
A Optimality Conditions

In this section, we develop the optimality conditions for problems (1)-(5). We assume without loss of
generality that∇fs(M) is symmetric for every M ∈ Rn×n. This is because we can always optimize
the equivalent problem

min
M∈Rn×n

1

2

[
fs(M) + fs(M

T )
]

s.t. rank(M) ≤ r, MT = M, M � 0.

We first consider problems (1) and (2).

Theorem 8 (Li et al. (2019); Ha et al. (2020)). The matrix M̃ = Ũ ŨT with Ũ ∈ Rn×r is a first-order
critical point of the constrained problem (1) if and only if{

∇fs(M̃)Ũ = 0 if rank(M̃) = r

∇fs(M̃) � 0 if rank(M̃) < r.

The matrix M̃ = Ũ Ṽ T with Ũ ∈ Rn×r and Ṽ ∈ Rm×r is a first-order critical point of the
constrained problem (2) if and only if{

[∇fa(M̃)]T Ũ = 0, ∇fa(M̃)Ṽ = 0 if rank(M̃) = r

∇fa(M̃) = 0 if rank(M̃) < r.

In Ha et al. (2020), the authors proved that each second-order critical point of problem (3) or (5) is a
fixed point of the SVP algorithm run on problem (2). We note that this relation can be extended to
the symmetric and positive semi-definite case. This relation plays an important role in the analysis of
Section 3.
Theorem 9 (Ha et al. (2020)). The matrix M̃ = Ũ ŨT with Ũ ∈ Rn×r is a fixed point of the SVP
algorithm run on problem (1) with the step size 1/(1 + δ) if and only if

∇fs(M̃)Ũ = 0, −λmin(∇fs(M̃)) ≤ (1 + δ)σr(Ũ).

The matrix M̃ = Ũ Ṽ T with Ũ ∈ Rn×r and Ṽ ∈ Rm×r is a fixed point of the SVP algorithm run on
problem (2) with the step size 1/(1 + δ) if and only if

[∇fa(M̃)]T Ũ = 0, ∇fa(M̃)Ṽ = 0, ‖∇fa(M̃)‖2 ≤ (1 + δ)σr(M̃).

Next, we consider problems (3)-(5). Since the goal is to study only spurious local minima and saddle
points, it is enough to focus on the second-order necessary optimality conditions. The following two
theorems follow from basic calculations and we omit the proof.

Theorem 10. The matrix Ũ ∈ Rn×r is a second-order critical point of problem (4) if and only if

∇fs(Ũ ŨT )Ũ = 0

and
2〈∇fs(Ũ ŨT ),∆∆T 〉+ [∇2fs(Ũ Ũ

T )](Ũ∆T + ∆ŨT , Ũ∆T + ∆ŨT ) ≥ 0

holds for every ∆ ∈ Rn×r.
Theorem 11. The point (Ũ , Ṽ ) with Ũ ∈ Rn×r and Ṽ ∈ Rm×r is a second-order critical point of
problem (3) if and only if

∇[fa(Ũ Ṽ T )]T Ũ = 0, ∇fa(Ũ Ṽ T )Ṽ = 0

and
2〈∇fa(Ũ Ṽ T ),∆U∆T

V 〉+ [∇2fa(Ũ Ṽ T )](Ũ∆T
V + ∆U Ṽ

T , Ũ∆T
V + ∆U Ṽ

T ) ≥ 0

holds for every ∆U ∈ Rn×r and ∆V ∈ Rm×r. Moreover, the given point is a a second-order critical
point of problem (5) if and only if

∇[fa(Ũ Ṽ T )]T Ũ = 0, ∇fa(Ũ Ṽ T )Ṽ = 0, ŨT Ũ = Ṽ T Ṽ

and
2〈∇fa(Ũ Ṽ T ),∆U∆T

V 〉+ [∇2fa(Ũ Ṽ T )](Ũ∆T
V + ∆U Ṽ

T , Ũ∆T
V + ∆U Ṽ

T )

+
µ

2
‖ŨT∆U + ∆T

U Ũ − Ṽ T∆V −∆T
V Ṽ ‖2F ≥ 0

holds for every ∆U ∈ Rn×r and ∆V ∈ Rm×r.
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B Relation between the Symmetric and Asymmetric Problems

In this section, we study the relationship between problems (4)-(5). This relationship is more general
than the topic of this paper, namely the non-existence of spurious second-order critical points and
the strict saddle property, and holds for any property that is characterized by the RIP constant δ and
the BDP constant κ. Specifically, we show that any property that holds for the symmetric problems
(4) with (δ, κ) also holds for the regularized asymmetric problem (5) with another pair of constants
(δ̃, κ̃) decided by δ, κ, and vice versa.

We first consider the transformation from the asymmetric case to the symmetric case. The transfor-
mation to the symmetric case has been established in Ge et al. (2017) for linear problem. Here, we
show that the transformation can be revised and extended to the nonlinear measurements case.
Theorem 12. Suppose that the function fa(·) satisfies the δ-RIP2r,2s and the κ-BDP2t properties. If
we choose µ := (1− δ)/2, then problem (5) is equivalent to a symmetric problem whose objective
function satisfies the 2δ/(1 + δ)-RIP2r,2s and the 2κ/(1 + δ)-BDP2t properties.

Proof of Theorem 12. For any matrix N ∈ R(n+m)×(n+m), we divide the matrix into four blocks as

N =

[
N11 N12

N21 N22

]
,

where N11 ∈ Rn×n, N12 ∈ Rn×m, N22 ∈ Rm×m. Then, we define a new function

f̃(N) := fa(N12) + fa(NT
21).

We observe that f̃(WWT ) = 2ha(U, V ), where

W :=

[
U
V

]
∈ R(n+m)×r.

For any K ∈ R(n+m)×(n+m), the Hessian of f̃(·) satisfies

[∇2f̃(N)](K,K) = [∇2fa(N12)](K12,K12) + [∇2fa(NT
21)](KT

21,K
T
21). (8)

Similarly, we can define

g̃(N) := ‖N11‖2F + ‖N22‖2F − ‖N12‖2F − ‖N21‖2F .

We can also verify that g̃(WWT ) = g(U, V ) and

[∇2g̃(N)](K,K) = 2
(
‖K11‖2F + ‖K22‖2F − ‖K12‖2F − ‖K21‖2F

)
. (9)

for every K ∈ R(n+m)×(n+m). The minimization problem (5) is then equivalent to

min
W∈R(n+m)×r

F (WWT ) := f̃(WWT ) +
µ

2
· g̃(WWT ), (10)

which is in the symmetric form as problem (4). For every N,K ∈ R(n+m)×(n+m) with rank(N) ≤
2r and rank(K) ≤ 2s, it results from relations (8) and (9) that

[∇2F (N)](K,K)

≥ (1− δ)
(
‖K12‖2F + ‖K21‖2F

)
+ µ

(
‖K11‖2F + ‖K22‖2F − ‖K12‖2F − ‖K21‖2F

)
≥ min{1− δ − µ, µ} · ‖K‖2F

and

[∇2F (N)](K,K)

≤ (1 + δ)
(
‖K12‖2F + ‖K21‖2F

)
+ µ

(
‖K11‖2F + ‖K22‖2F − ‖K12‖2F − ‖K21‖2F

)
≤ max{1 + δ − µ, µ} · ‖K‖2F .

Choosing µ := (1− δ)/2, we obtain

1− δ
2
· ‖K‖2F ≤ [∇2F (N)](K,K) ≤ 1 + 3δ

2
· ‖K‖2F .
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Hence, it follows that the function 2F (·)/(1 + δ) satisfies the 2δ/(1 + δ)-RIP2r,2s property.

Moreover, for every N,N ′,K, L ∈ R(n+m)×(n+m) with

rank(N), rank(N ′), rank(K), rank(L) ≤ 2t,

it holds that

[∇2g̃(N)](K,L) = [∇2g̃(N ′)](K,L)

= 2 (〈K11, L11〉+ 〈K22, L22〉 − 〈K12, L12〉 − 〈K21, L21〉)

and∣∣[∇2F (N)−∇2F (N ′)](K,L)
∣∣

=
∣∣[∇2f(N12)−∇2f(N ′12)](K12, L12) + [∇2f(NT

21)−∇2f((N ′21)T )](KT
21, L

T
21)
∣∣

≤κ‖K12‖F ‖L12‖F + κ‖K21‖F ‖L21‖F ≤ κ‖K‖F ‖L‖F ,

which implies that the function 2
1+δ · F (·) satisfies the 2κ/(1 + δ)-BDP2r property. Since problem

(10) is equivalent to the minimization of 2
1+δ · F (WWT ), it is equivalent to a symmetric problem

that satisfies the 2δ/(1 + δ)-RIP2r,2s and the 2κ/(1 + δ)-BDP2r properties.

We can see that both constants δ and κ are approximately doubled in the transformation. As an
example, Bhojanapalli et al. (2016b) showed that the symmetric linear problem has no spurious local
minima if the δ-RIP2r property is satisfied with δ < 1/5. Using Theorem 12, we know that the
asymmetric linear problem has no spurious local minima if the δ-RIP2r property is satisfied with
δ < 1/9.

The transformation from a symmetric problem to an asymmetric problem is more straightforward.
We can equivalently solve the optimization problem

min
U,V ∈Rn×r

fs

[
1

2

(
UV T + V UT

)]
(11)

or its regularized version with any parameter µ > 0. It can be easily shown that the above problem
has the same RIP and BDP constants as the original symmetric problem. We omit the proof for
brevity.

Theorem 13. Suppose that the function fs(·) satisfies the δ-RIP4r,2s and the κ-BDP4t properties.
For every µ > 0, problem (4) is equivalent to an asymmetric problem and its regularized version with
the δ-RIP2r,2s and the κ-BDP2t properties.

Note that the transformation from a symmetric problem to an asymmetric problem will not increase
the constants κ and δ but requires stronger RIP and BDP properties. Hence, a direct analysis on the
symmetric case may establish the same property under a weaker condition. In addition to problem
(11), we can also directly consider the problem minU,V fa(UV T ). However, in certain applications,
the objective function is only defined for symmetric matrices and we can only use the formulation
(11) to construct an asymmetric problem. In more restricted cases when the objective function is only
defined for symmetric and positive semi-definite matrices, we can only apply the direct analysis to
the symmetric case.

C Proofs for Section 2

C.1 Proof of Theorem 3

Proof of Theorem 3. We denote f(·) := fs(·) and f(·) := fa(·) for the symmetric and asymmetric
case, respectively. Using the mean value theorem and the δ-RIP2r,2r property, there exists a constant
s ∈ [0, 1] such that

f(Mt+1)− f(Mt)

= 〈∇f(Mt),Mt+1 −Mt〉+
1

2
[∇2f(Mt + s(Mt+1 −Mt))](Mt+1 −Mt,Mt+1 −Mt)
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≤ 〈∇f(Mt),Mt+1 −Mt〉+
1 + δ

2
‖Mt+1 −Mt‖2F .

We define

φt(M) := 〈∇f(Mt),M −Mt〉+
1 + δ

2
‖M −Mt‖2F =

1 + δ

2
‖M − M̃t+1‖2F + constant,

where the last constant term is independent of M . Since the projection is orthogonal, the projected
matrix Mt+1 achieves the minimal value of φt(M) over all matrices on the manifoldM. Therefore,
we obtain

f(Mt+1)− f(Mt) ≤ φt(Mt+1) ≤ φt(M∗)

= 〈∇f(Mt),M
∗ −Mt〉+

1 + δ

2
‖M∗ −Mt‖2F . (12)

On the other hand, we can similarly prove that the δ-RIP2r,2r property ensures

f(M∗)− f(Mt) ≥ 〈∇f(Mt),M
∗ −Mt〉+

1− δ
2
‖M∗ −Mt‖2F ,

f(Mt)− f(M∗) ≥ 1− δ
2
‖M∗ −Mt‖2F .

