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1 ABSTRACT
This document accompanies the paper "Effective optimization of
root selection towards improved explanation of deep classifiers".
In this document, we detail the DTD (Deep Taylor Decomposi-
tion) details and provide supplementary experimental results. We
share our codes via the link: https://github.com/AnonymousSCI/
LearnRootDTD

2 DEEP TAYLOR DECOMPOSITION
This section provides the necessary theoretical foundation of DTD,
including our analysis, to introduce the background and foundation
for our proposed.

2.1 Relevance propagation
Recalling DTD, Let’s assume 𝑅𝑙+1

𝑗,𝑐
represents the relevance of a

neuron 𝑥𝑙+1
𝑗

with respect to class 𝑐 . 𝑥𝑙
𝑖
is a previous layer neuron in

the 𝑙-th layer and connected to 𝑥𝑙+1
𝑗

. The superscript 𝑙 is the index
of the layer in a neural network which will be omitted when it does
not lead to ambiguity, and the subscript 𝑖 denotes the index of the
neuron within that layer.

If 𝑥 𝑗 is in the output layer, then 𝑅 𝑗,𝑐 = 𝑥 𝑗 . Due to the confusion
of class-related information in 𝑥𝑖 , direct computation of 𝑅𝑖,𝑐 is
not feasible. Therefore, DTD assumed the existence of a mapping
function between 𝑥𝑖 and 𝑅 𝑗,𝑐 , which can be approximated using a
Taylor expansion:

𝑅 𝑗,𝑐 =
∑︁
𝑖

𝜕𝑅 𝑗,𝑐

𝜕𝑥𝑖
|
𝑥𝑖
( 𝑗 ) (𝑥𝑖 − 𝑥𝑖 ( 𝑗 ) )︸                         ︷︷                         ︸
𝑅𝑖←𝑗,𝑐

, (1)

where 𝑅𝑖←𝑗,𝑐 refers to the relevance that is distributed from 𝑥 𝑗 to
𝑥𝑖 . To this end, 𝑅𝑖,𝑐 can be expressed as the aggregation of all 𝑅𝑖←𝑗,𝑐

connected to 𝑥𝑖 :

𝑅𝑖,𝑐 =
∑︁
𝑗

𝜕𝑅 𝑗,𝑐

𝜕𝑥𝑖
|
𝑥𝑖
( 𝑗 ) (𝑥𝑖 − 𝑥𝑖 ( 𝑗 ) ). (2)

where 𝑥𝑖 ( 𝑗 ) is the root chosen for neuron 𝑥 𝑗 that makes the output
𝑓 (𝑥𝑖 ) equal to zero. Montavon et al. [5] derived the layer-specific
roots at the plane 𝑓 (𝑥𝑖 ) = 0. Specifically, taking the commonly
used function: 𝑥 𝑗 = 𝑅𝑒𝑙𝑢 (𝑤𝑇

𝑗
𝑥𝑖 + 𝑏 𝑗 ) as an example, the root can

be obtained from the intersection of:{
𝑥𝑖 = 𝑥𝑖 + 𝑡𝑣 𝑗
𝑤𝑇
𝑗
𝑥𝑖 + 𝑏 𝑗 = 0.

(3)

By calculating 𝑡 , the root can be derived as 𝑥 ( 𝑗 ) = 𝑥𝑖−
𝑤𝑇

𝑗
𝑥𝑖+𝑏 𝑗

𝑤𝑇
𝑗
𝑣𝑗

𝑣 𝑗 ,

it can then be inserted into Equation (2) to obtain:

𝑅𝑖,𝑐 =
∑︁
𝑗

𝑤 𝑗 ⊙
𝑤𝑇
𝑗
𝑥 + 𝑏 𝑗

𝑤𝑇
𝑗
𝑣 𝑗

𝑣 𝑗 =
∑︁
𝑗

𝑤 𝑗 ⊙
𝑣 𝑗

𝑤𝑇
𝑗
𝑣 𝑗
𝑅 𝑗 . (4)

Depending on the inputs and activation functions, the direction
of 𝑣 𝑗 can vary [6], leading to distinct propagation rules (e.g. DTD-
𝜔2). Specifically, when the root is equal to zero, the DTD simplifies
to the product of the gradient and the input [6], which is equivalent
to the LRP-0 rule [4].

The aforementioned computation process is performed on each
neuron in every layer. As a result, relevance is propagated from the
output layer all the way to the input layer, forming a heatmap that
indicates the contribution of each pixel.

It is important to note that, in general, explanation methods
based on relevance propagation are expected to satisfy the layer-
wise relevance conservation [1, 5], which is presented as

∀𝑥 : 𝑓 (𝑥) =
∑︁
𝑝𝑖𝑥𝑒𝑙

𝑅𝑝𝑖𝑥𝑒𝑙,𝑐 (5)

and
... =

∑︁
𝑗

𝑅𝑙+1𝑗,𝑐 =
∑︁
𝑖

𝑅𝑙𝑖,𝑐 = ... =
∑︁
𝑝𝑖𝑥𝑒𝑙

𝑅𝑝𝑖𝑥𝑒𝑙,𝑐 . (6)

In the following, we demonstrate that the current DTD method
partially fails to satisfy this conservation, leading to an inadequate
representation of a neuron’s contribution in terms of relevance.

