γ
√
n logK

ρ
)4 log2(K)

)
(61)

which is implied by k ≥ O
(

Γ10 K2‖C‖4
α2

maxλ(C)4 log(Γ
√
n logK
ρ)6

)
.

Finally, following (53), distance satisfies

dt ≤ 20tψ′η2t0Γ
√
nεΘβ2 ≤ O

(
tψ′ηε

Γ4Kn

λ(C)
log(

Γ
√
n logK

ρ
)2

)
.

The proof is completed.

References
[1] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation

learning. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 9729–9738, 2020. 1, 2, 3

[2] X. Wang and G. Qi. Contrastive learning with stronger augmentations. 2021. 1

[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual
representations. In Proc. Int’l Conf. Machine Learning, 2020. 2

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 770–778, 2016. 2

[5] I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In Int’l Conf. Learning
Representations, 2016. 2

[6] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Int’l Conf. Learning Representations,
2015. 2

[7] K. Lee, Y. Zhu, K. Sohn, C. Li, J. Shin, and H. Lee. i-mix: A strategy for regularizing contrastive
representation learning. arXiv preprint arXiv:2010.08887, 2020. 2

[8] M. Everingham, G. Van, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc)
challenge. Int’l. J. Computer Vision, 88(2):303–338, 2010. 3

[9] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. Zitnick. Microsoft coco:
Common objects in context. In Proc. European Conf. Computer Vision, pages 740–755. Springer, 2014. 3

[10] Y. Wu, A. Kirillov, F. Massa, W. Lo, and R. Girshick. Detectron2, 2019. 3

[11] A. Maurer and M. Pontil. Empirical bernstein bounds and sample variance penalization. arXiv preprint
arXiv:0907.3740, 2009. 3

[12] S. Liang and R. Srikant. Why deep neural networks for function approximation? arXiv preprint
arXiv:1610.04161, 2016. 3

[13] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from the
width. In Proc. Conf. Neural Information Processing Systems, pages 6231–6239, 2017. 3, 5

[14] M. Telgarsky. Benefits of depth in neural networks. In Conf. on Learning Theory, 2016. 3, 5

[15] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor analysis. In
Conf. on Learning Theory, pages 698–728, 2016. 3, 5

[16] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conf. on Learning
Theory, pages 907–940, 2016. 3, 5

[17] L. Sagun, U. Evci, V. Guney, Y. Dauphin, and L. Bottou. Empirical analysis of the hessian of over-
parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017. 8

23

[18] S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997. 8

[19] M. Li, M. Soltanolkotabi, and S. Oymak. Gradient descent with early stopping is provably robust to label
noise for overparameterized neural networks. In Proc. Int’l Conf. Artificial Intelligence and Statistics,
pages 4313–4324, 2020. 9, 10, 11, 12, 13, 17

[20] S. Oymak and M. Soltanolkotabi. Towards moderate overparameterization: global convergence guarantees
for training shallow neural networks. IEEE Journal on Selected Areas in Information Theory, 2020. 10

[21] S. Oymak and M. Soltanolkotabi. Overparameterized nonlinear learning: Gradient descent takes the
shortest path? In Proc. Int’l Conf. Machine Learning, pages 4951–4960, 2019. 13, 17

24