Substituting the above two inequalities into (12), it follows that

f(Mt+1)− f(Mt) ≤ f(M∗)− f(Mt) + δ‖M∗ −Mt‖2F

≤ f(M∗)− f(Mt) +
2δ

1− δ
[f(Mt)− f(M∗)]. (13)

Therefore, using the condition that δ < 1/3, we have

f(Mt+1)− f(M∗) ≤ 2δ

1− δ
[f(Mt)− f(M∗)] := α[f(Mt)− f(M∗)],

where α := 2δ/(1− δ) < 1. Combining this single-step bound with the induction method proves the
linear convergence of Algorithm 1.

D Proofs for Section 3

D.1 Proof of Theorem 4

Proof of Theorem 4. We only consider the case when m and n are at least 2r. In this case, we have
` = 2r. Other cases can be handled similarly. For the notational simplicity, we denote M∗ := M∗a in
this proof.

Necessity. We first consider problem (3). Suppose that M∗ and M̃ are the optimum and a spurious
second-order critical point of problem (3), respectively. It has been proved in Ha et al. (2020) that the
spurious second-order critical point M̃ has rank r and is a fixed point of the SVP algorithm with the
step size (1 + δ)−1. Therefore, the point M̃ should be a minimizer of the projection step of the SVP
algorithm. This implies that

‖M̃ − [M̃ − (1 + δ)−1∇fa(M̃)]‖2F ≤ ‖M∗ − [M̃ − (1 + δ)−1∇fa(M̃)]‖2F ,
which can be simplified to

〈∇fa(M̃), M̃ −M∗〉 ≤ 1 + δ

2
‖M̃ −M∗‖2F . (14)

Let U and V denote the subspaces spanned by the columns and rows of M̃ and M∗, respectively.
Namely, we have

U := {M̃v1 +M∗v2 | v1, v2 ∈ Rm}, V := {M̃Tu1 + (M∗)Tu2 | u1, u2 ∈ Rn}.
Since the ranks of both matrices are bounded by r, the dimensions of U and V are bounded by 2r.
Therefore, we can find orthogonal matrices U ∈ Rn×2r and V ∈ Rm×2r such that

U ⊂ range(U), V ⊂ range(V )
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and write M̃,M∗ in the form

M̃ = U

[
Σ 0r×r

0r×r 0r×r

]
V T , M∗ = URV T ,

where Σ ∈ Rr×r is a diagonal matrix and R ∈ R2r×2r has rank at most r. Recalling the first
condition in Theorem 11, the column space and the row space of ∇fa(M̃) are orthogonal to the
column space and the row space of M̃ , respectively. Then, the δ-RIP2r,2r property gives

∃α ∈ [1− δ, 1 + δ] s.t. − 〈∇fa(M̃),M∗〉 = 〈∇fa(M̃), M̃ −M∗〉

=

∫ 1

0

[∇2fa(M∗ + s(M̃ −M∗))](M̃ −M∗, M̃ −M∗) ds

= α‖M̃ −M∗‖2F > 0. (15)

This means that
G := PU∇fa(M̃)PV 6= 0,

where PU and PV are the orthogonal projections onto U and V , respectively. Combining with
inequality (14), we obtain α ≤ (1 + δ)/2. By the definition of G, we have

〈∇fa(M̃),M∗〉 = 〈G,M∗〉.

Since both the column space and the row space of G are orthogonal to M̃ , the matrix G has the form

G = U

[
0r×r 0r×r
0r×r −Λ

]
V T , (16)

where Λ ∈ Rr×r. We may assume without loss of generality that Λii ≥ 0 for all i; otherwise, one
can flip the sign of some of the last r columns of U . By another orthogonal transformation, we may
assume without loss of generality that Λ is a diagonal matrix. Then, Theorem 9 gives

(1 + δ) min
1≤i≤r

Σii = (1 + δ)σr(M̃) ≥ ‖∇fa(M̃)‖2 ≥ ‖G‖2 = max
1≤i≤(`−r)

Λii. (17)

In addition, condition (15) is equivalent to

〈Λ, Rr+1:2r,r+1:2r〉 = α‖M̃ −M∗‖2F = α
[
tr(Σ2)− 2〈Σ, R1:r,1:r〉+ ‖R‖2F

]
. (18)

By the Taylor expansion, for every Z ∈ Rn×m, we have

〈∇fa(M̃), Z〉 =

∫ 1

0

[∇2fa(M∗ + s(M̃ −M∗))](M̃ −M∗, Z) ds = (M̃ −M∗) : H : Z,

where the last expression is the tensor multiplication andH is the tensor such that

K : H : L =

∫ 1

0

[∇2fa(M∗ + s(M̃ −M∗))](K,L) ds, ∀K,L ∈ Rn×m.

We define
G̃ := G− α(M̃ −M∗).

By the definition of α, we know that 〈G̃, M̃ −M∗〉 = 0. Furthermore, using the definition ofH, we
obtain

(M̃ −M∗) : H : (M̃ −M∗) = α‖M̃ −M∗‖2F ,
(M̃ −M∗) : H : G̃ = G̃ : H : (M̃ −M∗) = ‖G̃‖2F .

Suppose that
G̃ : H : G̃ = β‖G̃‖2F

for some β ∈ [1− δ, 1 + δ]. We consider matrices of the form

K(t) := t(M̃ −M∗) + G̃, ∀t ∈ R.
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Since K(t) is a linear combination of M̃ −M∗ and G, the column space of K(t) is a subspace of U ,
and thus K(t) has rank at most 2r and the δ-RIP2r,2r property implies

(1− δ)‖K(t)‖2F ≤ K(t) : H : K(t) ≤ (1 + δ)‖K(t)‖2F . (19)

Using the facts that

‖K(t)‖2F = ‖M̃ −M∗‖2F · t2 + ‖G̃‖2F ,
K(t) : H : K(t) = α‖M̃ −M∗‖2F · t2 + 2‖G̃‖2F · t+ β‖G̃‖2F ,

we can write the two inequalities in (19) as quadratic inequalities

[α− (1− δ)]‖M̃ −M∗‖2F · t2 + 2‖G̃‖2F · t+ [β − (1− δ)]‖G̃‖2F ≥ 0,

[(1 + δ)− α]‖M̃ −M∗‖2F · t2 − 2‖G̃‖2F · t+ [(1 + δ)− β]‖G̃‖2F ≥ 0. (20)

If α = 1 − δ, then we must have ‖G̃‖F = 0 and thus G = α(M̃ −M∗). Equivalently, we have
M∗ = M̃ −α−1G. Since the column and row spaces of G 6= 0 are orthogonal to M̃ , the rank of M∗

is at least rank(M̃) + 1 = r+ 1, which is a contradiction. Since α ≤ (1 + δ)/2, we have α < 1 + δ.
Thus, we have proved that

1− δ < α < 1 + δ.

Checking the condition for quadratic functions to be non-negative, we obtain

‖G̃‖2F ≤ [α− (1− δ)][β − (1− δ)] · ‖M̃ −M∗‖2F ,
‖G̃‖2F ≤ [(1 + δ)− α][(1 + δ)− β] · ‖M̃ −M∗‖2F .

Since
α− (1− δ) > 0, (1 + δ)− α > 0,

the above two inequalities are equivalent to

‖G̃‖2F
α− (1− δ)

≤ [β − (1− δ)] · ‖M̃ −M∗‖2F ,

‖G̃‖2F
(1 + δ)− α

≤ [(1 + δ)− β] · ‖M̃ −M∗‖2F .

Summing up the two inequalities and dividing both sides by 2δ gives rise to

‖G̃‖2F
δ2 − (1− α)2

≤ ‖M̃ −M∗‖2F . (21)

We note that the above condition is also sufficient for the inequalities in (20) to hold by choosing
β = 2− α. Using the relation ‖G‖2F = ‖G̃‖2F + α2‖M̃ −M∗‖2F , one can write

tr(Λ2) = ‖G‖2F ≤ (2α− 1 + δ2)‖M̃ −M∗‖2F = α−1(2α− 1 + δ2)〈Λ, Rr+1:2r,r+1:2r〉. (22)

Now, using the fact that rank(M∗) ≤ r, we can write the matrix R as

R =

[
A
C

] [
B
D

]T
=

[
ABT ADT

CBT CDT

]
,

where A,B,C,D ∈ Rr×r. Then, conditions (18) and (22) become

〈Λ, CDT 〉 = α
[
tr(Σ2)− 2〈Σ, ABT 〉+ ‖ABT ‖2F + ‖ADT ‖2F + ‖CBT ‖2F + ‖CDT ‖2F

]
(23)

and

tr(Λ2) ≤ α−1(2α− 1 + δ2) · 〈Λ, CDT 〉. (24)

If 〈Λ, CDT 〉 = 0, we have

tr(Σ2)− 2〈Σ, ABT 〉+ ‖ABT ‖2F + ‖ADT ‖2F + ‖CBT ‖2F + ‖CDT ‖2F = 0,

which implies that
ABT = Σ, ADT = CBT = CDT = 0.

This contradicts the assumption that M̃ 6= M∗. Combining this with conditions (17), (23) and (24),
we arrive at the necessity part. For problem (5), Lemma 3 in Ha et al. (2020) ensures that M̃ is still a
fixed point of the SVP algorithm. Recalling the necessary conditions in Theorem 11, we know that
the same necessary conditions also hold in this case.
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Sufficiency. Now, we study the sufficiency part. We first consider problem (3). We choose two
orthogonal matrices U ∈ Rn×2r, V ∈ Rm×2r and define

M̃ = U

[
Σ 0r×r

0r×r 0r×r

]
V T , M∗ := U

([
A
C

] [
B
D

]T)
V T , G := U

[
0r×r 0r×r
0r×r −Λ

]
V T .

Since 〈Λ, CDT 〉 6= 0, we have M̃ 6= M∗. Then, we know that rank(M̃) ≤ r and rank(M∗) ≤ r.
We define

G̃ := G− α(M̃ −M∗),
which satisfies 〈G̃, M̃ −M∗〉 = 0 by the condition in the second line of (6). If G̃ = 0, then[

0r×r 0r×r
0r×r −Λ

]
= α ·

[
Σ 0r×r

0r×r 0r×r

]
− α ·

[
A
C

] [
B
D

]T
= α ·

[
Σ 0r×r

0r×r 0r×r

]
− α ·

[
ABT 0

0 CDT

]
,

where the second step is because of CBT = 0 and ADT = 0. The above relation is equivalent to

Σ = ABT , Λ = α · CDT .

Since Σ � 0, the matrix ABT has rank r. Noticing that the decomposition of matrix M∗ ensures
that the rank of M∗ is at most r, we have CDT = 0, which is a contradiction to the condition that
〈CDT ,Λ〉 6= 0. Therefore, we have G̃ 6= 0. We consider the rank-2 symmetric tensor

G1 :=
α

‖M̃ −M∗‖2F
· (M̃ −M∗)⊗ (M̃ −M∗) +

2− α
‖G̃‖2F

· G̃⊗ G̃

+
1

‖M̃ −M∗‖2F

[
(M̃ −M∗)⊗ G̃+ G̃⊗ (M̃ −M∗)

]
.

For every matrix K ∈ Rn×m, we have the decomposition

K = t(M̃ −M∗) + sG̃+ K̃, 〈M̃ −M∗, K̃〉 = 〈G̃, K̃〉 = 0,

where t, s ∈ R are two suitable constants. Then, using the definition of G1, we have

K : G1 : K = α‖M̃ −M∗‖2F · t2 + 2‖G̃‖2F · ts+ (2− α)‖G̃‖2F · s2.

