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A APPENDIX

A.1 PROOF OF THEOREM 1

We initiate our discussion by introducing the performance disparity between the offline dataset and
reality (represented by the universal uncertainty set) in Lemma 1. This serves as a foundation for
the subsequent proof presented in Theorem 1.

Lemma (1). [Reality Gap: Performance Gap between Offline Dataset and Reality(the universal
uncertainty set)] The value of any policy ⇡ learned from PB on the universal uncertainty set U and
the induced offline dataset transition kernel PB satisfies:
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where V is an unknown state action set defined as: (s, a) 2 V iff (s, a) is not in the offline dataset
and T⇡

V denotes the hitting time of unknown states.

Proof. The inequalities provide a comparison of a policy ⇡’s performance under two distinct dynam-
ics models: PB and P0 ⇠ U . To further understand these differences, it’s beneficial to categorize
the states into two groups: those present in the dataset (known state-actions) and those absent from
it (unknown state-actions).

For state-action pairs present in the dataset, the primary objective is to concurrently couple the
trajectory of any chosen policy on both the offline dataset MDP, MB , and the reality MDP, M .
Given an initial successful coupling, we consider the following constraint

EP0⇠U
⇥
kPB(s, a)� P0(s, a)k1

⇤
 �.

One can verify that this coupling can be consistently maintained in subsequent steps with a proba-
bility of 1� �. The likelihood of decoupling at time t is at most 1� (1� �)t.

For state-action pairs not present in the datase, the divergence peaks: within M , the return upper
bound for cumulative rewards post this encounter is Rmax

1�� , whereas in MB , the corresponding return
lower bound is �Rmax

1�� . This divergence can be quantified using the discount factor E[�T⇡
V ], resulting

in a measure of disparity introduced by these unidentified state-action pairs: 2Rmax
1�� EP0⇠UE[�T⇡

V ].

So the total difference in the values of the policy ⇡ on the two MDPs can be upper bounded as:
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For ease of exposition, we restate Theorem 1 as follows.
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Theorem (1). For any ✏⇡ sub-optimal policy, we have:
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Proof. By Lemma 1, we have
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A.2 PROOF OF THEOREM 2

We begin by highlighting the performance divergence of a risk-aware policy between the offline
dataset and the true environment, represented by the universal uncertainty set, in Lemma 3. Within
this lemma, the term ��pr�r underscores the narrowed performance gap achieved by incorporating
robustness into the modeling. This foundational understanding sets the stage for the detailed proof
in Theorem 2.
Lemma 3. [Risk-Aware Policy Reality Gap: Performance Gap between Risk-Aware Uncer-
tainty Set and Reality (the universal uncertainty set)] Given a robust policy ⇡r such that ⇡r =
argmax⇡ EP⇠UrJ⇢(⇡, P ) and EP⇠Ur (Es,aDTV(P, PB))  �r. Considering the fact that there
might be randomness that we cannot capture during training, we assume Ur ✓ U , � � �r, and the
probabitlity of P 2 Ur for every P 2 U is pr where 0  pr  1. The performance on the uncertain
nominal transition kernel set U and the training transition kernel set Ur satisfies:
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where V is an unknown state action set defined as: (s, a) 2 V iff (s, a) is not in the offline dataset
and T⇡r

V denotes the hitting time of unknown states.

Proof. Building upon the insights and methodology established in the proof of Lemma 1, we now
turn our attention to a new set of dynamics. In this context, we compare the performance of a policy
⇡ across two distinct transition dynamics: Pr ⇠ Ur and P0 ⇠ U . By leveraging the foundational
ideas from the aforementioned theorem, we aim to unravel the performance disparities between
these two MDPs, especially focusing on the divergence arising from known state-action pairs in the
dataset and those that remain unidentified (unknown).
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For states that are in the dataset, we can establish a relationship based on the definition of the
uncertainty set. Specifically:

EP0⇠UEPr⇠Ur (kP0(s, a)� Pr(s, a)k1)  max(�,�r) = �.

From this relation, it becomes straightforward to deduce the upper-bound performance of a robust
policy. On the other hand, when considering the lower-bound performance of a robust policy, defined
as

⇡r = argmax
⇡

EP⇠UrJ⇢(⇡, P ),

subject to the constraint
EP⇠Ur [Es,aDTV(P, PB)]  �r.

The ”untrained” region is quantified by the difference (1� pr)� + pr(� � �r) = � � pr�r.

Under these conditions, it’s clear that the probability of disadvantageous scenarios for the robust
policy at each step is 1� (� � pr�r). Consequently, the chance of decoupling at a specific time t is
at most 1� (1� (� � pr�r))t. Then we have:
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For ease of exposition, we restate Theorem 2 as follows.
Theorem (2). For an ✏⇡r sub-optimal risk-aware policy, we have:
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Proof. By Lemma 3, we have:
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A.3 PROOF OF THEOREM 3

Theorem (3). [Relaxed State-Adversarial Policy Performance Lower Bound] For an ✏⇡RA sub-
optimal relaxed state-adversarial Policy policy, we have

EP0⇠U [J⇢0(⇡
⇤, P0)]� EP0⇠U [J⇢0(⇡RA, P0)] ✏⇡RA +
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Proof. Consider the relaxed state-adversarial policy:

⇡RA = argmax
⇡

EP⇠U⇡
✏
J⇢(⇡, P ),

subject to the constraint:
EP⇠U⇡

✏
(Es,aDTV(P, PB))  1� ↵.

By setting �r = 1� ↵ and pr = pRA, we can directly apply Theorem 3. This leads us to the desired
assertion, thereby completing the proof.
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