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A APPENDIX

A.1 PROOF OF THEOREM/(I]

We initiate our discussion by introducing the performance disparity between the offline dataset and
reality (represented by the universal uncertainty set) in Lemma|[l] This serves as a foundation for
the subsequent proof presented in Theorem T}

Lemma (I). [Reality Gap: Performance Gap between Offline Dataset and Reality(the universal
uncertainty set)] The value of any policy w learned from Pg on the universal uncertainty set U and
the induced offline dataset transition kernel Pp satisfies:
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where V is an unknown state action set defined as: (s,a) € V iff (s, a) is not in the offline dataset
and T, denotes the hitting time of unknown states.

Proof. The inequalities provide a comparison of a policy 7’s performance under two distinct dynam-
ics models: Pp and Py ~ U. To further understand these differences, it’s beneficial to categorize
the states into two groups: those present in the dataset (known state-actions) and those absent from
it (unknown state-actions).

For state-action pairs present in the dataset, the primary objective is to concurrently couple the
trajectory of any chosen policy on both the offline dataset MDP, Mg, and the reality MDP, M.
Given an initial successful coupling, we consider the following constraint

IEPONU [”PB(Sa a) - PO(Sa CL)||1] < 6

One can verify that this coupling can be consistently maintained in subsequent steps with a proba-
bility of 1 — /3. The likelihood of decoupling at time ¢ is at most 1 — (1 — 3)%.

For state-action pairs not present in the datase, the divergence peaks: within M, the return upper
bound for cumulative rewards post this encounter is f’f“;, whereas in M p, the corresponding return

lower bound is — %’“i;. This divergence can be quantified using the discount factor E[y™], resulting

in a measure of disparity introduced by these unidentified state-action pairs: %“‘,;*IE pUNuEhTE].

So the total difference in the values of the policy 7 on the two MDPs can be upper bounded as:
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For ease of exposition, we restate Theorem as follows.
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Theorem (I)). For any €, sub-optimal policy, we have:
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Proof. By LemmalI] we have
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A.2 PROOF OF THEOREM 2]

We begin by highlighting the performance divergence of a risk-aware policy between the offline
dataset and the true environment, represented by the universal uncertainty set, in Lemma |3} Within
this lemma, the term 3 — p,. 3, underscores the narrowed performance gap achieved by incorporating
robustness into the modeling. This foundational understanding sets the stage for the detailed proof
in Theorem 21

Lemma 3. [Risk-Aware Policy Reality Gap: Performance Gap between Risk-Aware Uncer-
tainty Set and Reality (the universal uncertainty set)] Given a robust policy m, such that m, =
argmax, Epy, J,(m, P) and Ep~y, (Es o Drv(P, Pg)) < Br. Considering the fact that there
might be randomness that we cannot capture during training, we assume U, C U, 8 > B, and the
probabitlity of P € U, for every P € U is p, where 0 < p, < 1. The performance on the uncertain
nominal transition kernel set U and the training transition kernel set U, satisfies:
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where V is an unknown state action set defined as: (s,a) € V iff (s, a) is not in the offline dataset
and TY; denotes the hitting time of unknown states.

Proof. Building upon the insights and methodology established in the proof of Lemma I} we now
turn our attention to a new set of dynamics. In this context, we compare the performance of a policy
7 across two distinct transition dynamics: P, ~ U, and Fy ~ U. By leveraging the foundational
ideas from the aforementioned theorem, we aim to unravel the performance disparities between
these two MDPs, especially focusing on the divergence arising from known state-action pairs in the
dataset and those that remain unidentified (unknown).
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For states that are in the dataset, we can establish a relationship based on the definition of the
uncertainty set. Specifically:

EpyntilEp, s, ([|1Po(s, @) = Pr(s,a)|l1) < max(B, 5,) = 5.

From this relation, it becomes straightforward to deduce the upper-bound performance of a robust

policy. On the other hand, when considering the lower-bound performance of a robust policy, defined
as

mr = argmax Ep.yy, J,(m, P),
subject to the constraint

Ep~ut, [Es,a Drv(P, Pg)] < B
The “untrained” region is quantified by the difference (1 — p,-)5 + p, (8 — 5) = 8 — prfr-
Under these conditions, it’s clear that the probability of disadvantageous scenarios for the robust

policy at each step is 1 — (5 — p,.3,-). Consequently, the chance of decoupling at a specific time ¢ is
atmost 1 — (1 — (8 — p,-3,))!. Then we have:
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O
For ease of exposition, we restate Theorem 2] as follows.
Theorem . For an e, sub-optimal risk-aware policy, we have:
. 4R, 4vR,
]EP(JNU[JPO (7‘(‘ ,Po)] — EP()NU[‘]/}U (7'('1,-7 Po)] §€m —+ - mmcIEPoNU[DTV(pmpO )] + (1’}/_7,;0;(& pT/BT)
2R nax T 2R nax e
Ep,~uE[y Ep,~uE[y"V ].
+17P0u[ ]+1_7P0uh}
(28)
Proof. By Lemma[3] we have:
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A.3 PROOF OF THEOREM[3]

Theorem . [Relaxed State-Adversarial Policy Performance Lower Bound] For an €r,, sub-
optimal relaxed state-adversarial Policy policy, we have

" 4R x
EPUNU[JPU (7T 7P0)] - EPONU[JI)U (ﬂ-RAv PO)] <€mp T 1—~ EPUNU [DTV(pOa P(])Bﬂ
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Proof. Consider the relaxed state-adversarial policy:
Tra = argmax Epy=J, (7, P),

subject to the constraint:
Ep~yr(Es o Drv(P, Pp)) <1 —a.

By setting 3, = 1 — avand p, = pra, we can directly apply Theorem|3] This leads us to the desired
assertion, thereby completing the proof. O
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