By the conditions in the third line of (6), one can write

‖G̃‖2F ≤ [α− (1− δ)][(1 + δ)− α] · ‖M̃ −M∗‖2F ,

which leads to

[α− (1− δ)]‖M̃ −M∗‖2F · t2 + 2‖G̃‖2F · ts+ [(1 + δ)− α]‖G̃‖2F · s2 ≥ 0,

[(1 + δ)− α]‖M̃ −M∗‖2F · t2 − 2‖G̃‖2F · ts+ [α− (1− δ)]‖G̃‖2F · s2 ≥ 0.

The above two inequalities are equivalent to

(1− δ)[‖M̃ −M∗‖2F · s2 + ‖G̃‖2F · t2] ≤ K : G1 : K ≤ (1 + δ)[‖M̃ −M∗‖2F · s2 + ‖G̃‖2F · t2].
(25)

By restricting to the subspace

S := span{M̃ −M∗, G̃} = {s(M̃ −M∗) + tG̃ | s, t ∈ R},

the tensor G1 can be viewed as a 2× 2 matrix. Then, inequality (25) implies that the matrix has two
eigenvalues λ1 and λ2 such that

1− δ ≤ λ1, λ2 ≤ 1 + δ.

Therefore, we can rewrite the tensor G1 restricted to S as

[G1]S = λ1 ·G1 ⊗G1 + λ2 ·G2 ⊗G2,

where G1, G2 are linear combinations of M̃ −M∗, G̃ and have the unit norm. Since the orthogonal
complementary S⊥ is in the null space of G1, we have

G1 = [G1]S = λ1 ·G1 ⊗G1 + λ2 ·G2 ⊗G2.
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Now, we choose matrices G3, . . . , GN such that G1, . . . , GN form an orthonormal basis of the linear
vector space Rn×m, where N := nm. We define another symmetric tensor by

H := G1 +

N∑
i=3

(1 + δ) ·Gi ⊗Gi.

Then, inequality (25) implies that the quadratic form K : H : K satisfies the δ-RIP2r,2r property.

Therefore, we can choose the Hessian to be the constant tensorH and define the function fa(·) as

fa(K) :=
1

2
(K −M∗) : H : (K −M∗), ∀K ∈ Rn×m.

Combining with the definition ofH, we know

∇fa(M̃) = H : (M̃ −M∗) = G, ∇2fa(M̃) = H.

We choose matrices Ū ∈ Rn×r, V̄ ∈ Rm×r such that M̃ = Ū V̄ T and ŪT Ū = V̄ T V̄ . By the
definitions of M̃ and G, we know that M̃ and G have orthogonal column and row spaces, i.e.,

ŪTG = 0, GV̄ = 0.

This means that the first-order optimality conditions are satisfied at the point (Ū , V̄ ). For the
second-order necessary optimality conditions, we consider the direction

∆ :=

[
∆U

∆V

]
∈ R(n+m)×r.

We consider the decomposition

∆U = PŪ∆U + P⊥Ū ∆U := ∆1
U + ∆2

U , ∆V = PV̄ ∆V + P⊥V̄ ∆V := ∆1
V + ∆2

V ,

where PŪ ,PV̄ are the orthogonal projection onto the column space of Ū , V̄ , respectively. Then,
using the conditions in the first line of (6), we have

〈∇fa(M̃),∆U∆T
V 〉 = 〈G,∆U∆T

V 〉 = 〈G,∆2
U (∆2

V )T 〉 ≥ −‖GT∆2
U‖F ‖∆2

V ‖F

≥ −(1 + δ)σr(M̃)‖∆2
U‖F ‖∆2

V ‖F ≥ −(1 + δ)σr(M̃) · ‖∆
2
U‖2F + ‖∆2

V ‖2F
2

.

(26)

We define
∆1 := Ū(∆1

V )T + ∆1
U V̄

T , ∆2 := Ū(∆2
V )T + ∆2

U V̄
T .

Then, we know that 〈∆1,∆2〉 = 0. Using the assumption that CBT = ADT = 0, we know that M∗
has the form

M∗ = U

[
ABT 0

0 CDT

]
V T = PŪM∗PV̄ + P⊥ŪM

∗P⊥V̄ . (27)

Then, the special form (27) implies that

〈M∗,∆2〉 = 〈M∗, Ū(∆2
V )T + ∆2

U V̄
T 〉 =

〈
M∗, Ū∆T

V P⊥V̄ + P⊥Ū ∆U V̄
T
〉

= 0.

Using the definitions of M̃ and G, it can be concluded that

〈M̃,∆2〉 = 0, 〈G,∆2〉 = 〈G, Ū(∆2
V )T + ∆2

U V̄
T 〉 = 0.

Since G1, G2 are linear combinations of M̃ −M∗ and G, the last three relations lead to

〈G1,∆2〉 = 〈G2,∆2〉 = 0.

Therefore, there exist constants a3, . . . , aN such that

∆2 =

N∑
i=3

aiGi.
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Suppose that the constants b1, . . . , bN satisfy

∆1 =

N∑
i=1

biGi.

Then, the fact 〈∆1,∆2〉 = 0 and the orthogonality of G1, . . . , GN imply that

N∑
i=3

aibi = 0.

We can calculate that

[∇2fa(M̃)](Ū∆T
V + ∆U V̄

T , Ū∆T
V + ∆U V̄

T ) = (∆1 + ∆2) : H : (∆1 + ∆2)

=λ1 · b21 + λ2 · b22 + (1 + δ)

N∑
i=3

(ai + bi)
2 ≥ (1 + δ)

N∑
i=3

(ai + bi)
2

=(1 + δ)

N∑
i=3

(
a2
i + b2i

)
≥ (1 + δ)

N∑
i=3

a2
i = (1 + δ)‖Ū(∆2

V )T + ∆2
U V̄

T ‖2F ,

where the third last step is due to
∑N
i=3 aibi = 0. Noticing that 〈Ū(∆2

V )T ,∆2
U V̄

T 〉 = 0, the above
inequality gives that

[∇2fa(M̃)](Ū∆T
V + ∆U V̄

T , Ū∆T
V + ∆U V̄

T ) ≥ (1 + δ)‖Ū(∆2
V )T ‖2F + (1 + δ)‖∆2

U V̄
T ‖2F

≥(1 + δ)σr(Ū)2‖∆2
V ‖2F + (1 + δ)σr(V̄ )2‖∆2

U‖2F = (1 + δ)σr(M̃)(‖∆2
V ‖2F + ‖∆2

U‖2F ),

where the last equality is because of σr(Ū)2 = σr(V̄ )2 = σr(M̃) when ŪT Ū = V̄ T V̄ . Combining
with inequality (26), one can write

[∇2ha(U, V )](∆,∆) = 2〈∇fa(M̃),∆U∆T
V 〉+ [∇2fa(M̃)](Ū∆T

V + ∆U V̄
T , Ū∆T

V + ∆U V̄
T )

≥− (1 + δ)σr(M̃)(‖∆2
V ‖2F + ‖∆2

U‖2F ) + (1 + δ)σr(M̃)(‖∆2
V ‖2F + ‖∆2

U‖2F ) = 0.

This shows that (Ū , V̄ ) satisfies the second-order necessary optimality conditions, and therefore it is
a spurious second-order critical point.

Now, we consider problem (5). Since the point (Ū , V̄ ) satisfies ŪT Ū = V̄ T V̄ , it is also a local
minimum of the regularization term. Hence, the point (Ū , V̄ ) is also a spurious second-order critical
point of the regularized problem (5).

D.2 Proof of Corollary 1

Proof of Corollary 1. We assume that problem (3) has a spurious second-order critical point. By the
necessity part of Theorem (6), there exist α ∈ (1− δ, 1 + δ) and real numbers σ, λ, a, b, c, d such that

(1 + δ)σ ≥ λ > 0, α−1(2α− 1 + δ2)cd · λ ≥ λ2 > 0,

cd · λ = α[σ2 − 2ab · σ + (ab)2 + (ad)2 + (cb)2 + (cd)2]. (28)

We first relax the second line to

cd · λ ≥ α[σ2 − 2|ab| · σ + (ab)2 + 2|ab| · |cd|+ (cd)2]. (29)

Then, we denote x := |ab| and consider the quadratic programming problem

min
x≥0

x2 + 2(|cd| − σ) · x,

whose optimal value is
−(σ − |cd|)2

+,

where (t)+ := max{t, 0}. Substituting into inequality (29), we obtain

cd · λ ≥ α[σ2 − (σ − |cd|)2
+ + (cd)2]. (30)

Then, we consider two different cases.
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Case I. We first consider the case when σ ≥ |cd|. In this case, the inequality (30) becomes

cd · λ ≥ 2α · σ|cd| = 2α · σcd,
where the last equality is due to cd > 0. Therefore,

λ ≥ 2α · σ.
The second inequality in (28) implies λ ≤ α−1(2α − 1 + δ2) · cd. Combining with the above
inequality and the assumption of this case, it follows that

α−1(2α− 1 + δ2) · σ ≥ α−1(2α− 1 + δ2) · cd ≥ 2α · σ,
which is further equivalent to

α−1(2α− 1 + δ2) ≥ 2α ⇐⇒ δ2 ≥ 2α2 − 2α+ 1.

Since 2α2 − 2α+ 1 ≥ 1/2, we arrive at δ2 ≥ 1/2, which is a contradiction to δ < 1/2.

Case II. We then consider the case when σ ≤ |cd|. In this case, the inequality (30) becomes

cd · λ ≥ α[σ2 + (cd)2].

Combining with the second inequality in (28), we obtain λ ≤ α−1(2α− 1 + δ2) · (cd). Therefore,

α−1(2α− 1 + δ2) · (cd)2 ≥ cd · λ ≥ α[σ2 + (cd)2].

Moreover, the first inequality in (28) gives

(1 + δ)σ · cd ≥ cd · λ ≥ α[σ2 + (cd)2].

By denoting y := cd, the above two inequalities become

α−1(2α− 1 + δ2) · y2 ≥ α[σ2 + y2],

(1 + δ)σ · y ≥ α[σ2 + y2]. (31)

By denoting z := y/σ, the first inequality in (31) implies

z2 ≥ α2

δ2 − (1− α)2
. (32)

Since δ < 1/2, one can write

(1− α)2 + α2 ≥ 1

2
>

1

4
> δ2,

which is equivalent to α2 ≥ δ2 − (1− α)2. Therefore, inequality (32) implies that z2 ≥ 1 and

z2 +
1

z2
≥ α2

δ2 − (1− α)2
+
δ2 − (1− α)2

α2
. (33)

On the other hand, the second inequality in (31) implies

z +
1

z
≤ 1 + δ

α
and thus z2 +

1

z2
+ 2 ≤ (1 + δ)2

α2
.

Combining with inequality (33), it follows that

α2

δ2 − (1− α)2
+
δ2 − (1− α)2

α2
+ 2 ≤ (1 + δ)2

α2
. (34)

By some calculation, the above inequality is equivalent to

(δ2 + 2δ + 5) · α2 + (2δ2 − 4δ − 6) · α+ 2(1 + δ)(1− δ2) ≤ 0.

Checking the discriminant of the above quadratic function, we obtain

(2δ2 − 4δ − 6)2 − 8(δ2 + 2δ + 5)(1 + δ)(1− δ2) ≥ 0,

which is equivalent to
4(2δ − 1)(δ + 1)4 ≥ 0.

However, the above claim contradicts the assumption that δ < 1/2.