2.2 Challenges of DTD
DTD is limited by the local linearization and root selection. In the
following toy example, we will illustrate the limitations via a neural
network that consists of the commonly used nonlinear function, i.e.
Sigmoid. As shown in Figure 1, this neural network receives two
pixels, 𝑥 and 𝑦, as inputs.

Figure 1: The output contour of the example network 𝑓 (𝑥,𝑦)
which is mentioned in section 7.2.

https://github.com/AnonymousSCI/LearnRootDTD
https://github.com/AnonymousSCI/LearnRootDTD
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Neighboring roots lose interpretability. When the root is in
the neighborhood of 𝑥 in Equation (2), △ = 𝑥 − 𝑥𝑖 becomes a
small constant, and the relevance is determined only by the nearby
gradients. Given a point 𝑎 within the domain of the neural network
as defined in Figure 1, for all points to the right of 𝑎, the relevance of
pixel𝑦 is shoud the same as that of 𝑎. Since 𝑥𝑎 < 𝑥𝑏 and 𝜕𝑓

𝜕𝑥𝑎
>

𝜕𝑓
𝜕𝑥𝑏

,
however, it can be proven that the existing of a point 𝑏 such that:

∃𝑏 : △ × 𝜕𝑓

𝜕𝑥𝑎
> △ × 𝜕𝑓

𝜕𝑥𝑏
(7)

and

∃𝑏 : 𝑥𝑎 ×
𝜕𝑓

𝜕𝑥𝑎
= 𝑥𝑏 ×

𝜕𝑓

𝜕𝑥𝑏
, (8)

where 𝑓 (𝑥𝑎, 𝑦𝑎) < 𝑓 (𝑥𝑏 , 𝑦𝑏 ). Both Equation (7) (DTD within the
neighborhood) and Equation (8) (LRP-0 rule) result in relevances
that do not satisfy the conservation law as described in Equation (5).
When the model detects an increase in object information in the
pixel domain, the overall correlation tends to remain unchanged or
even decreased.
The ideal root is being questioned.While all root derivations
in DTD [4, 5] are based on Equation (3), the value of 𝑡 is not con-
strained, resulting in many actual roots being far away from 𝑥𝑖 [6].
In this scenario, the theory of Taylor expansion is not supported
[3]. As illustrated in Figure 1, for example, the actual ideal roots
are at an infinitely distant location in the lower left corner where
the gradient is zero. Fortunately, LRP rules can be derived using
Equation (3) and it is effective in most cases (Note in Equation (8),
it is highly likely that the second 𝑏 cannot be found in the right
of 𝑎). However, the theoretical foundation of DTD is still being
questioned for the following reasons: i) LRP rules is derived under
the assumption that all layers are linear; ii) the different variants of
LRP are inherently class-agnostic [2], contradicting the premise of
Equation (1).
What is the root that minimizes the output of a function?
Here, we aim to demonstrate that limitations of DTD extend beyond
the issue of roots and encompass the underfitting of nonlinear
functions by first-order Taylor approximation. Returning to the
toy example described in Figure 1, we manually specify an optimal
root located at (0, 0), where the model’s output is minimized within
the domain. As the root (0, 0) is not far, let’s assume that point 𝑐 is
located directly above 𝑎, while 𝑏 is to the right of 𝑎, with its height
(i.e. the model’s output) equal to that of 𝑐 . We can then establish
that the difference in relevance value between 𝑎 and 𝑏 depends
on the 𝑥-value, and the difference in relevance between 𝑎 and 𝑐 is
dependent on the 𝑦-value. Through observations, it can be inferred
that, with 𝑎 being the reference, the relevance of point 𝑐 is greater
than that of 𝑏, even though they are actually on the same contour
line. This observation contradicts Equation (5).

3 QUALITATIVE EVALUATION RESULTS
More visualizations of heatmaps are presented here.

Figure 2 illustrates the comparison of heatmaps generated by the
proposed and all baselines, involving multiple classes of ImageNet.
In these examples, the proposed method produces a less noisy
interpretation, indicates that the proposed method correctly assigns
a higher relevance to the object being detected.

We further compared the heatmaps generated by the proposed
method with the suboptimal baseline (DTD-𝑧+) across four scenar-
ios: feature-level interpretation (Figure 3), detail recovery (Figure 4),
complex backgrounds (Figure 5), and multi-target scenes (Figure 6).

As can be seen from Figure 3, the heatmaps of proposed method
significantly distinguishe the varying relevance among different
regions of the detected object. This insightful heatmaps reveal the
critical features of the target object that play a dominant role in
classification. Through these heatmaps, we gain valuable insights
into the model’s discernment of feature importance and its impact
on the classification outcomes.

Figure 5 illustrates several typical complex background scenarios
that involves significant line interference or occlusion, resulting in
a lot of noise in the heatmaps of the suboptimal baseline (DTD-𝑧+).
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Figure 2: Illustration of the heatmap comparison between the proposed method and the baselines.
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Figure 3: Illustration of the feature-level relevances that indicating the preference of ResNet18 for critical features.

Figure 4: Comparison of detail restoration ability between the suboptimal baseline and the proposed.

Figure 5: Comparison of heatmaps in complex background scenes.
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Figure 6: Comparison of heatmaps between the suboptimal baseline and the proposed in multi-objective scenarios.
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