In summary, the contradictions in the two cases imply that the condition (28) cannot hold, and
therefore there does not exist spurious second-order critical points.
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D.3 Counterexample for the Rank-one Case

Example 3. Let ei ∈ Rn be the i-th standard basis of Rn. We define the tensor

H :=

n∑
i,j=1

(eie
T
j )⊗ (eie

T
j ) +

1

2
(e1e

T
1 )⊗ (e2e

T
2 ) +

1

2
(e2e

T
2 )⊗ (e1e

T
1 )

+
1

4

[
(e1e

T
2 )⊗ (e1e

T
2 ) + (e2e

T
1 )⊗ (e2e

T
1 )
]

+
1

4
(e1e

T
2 )⊗ (e2e

T
1 ) +

1

4
(e2e

T
1 )⊗ (e1e

T
2 )

and the objective function

fa(M) := (M − e1e
T
1 ) : H : (M − e1e

T
1 ) ∀M ∈ Rn×n.

The global minimizer of fa(·) is the rank-1 matrix M∗ := e1e
T
1 . It has been proved in Zhang et al.

(2019) that the function fa(·) satisfies the δ-RIP2,2 property with δ = 1/2. Moreover, we define

U :=
1√
2
e2, V := U, M̃ := UUT 6= M∗.

It has been proved in Zhang et al. (2019) that the first-order optimality condition is satisfied. To verify
the second-order necessary condition, we can calculate that

[∇2ha(U,U)](∆,∆) = 2〈∇fa(M̃),∆U∆T
V 〉+ (U∆T

V + ∆UU
T ) : H : (U∆T

V + ∆UU
T )

= −3

2
(∆U )1(∆V )1 +

5

8

[
(∆U )2

1 + (∆V )2
1

]
+

1

4
(∆U )1(∆V )1

+
1

2
[(∆U )2 + (∆V )2]

2
+

1

2

n∑
i=3

[
(∆U )2

i + (∆V )2
i

]
=

5

8
[(∆U )1 − (∆V )1]

2
+

1

2
[(∆U )2 + (∆V )2]

2
+

1

2

n∑
i=3

[
(∆U )2

i + (∆V )2
i

]
,

which is non-negative for every ∆ ∈ Rn. Hence, we conclude that the point M̃ is a spurious
second-order critical point of problem (3). Moreover, since we choose V = U , the point M̃ is a
global minimizer of the regularizer ‖UTU − V TV ‖2F and thus M̃ is also a spurious second-order
critical point of problem (5).

D.4 Proof of Corollary 2

Proof of Corollary 2. We first consider the case when δ ≤ 1/3. We assume that there exists a
spurious second-order critical point M̃ . Then, by Theorem 4, we know that there exists a constant
α ∈ (1− δ, (1 + δ)/2]. This means that

1− δ < 1 + δ

2
,

which contradicts the assumption that δ ≤ 1/3.

Then, we consider the case when δ < 1/2. With no loss of generality, assume that M̃ 6= M∗ and
M∗ 6= 0; otherwise, the inequality in this theorem is trivially true. Define

m11 := ‖Σ‖2F , m12 := 〈Σ, ABT 〉, m22 := ‖ABT ‖2F + ‖ADT ‖2F + ‖CBT ‖2F + ‖CDT ‖2F .

By our construction in Theorem 4, we know that

m11 = ‖M̃‖2F , m12 = 〈M̃,M∗〉, m22 = ‖M∗‖2F .

Therefore, we only need to prove m12 ≥ C(δ) · √m11m22 for some constant C(δ) > 0. By the
analysis in Ha et al. (2020), we know that the second-order critical point M̃ must have rank r and
thus m11 6= 0. The remainder of the proof is split into two steps.
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Step I. First, we prove that

(m11 +m22 − 2m12)2

m11m22 −m2
12

≤ (1 + δ)2

α2
,

(m11 −m12)2

m11m22 −m2
12

≤ δ2 − (1− α)2

α2
. (35)

We first rule out the case when m11m22−m2
12 = 0. In this case, the equality condition of the Cauchy

inequality shows that there exists a constant t such that

M̃ = tM∗.

Since M̃ 6= 0, the constant t is not 0. Using the mean value theorem, for any Z ∈ Rn×m, there exists
a constant c ∈ [0, 1] such that

〈∇fa(M̃), Z〉 = ∇2f [M∗ + c(M̃ −M∗)](M̃ −M∗, Z)

= ∇2f [M∗ + c(M̃ −M∗)][(t− 1)M∗, Z].

The δ-RIP2r,2r property gives

〈∇fa(M̃), M̃〉 = ∇2f [M∗ + c(M̃ −M∗)][(t− 1)M∗, tM∗] ≥ t(t− 1)(1− δ)‖M∗‖2F .

If t = 1, we conclude that M̃ = M∗, which contradicts the assumption that M̃ 6= M∗. Therefore, it
holds that

〈M̃,∇fa(M̃)〉 6= 0.

This contradicts the first-order optimality condition, which states that 〈M̃,∇fa(M̃)〉 = 0. Hence,
we have proved that inequality (35) is well defined. We consider the decomposition[

0 0
0 Λ

]
= c1

[
Σ 0
0 0

]
+ c2

[
A
C

] [
B
D

]T
+K,

〈
K,

[
Σ 0
0 0

]〉
=

〈
K,

[
A
C

] [
B
D

]T〉
= 0.

Using the conditions in Theorem 4, it follows that〈[
0 0
0 Λ

]
,

[
Σ 0
0 0

]〉
= 0,

〈[
0 0
0 Λ

]
,

[
A
C

] [
B
D

]T〉
= α(m11 − 2m12 +m22).

The pair of coefficients (c1, c2) can be uniquely solved as

c1 = −α · m11 +m22 − 2m12

m11m22 −m2
12

·m12, c2 = α · m11 +m22 − 2m12

m11m22 −m2
12

·m11.

Using the orthogonality of the decomposition, we have

‖Λ‖2F ≥

∥∥∥∥∥c1
[
Σ 0
0 0

]
+ c2

[
A
C

] [
B
D

]T∥∥∥∥∥
2

F

= c21m11 + 2c1c2m12 + c22m22

= α2 · m11(m11 +m22 − 2m12)2

m11m22 −m2
12

. (36)

Using the last two lines of condition (6), one can write

α2 · m11(m11 +m22 − 2m12)2

m11m22 −m2
12

≤ ‖Λ‖2F

≤ (2α− 1 + δ2)
[
tr(Σ2)− 2〈Σ, ABT 〉+ ‖ABT ‖2F + ‖ADT ‖2F + ‖CBT ‖2F + ‖CDT ‖2F

]
= (2α− 1 + δ2)(m11 − 2m12 +m22).

Simplifying the above inequality, we arrive at the second inequality in (35). Now, the first inequality
in condition (6) implies that

‖Λ‖2F ≤ (1 + δ)2‖Σ‖2F = (1 + δ)2m11.

Substituting inequality (36) into the left-hand side, it follows that

α2 · m11(m11 +m22 − 2m12)2

m11m22 −m2
12

≤ (1 + δ)2m11,

which is equivalent to the first inequality in (35).
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Step II. Next, we prove the existence of C(δ). We denote

κ :=
m12√
m11m22

∈ (−1, 1).

and

C1 :=
δ2 − (1− α)2

α2
, C2 :=

(1 + δ)2

α2
, t :=

√
m11

m22
.

Since M̃ 6= 0, we have t > 0. The inequalities in (35) can be written as
(t− κ)2 ≤ (1− κ2)C1, (t+ 1/t− 2κ)2 ≤ (1− κ2)C2. (37)

Using the assumption that δ < 1/2, we can write

δ2 <
1

4
< (1− α)2 +

1

2
α2,

which leads to

C1 =
δ2 − (1− α)2

α2
<

1

2
.

If κ+
√

(1− κ2)C1 ≥ 1, then

|κ| ≥ 1− C1

1 + C1
≥ 1

3
> 0. (38)

If κ < 0, then it holds that

κ+
√

(1− κ2)C1 ≤ −
1

3
+

√
1

2
< 1,

which contradicts the assumption. Therefore, we have κ ≥ 0 and inequality (38) gives κ ≥ 1/3.

Now, we assume that κ+
√

(1− κ2)C1 ≤ 1. Then, the first inequality in (37) gives

0 < t ≤ κ+
√

(1− κ2)C1 ≤ 1,

which further leads to

t+
1

t
− 2κ ≥ −κ+

√
(1− κ2)C1 +

1

κ+
√

(1− κ2)C1

.

Combining with the second inequality in (37), we obtain

−κ+
√

(1− κ2)C1 +
1

κ+
√

(1− κ2)C1

≤
√

(1− κ2)C2.

The above inequality can be simplified to√
1− κ2(1 + C1 −

√
C1C2) ≤ κ

√
C2.

We notice that the inequality 1 + C1 −
√
C1C2 ≤ 0 is equivalent to inequality (34), which cannot

hold when δ < 1/2. Therefore, we have 1+C1−
√
C1C2 > 0 and κ > 0. Then, the above inequality

is equivalent to
(1− κ2)(1 + C1 −

√
C1C2)2 ≤ κ2 · C2.

Therefore, we have

κ2 ≥ (1 + C1 −
√
C1C2)2

(1 + C1 −
√
C1C2)2 + C2

= 1− 1

1 + η2
,

where we define

η :=
1 + C1 −

√
C1C2√

C2

.

To prove the existence of C(δ) such that κ ≥ C(δ) > 0, we only need to show that η is lower
bounded by a positive constant. With δ fixed, η can be viewed as a continuous function of α. Since
η = (1 − δ)/(1 + δ) > 0 when α = 1 − δ, the function/parameter η is defined for all α in the
compact set [1− δ, (1 + δ)/2]. Combining with the fact that 1 +C1 −

√
C1C2 > 0, the function η is

positive on a compact set, and thus there exists a positive lower bound C̄(δ) > 0.

In summary, we can define the function

C(δ) := min

{
1

3
, C̄(δ)

}
> 0

such that κ ≥ C(δ) for every spurious second-order critical point M̃ .
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D.5 Counterexample for the General Rank Case with Linear Measurements

Example 4. Using the previous rank-1 example, we design a counterexample with linear measure-
ment for the rank-r case. Let n ≥ 2r be an integer and ei ∈ Rn be the i-th standard basis of Rn. We
define the tensor

H :=
3

2

n∑
i,j=1

(eie
T
j )⊗ (eie

T
j ) +

r∑
i=1

{
− 1

2

[
(e2i−1e

T
2i−1)⊗ (e2i−1e

T
2i−1) + (e2ie

T
2i)⊗ (e2ie

T
2i)
]

+
1

2

[
(e2i−1e

T
2i−1)⊗ (e2ie

T
2i) + (e2ie

T
2i)⊗ (e2i−1e

T
2i−1)

]
− 1

4

[
(e2i−1e

T
2i)⊗ (e2i−1e

T
2i) + (e2ie

T
2i−1)⊗ (e2ie

T
2i−1)

]
+

1

4

[
(e2i−1e

T
2i)⊗ (e2ie

T
2i−1) + (e2ie

T
2i−1)⊗ (e2i−1e

T
2i)
] }

and the rank-r global minimum

U∗ := [e1 e3 · · · e2r−1] , M∗ := U∗(U∗)T =

r∑
i=1

e2i−1e
T
2i−1.

The objective function is defined as

fa(M) := (M −M∗) : H : (M −M∗) ∀M ∈ Rn×n.
We can similarly prove that the function fa(·) satisfies the δ-RIP2r,2r property with δ = 1/2.
Moreover, we define

Ũ :=
1√
2

[e2 e4 · · · e2r] , M̃ := Ũ ŨT =
1

2

r∑
i=1

e2ie
T
2i 6= M∗.

The gradient of fa(·) at point M̃ is

∇fa(M̃) = −3

4

r∑
i=1

e2i−1e
T
2i−1 ∈ R2r×2r.

Since the column and row spaces of the gradient are orthogonal to those of M̃ , the first-order
optimality condition is satisfied. To verify the second-order necessary condition, we can similarly
calculate that

[∇2ha(Ũ , Ũ)](∆,∆)

=2〈∇fa(M̃),∆U∆T
V 〉+ (Ũ∆T

V + ∆V Ũ
T ) : H : (Ũ∆T

V + ∆U Ũ
T )

=− 3

2

r∑
i=1

 r∑
j=1

(∆U )2i−1,j

 r∑
j=1

(∆V )2i−1,j

+

r∑
i=1

{5

8

[
(∆U )2

2i−1,i + (∆V )2
2i−1,i

]
+

1

4
(∆U )2i−1,i(∆V )2i−1,i +

1

2
[(∆U )2i,i + (∆V )2i,i]

2
}

+
∑

1≤i,j≤n,i 6=j

3

4
[(∆U )2j,i + (∆V )2i,j ]

2
+

∑
1≤i,j≤n,i 6=j

3

4

[
(∆U )2

2j−1,i + (∆V )2
2j−1,i

]
=

r∑
i=1

{5

8
[(∆U )2i−1,i − (∆V )2i−1,i]

2
+

1

2
[(∆U )2i,i + (∆V )2i,i]

2
}

+
∑

1≤i,j≤n,i 6=j

3

4
[(∆U )2j,i + (∆V )2i,j ]

2
+

∑
1≤i,j≤n,i 6=j

3

4
[(∆U )2j−1,i − (∆V )2j−1,i]

2
,

which is non-negative for every ∆ ∈ Rn×r. Hence, the point M̃ is a spurious second-order critical
point of problem (3). Moreover, since we choose Ṽ = Ũ , the point M̃ is a global minimizer of the
regularizer ‖ŨT Ũ − Ṽ T Ũ‖2F and thus M̃ is also a spurious second-order critical point of problem
(5).
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E Proofs for Section 4

E.1 Proof of Theorem 6

In this subsection, we use the following notations:

M := UV T , M∗ := U∗(V ∗)T , W :=

[
U
V

]
, W ∗ :=

[
U∗

V ∗

]
, Ŵ :=

[
U
−V

]
, Ŵ ∗ :=

[
U∗

−V ∗
]
,

where M∗ := M∗a is the global optimum. We always assume that U∗ and V ∗ satisfy (U∗)TU∗ =
(V ∗)TV ∗. When there is no ambiguity about W , we use W ∗ to denote the minimizer of
minX∈X∗ ‖W − X‖F , where X ∗ is the set of global minima of problem (5). We note that the
set X ∗ is the trajectory of a global minimum (U∗, V ∗) under the orthogonal group:

X ∗ = {(U∗R, V ∗R) | R ∈ Rr×r, RTR = RRT = Ir}.

Therefore, the set X ∗ is a compact set and its minimum can be attained. With this choice, it holds that

dist(W,X ∗) = ‖W −W ∗‖F .

We first summarize some technical results in the following lemma.
Lemma 1 (Tu et al. (2016); Zhu et al. (2018)). The following statements hold for every U ∈ Rn×r,
V ∈ Rm×r and W ∈ R(n+m)×r:

• 4‖M −M∗‖2F ≥ ‖WWT −W ∗(W ∗)T ‖2F − ‖UTU − V TV ‖2F .

• ‖W ∗(W ∗)T ‖2F = 4‖M∗‖2F .

• If rank(W ∗) = r, then ‖WWT −W ∗(W ∗)T ‖2F ≥ 2(
√

2− 1)σ2
r(W ∗)‖W −W ∗‖2F .

• If rank(U∗) = r, then ‖UUT − U∗(U∗)T ‖2F ≥ 2(
√

2− 1)σ2
r(U∗)‖U − U∗‖2F .

The proof of Theorem 6 follows from the following sequence of lemmas. We first identify two cases
when the gradient is large. The following lemma proves that an unbalanced solution cannot be a
first-order critical point.
Lemma 2. Given a constant ε > 0, if

‖UTU − V TV ‖F ≥ ε,

then
‖∇ρ(U, V )‖F ≥ µ(ε/r)3/2.

Proof. Using the relationship between the 2-norm and the Frobenius norm, we have

‖UTU − V TV ‖2 ≥ r−1‖UTU − V TV ‖F ≥ ε/r.

Let q ∈ Rr be an eigenvector of UTU − V TV such that

‖q‖2 = 1,
∣∣qT (UTU − V TV )q

∣∣ = ‖UTU − V TV ‖2.

We consider the direction
∆ := Ŵ qqT .

Then, we can calculate that

‖∆‖2F = tr
(
Ŵ qqT qqT ŴT

)
= tr

(
qT ŴT Ŵ q

)
= qT (UTU + V TV )q.

In addition, we have

〈∇ha(U, V ),∆〉 =

〈[
∇fa(M)V

[∇fa(M)]
T
U

]
,

[
UqqT

−V qqT
]〉

= tr
[
V T [∇fa(M)]TUqqT

]
− tr

[
UT∇fa(M)V qqT

]
= qT

[
V T [∇fa(M)]TU

]
q − qT

[
UT∇fa(M)V

]
q = 0.
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and ∣∣∣〈µ
4
∇g(U, V ),∆

〉∣∣∣ = µ
∣∣∣〈ŴŴTW,WqqT

〉∣∣∣
= µ

∣∣tr [(UTU − V TV )(UTU + V TV )qqT
]∣∣

= µ
∣∣qT (UTU − V TV )(UTU + V TV )q

∣∣
= µ‖UTU − V TV ‖2 · qT (UTU + V TV )q

= µ‖UTU − V TV ‖2 ·
√
qT (UTU + V TV )q · ‖∆‖F .

Hence, Cauchy’s inequality implies that

‖∇ρ(U, V )‖F ≥
|〈∇ρ(U, V ),∆〉|

‖∆‖F
= µ‖UTU − V TV ‖2 ·

√
qT (UTU + V TV )q.

Using the fact that

qT (UTU + V TV )q ≥
∣∣qT (UTU − V TV )q

∣∣ = ‖UTU − V TV ‖2,

we obtain
‖∇ρ(U, V )‖F ≥ µ‖UTU − V TV ‖3/22 ≥ µ(ε/r)3/2.

The next lemma proves that a solution with large norm cannot be a first-order critical point.
Lemma 3. Given a constant ε > 0, if

1− δ
3
≤ µ < 1− δ, ‖WWT ‖3/2F ≥ max

{(
1 + δ

1− µ− δ

)2

‖W ∗(W ∗)T ‖3/2F ,
4
√
rλ

1− µ− δ

}
,

then
‖∇ρ(U, V )‖F ≥ λ.

Proof. Choosing the direction ∆ := W , we can calculate that

〈∇ρ(U, V ),∆〉 = 2〈∇fa(UV T ), UV T 〉+ µ‖UTU − V TV ‖2F . (39)

Using the δ-RIP2r,2r property, we have

[∇2fa(N)](M,M) ≥ (1− δ)‖M‖2F , [∇2fa(N)](M∗,M) ≤ (1 + δ)‖M‖F ‖M∗‖F ,

where N ∈ Rn×m is every matrix with rank at most 2r. Then, the first term can be estimated as

〈∇fa(UV T ), UV T 〉 =

∫ 1

0

[∇2fa(M∗ + s(M −M∗)][M −M∗,M ] ds

≥ (1− δ)‖M‖2F − (1 + δ)‖M∗‖F ‖M‖F .

The second term is

µ‖UTU − V TV ‖2F = µ
(
‖UUT ‖2F + ‖V V T ‖2F

)
− 2µ‖M‖2F .

Substituting into equation (39), it follows that

〈∇ρ(U, V ),∆〉 ≥ µ
(
‖UUT ‖2F + ‖V V T ‖2F

)
+ 2(1− δ − µ)‖M‖2F − 2(1 + δ)‖M∗‖F ‖M‖F

≥ µ
(
‖UUT ‖2F + ‖V V T ‖2F

)
+ 2(1− δ − µ)‖M‖2F − 2c‖M‖2F −

(1 + δ)2

2c
‖M∗‖2F

≥ min {µ, 1− δ − µ− c} ‖WWT ‖2F −
(1 + δ)2

2c
‖M∗‖2F ,

where c ∈ (0, 1−δ−µ) is a constant to be designed later. Using equality that (U∗)TU∗ = (V ∗)TV ∗,
Lemma 1 gives

‖W ∗(W ∗)T ‖2F = 4‖M∗‖2F .
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As a result,

〈∇ρ(U, V ),∆〉 ≥ min {µ, 1− δ − µ− c} ‖WWT ‖2F −
(1 + δ)2

8c
‖W ∗(W ∗)T ‖2F .

Now, choosing

c =
1− δ − µ

2
and noticing that µ ≥ (1− δ − µ)/2, it yields that

〈∇ρ(U, V ),∆〉 ≥ 1− δ − µ
2

‖WWT ‖2F −
(1 + δ)2

4(1− δ − µ)
‖W ∗(W ∗)T ‖2F . (40)

On the other hand,
‖∆‖F = ‖W‖F ≤

√
r‖WWT ‖1/2F .

Combining with inequality (40) and using the assumption of this lemma, one can write

‖∇ρ(U, V )‖F ≥
〈∇ρ(U, V ),∆〉
‖∆‖F

≥ 1− δ − µ
2
√
r
‖WWT ‖3/2F − (1 + δ)2

4
√
r(1− δ − µ)

‖W ∗(W ∗)T ‖2F ‖WWT ‖−1/2
F

≥ 1− δ − µ
2
√
r
‖WWT ‖3/2F − (1 + δ)2

4
√
r(1− δ − µ)

‖W ∗(W ∗)T ‖3/2F

≥ 1− δ − µ
4
√
r
‖WWT ‖3/2F ≥ λ.

Using the above two lemmas, we only need to focus on points such that

‖UTU − V TV ‖F = o(1), ‖WWT ‖F = O(1).

The following lemma proves that if (U, V ) is an approximate first-order critical point with a small
singular value σr(W ), then the Hessian of the objective function at this point has a negative curvature.
Lemma 4. Consider positive constants α,C, ε, λ such that

ε2 ≤ (
√

2− 1)σ2
r(W ∗) · α2, G > µ

(
ε+

4H2

G2

)
+

(1 + δ)H2

G2
, (41)

where G := ‖∇fa(M)‖2 and H := λ+ µεC. If

‖UTU − V TV ‖2F ≤ ε2, ‖WWT ‖F ≤ C2, ‖W −W ∗‖F ≥ α, ‖∇ρ(U, V )‖F ≤ λ

and

σ2
r(W ) ≤ 2

1 + δ

[
G− µ

(
ε+

4H2

G2

)
− (1 + δ)H2

G2

]
− 2τ (42)

for some positive constant τ , then it holds that

λmin(∇2ρ(U, V )) ≤ −(1 + δ)τ.

Proof. We choose a singular vector q of W such that

‖q‖2 = 1, ‖Wq‖2 = σr(W ).

Since ‖Wq‖2 =
√
‖Uq‖22 + ‖V q‖22, we have

‖Uq‖22 + ‖V q‖22 = σ2
r(W ).

We choose singular vectors u and v such that

‖u‖2 = ‖v‖2 = 1, ‖∇fa(M)‖2 = uT∇fa(M)v.

29



We define the direction as

∆U := −uqT , ∆V := vqT , ∆ :=

[
∆U

∆V

]
, ∆̂ :=

[
∆U

−∆V

]
.

For the Hessian of ha(·, ·), we can calculate that

〈∇fa(M),∆U∆T
V 〉 = −‖∇fa(M)‖2 = −G (43)

and the δ-RIP2r,2r property gives

[∇2fa(M)](∆UV
T + U∆T

V ,∆UV
T + U∆T

V )

≤ (1 + δ)‖∆UV
T + U∆T

V ‖2F = (1 + δ)‖ − u(V q)T + (Uq)vT ‖2F
= (1 + δ)

(
‖V q‖2F + ‖Uq‖2F

)
− 2(1 + δ)[qT (UTu)] · [qT (V T v)]

≤ (1 + δ)σ2
r(W ) + 2(1 + δ) · ‖UTu‖F ‖V T v‖F . (44)

Then, we consider the terms coming from the Hessian of the regularizer. First, we have

〈∆̂ŴT ,∆WT 〉 ≤ ‖UTU − V TV ‖F · ‖∆T
U∆U −∆T

V ∆V ‖F
≤ ε ·

[
‖∆T

U∆U‖F + ‖∆T
V ∆V ‖F

]
= 2ε. (45)

Next, we can estimate that

〈Ŵ ∆̂T ,∆WT 〉+ 〈ŴŴT ,∆∆T 〉 =
1

2
‖UT∆U + ∆T

UU − V T∆V −∆T
V V ‖2F

≤ 4
(
‖UT∆U‖2F + ‖V T∆V ‖2F

)
= 4

(
‖(UTu)qT ‖2F + ‖(V T v)qT ‖2F

)
= 4

(
‖UTu‖2F + ‖V T v‖2F

)
. (46)

Using the assumption that ‖WWT ‖F ≤ C2 and ‖UTU − V TV ‖2F ≤ ε2, one can write

‖ŴŴTW‖2F ≤ ‖UTU − V TV ‖2F · ‖UTU + V TV ‖F ≤ ε2‖WWT ‖F ≤ ε2C2

and ∥∥∥∥[ ∇fa(UV T )V
∇fa(UV T )TU

]∥∥∥∥
F

= ‖∇ρ(U, V )− µŴŴTW‖F ≤ λ+ µεC = H. (47)

The second relation implies that

‖∇fa(UV T )V ‖2 ≤ ‖∇fa(UV T )V ‖F ≤ H, ‖UT∇fa(UV T )‖2 ≤ ‖UT∇fa(UV T )‖F ≤ H.
(48)

By the definition of u and v, it holds that

‖v‖2 = 1, ‖∇fa(M)‖2u = ∇fa(M)v.

Therefore,

‖UTu‖2F =
‖UT∇fa(M)v‖2F
‖∇fa(M)‖22

≤ ‖U
T∇fa(M)‖2F ‖v‖22
‖∇fa(M)‖22

≤ H2

G2
.

Similarly,

‖V T v‖2F ≤
H2

G2
.

Substituting into (44) and (46) yields that

[∇2fa(M)](∆UV
T + U∆T

V ,∆UV
T + U∆T

V ) ≤ (1 + δ)σ2
r(W ) + 2(1 + δ) · H

2

G2
(49)

and

〈Ŵ ∆̂T ,∆WT 〉+ 〈ŴŴT ,∆∆T 〉 ≤ 8 · H
2

G2
. (50)
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Combining (43), (45), (49) and (50), it follows that

[∇2ρ(U, V )](∆,∆) ≤ −2G+ (1 + δ)σ2
r(W ) + 2µε+ [8µ+ 2(1 + δ)] · H

2

G2
.

Since ‖∆‖2F = 2, the above relation implies

λmin(∇2ρ(U, V )) ≤ −G+
1 + δ

2
σ2
r(W ) + µε+ (4µ+ 1 + δ) · H

2

G2
≤ −(1 + δ)τ.

Remark 2. The positive constants ε and λ in the proof of Lemma 4 can be chosen to be arbitrarily
small with α,C fixed. Hence, we may choose small enough ε and λ such that the assumptions given
in inequality (41) are satisfied. This lemma resolves the case when the minimal singular value σ2

r(W )
is on the order of ‖∇fa(M)‖2/(2 + 2δ). In the next lemma, we will show that this is the only case
when δ < 1/3.

The final step is to prove that condition (42) always holds provided that δ < 1/3 and ε, λ, τ = o(1).
Lemma 5. Given positive constants α,C, ε, λ, if

‖UTU − V TV ‖2F ≤ ε2, max{‖WWT ‖F , ‖W ∗(W ∗)T ‖F } ≤ C2,

‖W −W ∗‖F ≥ α, ‖∇ρ(U, V )‖F ≤ λ, δ < 1/3,

then the inequality G ≥ cα holds for some constant c > 0 independent of α, ε, λ, C. Furthermore,
there exist two positive constants

ε0(δ, µ, σr(M
∗
a ), ‖M∗a‖F , α, C), λ0(δ, µ, σr(M

∗
a ), ‖M∗a‖F , α, C)

such that

σ2
r(W ) ≤ 2

1 + δ

[
G− µ

(
2ε+

4H2

G2

)
− (1 + δ)H2

G2

]
(51)

whenever
0 <ε ≤ ε0(δ, µ, σr(M

∗
a ), ‖M∗a‖F , α, C),

0 <λ ≤ λ0(δ, µ, σr(M
∗
a ), ‖M∗a‖F , α, C).

Here, G and H are defined in Lemma 4.

Proof. We first prove the existence of the constant c. Using Lemma 1, one can write
4‖M −M∗‖2F ≥ ‖WWT −W ∗(W ∗)T ‖2F − ‖UTU − V TV ‖2F ≥ ‖WWT −W ∗(W ∗)T ‖2F − ε2.
Using Lemma 1 and the assumption that ‖W −W ∗‖F ≥ α, we have

‖M −M∗‖2F ≥
√

2− 1

2
σ2
r(W ∗)‖W −W ∗‖2F −

ε2

4
≥
√

2− 1

2
σ2
r(W ∗) · α2 − ε2

4
. (52)

By the definition of ε, it follows that

‖M −M∗‖2F ≥
√

2− 1

4
σ2
r(W ∗) · α2 > 0.

Thus, the δ-RIP2r,2r property gives

‖∇fa(M)‖F ≥
〈∇fa(M),M −M∗〉
‖M −M∗‖F

≥ (1− δ)‖M −M∗‖F ≥

√√
2− 1

4
· σr(W ∗)(1− δ) · α.

Hence, we have

G = ‖∇fa(M)‖2 ≥

√√
2− 1

4r
· σr(W ∗)(1− δ) · α = cα,

where we define

c :=

√√
2− 1

4r
· σr(W ∗)(1− δ).

Next, we prove inequality (51) by contradiction, i.e., we assume

σ2
r(W ) >

2

1 + δ

[
G− µ

(
2ε+

4H2

G2

)
− (1 + δ)H2

G2

]
≥ 2cα

1 + δ
+ poly(ε, λ). (53)

The remainder of the proof is divided into three steps.

31



Step I. We first develop a lower bound for σr(M). We choose a vector p ∈ Rr such that

‖p‖F = 1, UTUp = σ2
r(U) · p.

It can be shown that

‖(Wp)TW‖F = ‖pTUTU + pTV TV ‖F ≤ 2‖pTUTU‖F + ‖pT (V TV − UTU)‖F
≤ 2σ2

r(U) + ‖pT ‖F ‖V TV − UTU‖F ≤ 2σ2
r(U) + ε.

On the other hand, since W has rank r, it holds that∥∥(Wp)TW
∥∥
F
≥ σ2

r(W ) · ‖p‖F = σ2
r(W ).

Combining the above two estimates, we arrive at

2σ2
r(U) ≥ σ2

r(W )− ε > 0,

where the last inequality is from the assumption that ε, λ are small and σr(W ) is lower bounded by
a positive value in (53). Using the inequality that

√
1− x ≥ 1 − x for every x ∈ [0, 1], the above

inequality implies that

σr(U) ≥ 1√
2
σr(W ) ·

√
1− ε

σ2
r(W )

≥ 1√
2
σr(W )− ε√

2σr(W )
. (54)

Similarly, one can prove that

σr(V ) ≥ 1√
2
σr(W )− ε√

2σr(W )
.

When ε is small enough, we know that σr(U), σr(V ) 6= 0 and both U, V have rank r. To lower
bound the singular value σr(M), we consider vectors x such that ‖x‖2 = 1 and lower bound
xTV (UTU)V Tx. Since the range of V (UTU)V T is a subspace of the range of V and the range of
V has exactly dimension r, directions x that are in the orthogonal complement of the range of V
correspond to exactly m− r zero singular values. Hence, to estimate the r-th largest singular value
of M , we only need to consider directions that are in the range of V . Namely, we only consider
directions that have the form x = V y for some vector y. Then, we have

xTV (UTU)V Tx = yT (V TV )(UTU)(V TV )y

= yT (V TV )3y + yT (V TV )(UTU − V TV )(V TV )y.

First, we bound the second term by calculating that

‖V (V TV − UTU)V T ‖2 ≤ ‖V ‖22‖UTU − V TV ‖2 ≤ ‖V TV ‖F ‖UTU − V TV ‖F
≤ ‖WTW‖F ‖UTU − V TV ‖F ≤ C2ε.

This implies that
yT (V TV )(UTU − V TV )(V TV )y ≥ −C2ε · ‖V y‖2F .

Next, we assume that y has the decomposition

y =

r∑
i=1

civi,

where vi is an eigenvector of V TV associated with the eigenvalue σ2
i (V ). Then, we can calculate

that

yT (V TV )3y =

r∑
i=1

c2iσ
6
i (V ), ‖V y‖2F =

r∑
i=1

c2iσ
2
i (V ) = 1.

Combining the above estimates leads to

xTV (UTU)V Tx ≥
[∑r

i=1 c
2
iσ

6
i (V )∑r

i=1 c
2
iσ

2
i (V )

− C2ε

]
· ‖V y‖2F

=

∑r
i=1 c

2
iσ

6
i (V )∑r

i=1 c
2
iσ

2
i (V )

− C2ε ≥ σ4
r(V )− C2ε.
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This implies that

σ2
r(M) ≥ σ4

r(V )− C2ε ≥
[

1√
2
σr(W )− ε√

2σr(W )

]4

− C2ε

≥ 1

4
σ4
r(W )− σ2

r(W )ε− σ−2
r (W )ε3 − C2ε

≥ 1

4
σ4
r(W )− σ−2

r (W )ε3 − 2C2ε

≥ 1

4
σ4
r(W )− 1 + δ

G
· ε3 − 2C2ε

≥ 1

4
σ4
r(W )− 1 + δ

cα
· ε3 − 2C2ε. (55)

where the second last inequality is due to (53) and the assumption that ε and λ are sufficiently small.

Step II. Next, we derive an upper bound for σr(M). We define

M̄ := Pr
[
M − 1

1 + δ
∇fa(M)

]
,

where Pr is the orthogonal projection onto the low-rank set via SVD. Since M 6= M∗ and δ < 1/3,
we recall that inequality (13) gives

−φ(M̄) ≥ 1− 3δ

1− δ
[fa(M)− fa(M∗)] ≥ 1− 3δ

2
‖M −M∗‖2F

≥ 1− 3δ

2

[√
2− 1

2
σ2
r(W ∗)α2 − ε2

4

]
:= K,

where the second inequality follows from (52) and

−φ(M̄) = 〈∇fa(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F .

Hence,

〈∇fa(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F ≥ K. (56)

When we choose ε to be small enough, it holds that K > 0. For simplicity, we define

N := − 1

1 + δ
∇fa(M).

Then, M̄ = Pr(M +N) and the left-hand side of (56) is equal to

〈∇fa(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F

= (1 + δ)〈N,Pr(M +N)−M〉 − 1 + δ

2
‖Pr(M +N)−M‖2F

=
1 + δ

2

[
‖N‖2F − ‖N +M − Pr(M +N)‖2F

]
=

1 + δ

2

[
‖N‖2F − ‖N +M‖2F + ‖Pr(M +N)‖2F

]
. (57)

Similar to the proof of inequality (48), we can prove that

‖NV ‖F ≤ H̃ :=
H

1 + δ
, ‖UTN‖F ≤ H̃.

Then, we have

− tr[NT (UV T )] ≤ ‖UTN‖F ‖V ‖F ≤ H̃ · ‖W‖F ≤ H̃ ·
√√

r‖WWT ‖F ≤ 4
√
rC · H̃.
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Using the above relation, we obtain

‖N‖2F − ‖N +M‖2F = −2 tr[NT (UV T )]− ‖M‖2F ≤ 2 4
√
rC · H̃ − ‖M‖2F .

Suppose that PU and PV are the orthogonal projections onto the column spaces of U and V ,
respectively. We define

N1 := PUNPV , N2 := PUN(I − PV ), N3 := (I − PU )NPV , N4 := (I − PU )N(I − PV ).

Then, recalling the assumption (53) and inequality (54), it follows that

‖N1‖F = ‖PUNPV ‖F ≤ σ−1
r (U)‖UTPUNPV ‖F ≤ σ−1

r (U)‖UTN‖F ≤
√

2σr(W )

σ2
r(W )− ε

· H̃

≤

[√
1 + δ

G
+ poly(ε, λ)

]
· H̃ ≤

[√
1 + δ

cα
+ poly(ε, λ)

]
· H̃ := κH̃.

Similarly, we can prove that

‖N1 +N2‖F = ‖PUN‖F ≤ κH̃, ‖N1 +N3‖F = ‖NPV ‖F ≤ κH̃,
which leads to

‖N2‖F ≤ 2κH̃, ‖N3‖F ≤ 2κH̃.

Using Weyl’s theorem, the following holds for every 1 ≤ i ≤ r:

|σi(M +N)− σi(M +N4)| ≤ ‖N1 +N2 +N3‖2 ≤ ‖N1 +N2 +N3‖F ≤ 3κH̃.

Therefore, we have

‖Pr(M +N)‖2F =

r∑
i=1

σ2
i (M +N)

≥
r∑
i=1

σ2
i (M +N4)− r · 3κH̃ · (‖M +N‖2 + ‖M +N4‖2)

≥
r∑
i=1

σ2
i (M +N4)− 6rκH̃ · (‖M‖2 + ‖N‖2)

≥
r∑
i=1

σ2
i (M +N4)− 6rκH̃ ·

(
‖M‖F +

G

1 + δ

)
. (58)

Using the assumption (53) and the inequality (55), one can write

G

1 + δ
≤ σ2

r(W )

2
+ poly(

√
ε, λ) ≤ σr(M) + poly(

√
ε, λ) ≤ ‖M‖F + poly(

√
ε, λ), (59)

where poly(
√
ε, λ) means a polynomial of

√
ε and λ. Therefore, we attain the bound

‖M‖F + ‖N‖F ≤ 2‖M‖F + poly(
√
ε, λ) ≤ 2 · ‖WWT ‖F√

2
+ poly(

√
ε, λ)

≤
√

2C2 + poly(
√
ε, λ). (60)

Substituting back into the previous estimate (58), it follows that

‖Pr(M+N)‖2F ≥
r∑
i=1

σ2
i (M+N4)−6

√
2rκH̃C2+poly(

√
ε, λ) =

r∑
i=1

σ2
i (M+N4)+poly(

√
ε, λ).

Now, since M and N4 have orthogonal column and row spaces, the maximal r singular values of
M+N4 are simply the maximal r singular values of the singular valuesM andN4, which we assume
to be

σi(M), i = 1, . . . , k and σi(N4), i = 1, . . . , r − k.
Now, it follows from (57) that

2

1 + δ

[
〈∇fa(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F

]
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= ‖N‖2F − ‖N +M‖2F + ‖Pr(M +N)‖2F

≤ −
r∑
i=1

σ2
i (M) +

k∑
i=1

σ2
i (M) +

r−k∑
i=1

σ2
i (N4) + poly(

√
ε, λ) + 2 4

√
rC · H̃

= −
r∑

i=k+1

σ2
i (M) +

r−k∑
i=1

σ2
i (N4) + poly(

√
ε, λ)

≤ −(r − k)σ2
r(M) + (r − k)‖N4‖22 + poly(

√
ε, λ)

≤ −(r − k)σ2
r(M) + (r − k)‖N‖22 + poly(

√
ε, λ).

If k = r, then the above inequality and inequality (56) imply that

poly(
√
ε, λ) ≥ K = O(α2),

which contradicts the assumption that ε and λ are small. Hence, it can be concluded that r − k ≥ 1.
Combining with (56), we obtain the upper bound

σ2
r(M) ≤ − 2

1 + δ
· K

r − k
+ ‖N‖22 +

1

r − k
· poly(

√
ε, λ)

= − 2

1 + δ
· K
r

+ ‖N‖22 + poly(
√
ε, λ). (61)

Step III. In the last step, we combine the inequalities (55) and (61), which leads to

1

4
σ4
r(W )− 1 + δ

cα
· ε3 − 2C2ε ≤ − 2

1 + δ
· K
r

+
1

(1 + δ)2
G2 + poly(

√
ε, λ).

This means that

σ4
r(W ) +

8

1 + δ
· K
r
≤ 4

(1 + δ)2
G2 + poly(

√
ε, λ).

Since K > 0 has lower bounds that are independent of ε and λ, we can choose ε and λ to be small
enough such that

σ4
r(W ) +

4

1 + δ
· K
r
≤ 4

(1 + δ)2
G2.

However, recalling the assumption (53), we have

σ4
r(W ) >

4

(1 + δ)2

[
G− µ

(
2ε+

4H2

G2

)
− (1 + δ)H2

G2

]2

≥ 4

(1 + δ)2
G2 − 16

(1 + δ)2
G · µε+ poly(

√
ε, λ)

≥ 4

(1 + δ)2
G2 − 16

(1 + δ)2
µε · 1√

2
(1 + δ)C2 + poly(

√
ε, λ)

=
4

(1 + δ)2
G2 + poly(

√
ε, λ),

where in the third inequality we use inequalities (59)-(60) to conclude that

G ≤ (1 + δ)‖M‖F + poly(
√
ε, λ) ≤ 1√

2
(1 + δ)C2 + poly(

√
ε, λ).

The above two inequalities cannot hold simultaneously when λ and ε are small enough. This
contradiction means that the condition (51) holds by choosing

0 <ε ≤ ε0(δ, µ, σr(M
∗
a ), ‖M∗a‖F , α, C),

0 <λ ≤ λ0(δ, µ, σr(M
∗
a ), ‖M∗a‖F , α, C),

for some small enough positive constants

ε0(δ, µ, σr(M
∗
a ), ‖M∗a‖F , α, C), λ0(δ, µ, σr(M

∗
a ), ‖M∗a‖F , α, C).
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The only thing left is to piecing everything together.

Proof of Theorem 6. We first choose

C :=

[(
1 + δ

1− µ− δ

)2

‖W ∗(W ∗)T ‖3/2F

]1/3

.

Then, we select ε1 and λ1 as

ε1(δ, r, µ, σr(M
∗
a ), ‖M∗a‖F , α) := ε0(δ, r, µ, σr(M

∗
a ), ‖M∗a‖F , α, C),

λ1(δ, r, µ, σr(M
∗
a ), ‖M∗a‖F , α) := min

{
λ0(δ, r, µ, σr(M

∗
a ), ‖M∗a‖F , α, C),

(1− µ− δ)C3

4
√
r

}
.

Finally, we combine Lemmas 4-5 to get the bounds for the gradient and the Hessian.

E.2 Proof of Theorem 7

In this subsection, we use similar notations:

M := UUT , M∗ := U∗(U∗)T ,

whereM∗ := M∗s is the global optimum. We also assume thatU∗ is the minimizer of minX∈X∗ ‖U−
X‖F when there is no ambiguity about U . In this case, the distance is given by

dist(U,X ∗) = ‖U − U∗‖F .

The proof of Theorem 7 is similar to that of Theorem 6. We first consider the case when ‖UUT ‖F is
large.
Lemma 6. Given a constant ε > 0, if

‖UUT ‖2F ≥ max

{
2(1 + δ)

1− δ
‖U∗(U∗)T ‖2F ,

(
2λ
√
r

1− δ

)4/3
}
,

then
‖∇hs(U)‖F ≥ λ.

Proof. Choosing the direction ∆ := U , we can calculate that

〈∇hs(U),∆〉 = 〈∇fs(UUT ), UUT 〉.

Using the δ-RIP2r,2r property, we have

〈∇fs(UUT ), UUT 〉 =

∫ 1

0

[∇2fs(M
∗ + s(M −M∗)][M −M∗,M ]

≥ (1− δ)‖M‖2F − (1 + δ)‖M∗‖F ‖M‖F

≥ 1− δ
2
‖M‖2F .

Moreover,
‖∆‖F = ‖U‖F ≤

√
r‖UUT ‖1/2F .

This leads to

‖∇hs(U)‖F ≥
〈∇hs(U),∆〉
‖∆‖F

=
〈∇fs(UUT ), UUT 〉

‖U‖F
≥ 1− δ

2
√
r
‖UUT ‖3/2F ≥ λ.

The next lemma is a counterpart of Lemma 4.
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Lemma 7. Consider positive constants α,C, λ such that

λ ≤ 2(
√
rC)−1(

√
2− 1)σ2

r(U∗) · α2, G >
(1 + δ)λ2

4G2
,

where G := −λmin(∇fs(M)). If

‖UUT ‖F ≤ C2, ‖U − U∗‖F ≥ α, ‖∇hs(U)‖F ≤ λ,

then the inequality G ≥ cα2 holds for some constant c > 0 independent of α, λ,C. Moreover, if
there exists some positive constant τ such that

σ2
r(U) ≤ 1

1 + δ

[
G− (1 + δ)λ2

4G2

]
− τ, (62)

then
λmin(∇2hs(U)) ≤ −2(1 + δ)τ.

Proof. We choose a singular vector q of U such that

‖q‖2 = 1, ‖Uq‖2 = σr(U).

We first prove the existence of the constant c. The δ-RIP2r,2r property gives

〈∇fs(M),M∗ −M〉 ≤ −(1− δ)‖M −M∗‖2F .

Using the assumption of this lemma, we have

‖∇fs(M)U‖2 ≤ ‖∇fs(M)U‖F =
1

2
‖∇hs(U)‖F ≤

1

2
λ, (63)

which leads to

〈∇fs(M),M〉 = 〈∇fs(M)U,U〉 ≤ ‖∇fs(M)U‖F ‖U‖F ≤
1

2
λ ·
√
rC.

Substituting into (63), it follows that

〈∇fs(M),M∗〉 ≤ −(1− δ)‖M −M∗‖2F +
1

2
λ ·
√
rC.

Using Lemma 1, we have

‖M −M∗‖2F ≥ 2(
√

2− 1)σ2
r(U∗)‖U − U∗‖2F ≥ 2(

√
2− 1)σ2

r(U∗) · α2.

By the condition on λ, it follows that

〈∇fs(M),M∗〉 ≤ −(1− δ)‖M −M∗‖2F +
1

2
λ ·
√
rC ≤ −(

√
2− 1)(1− δ)σ2

r(U∗) · α2. (64)

The above inequality also indicates that λmin(∇fs(M)) < 0. Using the relations that

∇fs(M) � λmin(∇fs(M)) · In, M∗ � 0,

we arrive at

〈∇fs(M),M∗〉 ≥ λmin(∇fs(M)) tr(M∗) ≥
√
r‖M∗‖F · λmin(∇fs(M)).

Combining the last inequality with (64), we obtain

λmin(∇fs(M)) ≤ −(
√
r‖M∗‖F )−1(

√
2− 1)(1− δ)σ2

r(U∗) · α2 = −cα2

and thus G ≥ cα2, where

c := (
√
r‖M∗‖F )−1(

√
2− 1)(1− δ)σ2

r(U∗)

Next, we prove the upper bound on the minimal eigenvalue. We choose an eigenvector u such that

‖u‖2 = 1, λmin(∇fs(M)) = uT∇fs(M)u.
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The direction is chosen to be
∆ := uqT .

For the Hessian of hs(·, ·), we can calculate that

〈∇fs(M),∆∆T 〉 = λmin(∇fs(M)) = −G (65)

and the δ-RIP2r,2r property gives

[∇2fs(M)](∆UT+U∆T ,∆UT + U∆T )

≤ (1 + δ)‖∆UT + U∆T ‖2F = (1 + δ)‖u(Uq)T + (Uq)uT ‖2F
= 2(1 + δ)‖Uq‖2F + 2(1 + δ)[qT (UTu)]2

≤ 2(1 + δ)σ2
r(U) + 2(1 + δ) · ‖UTu‖2F . (66)

By letting the vector ṽ be

‖ṽ‖2 = 1, λmin(∇fs(M))u = ∇fs(M)ṽ,

the inequality (63) implies that

‖UTu‖2F =
‖UT∇fs(M)ṽ‖2F
λ2
min(∇fs(M))

=
‖UT∇fs(M)ṽ‖22
λ2
min(∇fs(M))

≤ ‖U
T∇fs(M)‖22‖ṽ‖22
λ2
min(∇fs(M))

≤ λ2

4G2
.

Substituting into (66), we obtain

[∇2fs(M)](∆UT + U∆T ,∆UT + U∆T ) ≤ 2(1 + δ)σ2
r(U) + (1 + δ) · λ

2

2G2
. (67)

Combining (65) and (67), it follows that

[∇2hs(U)](∆,∆) ≤ −2G+ 2(1 + δ)σ2
r(U) + (1 + δ) · λ

2

2G2
.

Since ‖∆‖2F = 1, the above inequality implies

λmin(∇2hs(U)) ≤ −2G+ 2(1 + δ)σ2
r(U) + (1 + δ) · λ

2

2G2
≤ −(1 + δ)τ.

We finally give the counterpart of Lemma 5, which states that the condition (62) always holds when
δ < 1/3.
Lemma 8. Given positive constants α,C, ε, λ, if

max{‖UUT ‖F , ‖U∗(U∗)T ‖F } ≤ C2, ‖U − U∗‖F ≥ α, ‖∇hs(U)‖F ≤ λ, δ < 1/3,

then there exists a positive constant λ0(δ,W ∗, α, C) such that

σ2
r(U) ≤ 1

1 + δ

[
G− (1 + δ)λ2

4G2
− λ

]
(68)

whenever
0 < λ ≤ λ0(δ, σr(M

∗
s ), ‖M∗s ‖F , α, C).

Proof. We prove by contradiction, i.e., we assume

σ2
r(U) >

1

1 + δ

[
G− (1 + δ)λ2

4G2
− λ

]
≥ cα2

1 + δ
+ poly(λ). (69)

To follow the proof of Lemma 5, we also divide the argument into three steps, although the first step
is superficial.

Step I. We first give a lower bound for λr(M). In the symmetric case, this step is straightforward,
since we always have

λ2
r(M) = σ4

r(U). (70)
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Step II. Next, we derive an upper bound for λr(M). We define

M̄ := Pr
[
M − 1

1 + δ
∇fs(M)

]
,

wherePr is the orthogonal projection onto the low-rank manifold (we do not drop negative eigenvalues
in this proof). Since M 6= M∗ and δ < 1/3, we recall that inequality (13) gives

−φ(M̄) ≥ 1− 3δ

1− δ
[fs(M)− fs(M∗)] ≥

1− 3δ

2
‖M −M∗‖2F

≥ (1− 3δ) · (
√

2− 1)σ2
r(W ∗)α2 := K > 0,

where the second inequality comes from Lemma 1 and

−φ(M̄) = 〈∇fs(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F .

Hence,

〈∇fs(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F ≥ K. (71)

For simplicity, we define

N := − 1

1 + δ
∇fs(M).

Then, M̄ = Pr(M +N) and the left-hand side of (71) is equal to

〈∇fs(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F

= (1 + δ)〈N,Pr(M +N)−M〉 − 1 + δ

2
‖Pr(M +N)−M‖2F

=
1 + δ

2

[
‖N‖2F − ‖N +M − Pr(M +N)‖2F

]
=

1 + δ

2

[
‖N‖2F − ‖N +M‖2F + ‖Pr(M +N)‖2F

]
. (72)

Similar to the proof of inequality (63), we can prove that

‖UTN‖F ≤ H̃ :=
λ

2(1 + δ)
.

Then, we have

− tr[NT (UUT )] ≤ ‖UTN‖F ‖U‖F ≤ H̃ · ‖U‖F ≤ H̃ ·
√√

r‖UUT ‖F ≤ 4
√
rC · H̃.

Using the above relation, one can write

‖N‖2F − ‖N +M‖2F = −2 tr[NT (UUT )]− ‖M‖2F ≤ 2 4
√
rC · H̃ − ‖M‖2F .

Suppose that PU is the orthogonal projections onto the column space of U . We define

N1 := PUNPU , N2 := PUN(I − PU ), N3 := (I − PU )NPU , N4 := (I − PU )N(I − PU ).

Then, it follows from (69) that

‖N1‖F = ‖PUNPU‖F ≤ σ−1
r (U)‖UTPUNPU‖F ≤ σ−1

r (U)‖UTN‖F ≤ σ−1
r (U) · H̃

≤

[√
1 + δ

G
+ poly(λ)

]
· H̃ ≤

[√
1 + δ

cα2
+ poly(λ)

]
· H̃ := κH̃.

Similarly, we can prove that

‖N1 +N2‖F = ‖PUN‖F ≤ κH̃, ‖N1 +N3‖F = ‖NPV ‖F ≤ κH̃,

which leads to
‖N2‖F ≤ 2κH̃, ‖N3‖F ≤ 2κH̃.
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Using Weyl’s theorem, the following holds for every 1 ≤ i ≤ r:

|λi(M +N)− λi(M +N4)| ≤ ‖N1 +N2 +N3‖2 ≤ ‖N1 +N2 +N3‖F ≤ 3κH̃.

Therefore, we have

‖Pr(M +N)‖2F =

r∑
i=1

λ2
i (M +N)

≥
r∑
i=1

λ2
i (M +N4)− r · 3κH̃ · (‖M +N‖2 + ‖M +N4‖2)

≥
r∑
i=1

λ2
i (M +N4)− 6rκH̃ · (‖M‖2 + ‖N‖2)

≥
r∑
i=1

λ2
i (M +N4)− 6rκH̃ ·

(
‖M‖F +

G

1 + δ

)
. (73)

Similar to the asymmetric case, we can prove that

G

1 + δ
≤ ‖M‖F + poly(λ).

holds under the assumption (69). Therefore, we obtain the bound

‖M‖F + ‖N‖F ≤ 2‖M‖F + poly(λ) ≤ 2C2 + poly(λ).

Substituting back into the previous estimate (73), it follows that

‖Pr(M +N)‖2F ≥
r∑
i=1

λ2
i (M +N4) + poly(λ).

Now, sinceM andN4 have orthogonal column and row spaces, the maximal r eigenvalues ofM+N4

are simply the maximal r eigenvalues of the eigenvalues of M and N4, which we assume to be

λi(M), i = 1, . . . , k and λi(N4), i = 1, . . . , r − k.

Now, it follows from (72) that

2

1 + δ

[
〈∇fs(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F

]
= ‖N‖2F − ‖N +M‖2F + ‖Pr(M +N)‖2F

≤ −
r∑
i=1

λ2
i (M) +

k∑
i=1

λ2
i (M) +

r−k∑
i=1

λ2
i (N4) + poly(λ) + 2 4

√
rC · H̃

= −
r∑

i=k+1

λ2
i (M) +

r−k∑
i=1

λ2
i (N4) + poly(λ). (74)

Using the assumption (69) and the fact that λ is small, we know that λi(N4) > 0 for all i ∈ {1, . . . , k}.
Therefore,

−
r∑

i=k+1

λ2
i (M) +

r−k∑
i=1

λ2
i (N4) ≤ −(r − k)λ2

r(M) + (r − k)λmax(N4)2.

Substituting into (74) gives rise to

2

1 + δ

[
〈∇fs(M),M − M̄〉 − 1 + δ

2
‖M − M̄‖2F

]
≤ −(r − k)λ2

r(M) + (r − k)λmax(N4)2 + poly(λ)

≤ −(r − k)λ2
r(M) + (r − k)λmax(N)2 + poly(λ).
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If k = r, then the above inequality and inequality (71) imply that

poly(λ) ≥ K = O(α2),

which contradicts the assumption that λ is small. Hence, we conclude that r − k ≥ 1. Combining
with (71), we obtain the upper bound

λ2
r(M) ≤ − 2

1 + δ
· K

r − k
+ λmax(N)2 +

1

r − k
· poly(λ)

= − 2

1 + δ
· K
r

+ λmax(N)2 + poly(λ). (75)

Step III. In the last step, we combine the relations (70) and (75), which leads to

σ4
r(U) ≤ − 2

1 + δ
· K
r

+
1

(1 + δ)2
G2 + poly(λ).

This means that

σ4
r(U) +

2

1 + δ
· K
r
≤ 1

(1 + δ)2
G2 + poly(λ).

Since K > 0 has lower bounds that are independent of λ, we can choose λ to be small enough such
that

σ4
r(U) +

1

1 + δ
· K
r
≤ 1

(1 + δ)2
G2.

However, considering the assumption (69), we have

σ4
r(U) ≥ 1

(1 + δ)2

[
G− (1 + δ)λ2

4G2
− λ

]2

=
1

(1 + δ)2
G2 − 2λ ·G+ poly(λ)

≥ 1

(1 + δ)2
G2 − 2λ · (1 + δ)C2 + poly(λ) =

1

(1 + δ)2
G2 + poly(λ),

where the second inequality is due to G ≤ (1 + δ)C2, which can be proved similar to the asym-
metric case. The above two inequalities cannot hold simultaneously when λ is small enough. This
contradiction means that the condition (68) holds by choosing

0 < λ ≤ λ0(δ, σr(M
∗
s ), ‖M∗s ‖F , α, C),

for a small enough positive constant λ0(δ, σr(M
∗
s ), ‖M∗s ‖F , α, C).

Proof of Theorem 7. We first choose

C :=

[
2(1 + δ)

1− δ
‖U∗(U∗)T ‖2F

]1/4

.

Then, we select λ1 as

λ1(δ, r, σr(M
∗
s ), ‖M∗s ‖F , α) := min

{
λ0(δ, r, σr(M

∗
s ), ‖M∗s ‖F , α, C),

(1− δ)C3

2
√
r

}
.

Finally, we combine Lemmas 6-8 to get the bounds for the gradient and the Hessian.
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