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1 ABSTRACT

This document accompanies the paper "Effective optimization of
root selection towards improved explanation of deep classifiers".
In this document, we detail the DTD (Deep Taylor Decomposi-
tion) details and provide supplementary experimental results. We
share our codes via the link: https://github.com/AnonymousSCI/
LearnRootDTD

2 DEEP TAYLOR DECOMPOSITION

This section provides the necessary theoretical foundation of DTD,
including our analysis, to introduce the background and foundation
for our proposed.

2.1 Relevance propagation

Recalling DTD, Let’s assume R§.+cl represents the relevance of a

1+1 1

neuron x; with respect to class c. x; is a previous layer neuron in

the I-th layer and connected to x}“. The superscript ! is the index
of the layer in a neural network which will be omitted when it does
not lead to ambiguity, and the subscript ; denotes the index of the
neuron within that layer.

If x; is in the output layer, then Rj . = x;. Due to the confusion
of class-related information in x;, direct computation of R; is
not feasible. Therefore, DTD assumed the existence of a mapping
function between x; and R; ¢, which can be approximated using a
Taylor expansion:

R ¢ (i
Rjc = Z 3;1- oo (o= %), 1)
L

Iziefj,c
where R;cj ¢ refers to the relevance that is distributed from x; to
x;. To this end, R; ¢ can be expressed as the aggregation of all R j ¢
connected to x;:

JR
Ric= Z 3;,0 |~ G (xi = xl(J)) (2)
J

where %; (/) is the root chosen for neuron x ; that makes the output
f (i) equal to zero. Montavon et al. [5] derived the layer-specific
roots at the plane f(x;) = 0. Specifically, taking the commonly
used function: x; = Relu(wjrxi +bj) as an example, the root can
be obtained from the intersection of:

X;=xj+ to;
oo ®)
W;Xi+bj=0.
. . ~(j) w{?xi+bj
By calculating ¢, the root can be derived as XY/ = x; — —5—v;,
t(}‘vj J

it can then be inserted into Equation (2) to obtain:

RlC—ZWJ U]—ZWJ zz~ . (4)

w; x+bj

Depending on the inputs and activation functions, the direction
of v; can vary [6], leading to distinct propagation rules (e.g. DTD-
w?). Specifically, when the root is equal to zero, the DTD simplifies
to the product of the gradient and the input [6], which is equivalent
to the LRP-¢ rule [4].

The aforementioned computation process is performed on each
neuron in every layer. As a result, relevance is propagated from the
output layer all the way to the input layer, forming a heatmap that
indicates the contribution of each pixel.

It is important to note that, in general, explanation methods
based on relevance propagation are expected to satisfy the layer-
wise relevance conservation [1, 5], which is presented as

Vx :f(x) = Z Rpixel,c (5)

pixel

_ I+1 _ I _ _
= ZRJ.,C = ZRLC ==
Jj i

In the following, we demonstrate that the current DTD method
partially fails to satisfy this conservation, leading to an inadequate
representation of a neuron’s contribution in terms of relevance.

and

Z Rpixel,c- (6)

pixel

2.2 Challenges of DTD

DTD is limited by the local linearization and root selection. In the
following toy example, we will illustrate the limitations via a neural
network that consists of the commonly used nonlinear function, i.e.
Sigmoid. As shown in Figure 1, this neural network receives two
pixels, x and y, as inputs.

f(x,y) = Sigmoid(x) + Sigmoid(y), x,y € [0,5]
5 \ 72.10

‘7 r1.95

H c L 1.80
— 1.65
1 1.50
- 1.35

— 1.20
— 1.05
—0.90

Figure 1: The output contour of the example network f(x,y)
which is mentioned in section 7.2.
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Neighboring roots lose interpretability. When the root is in
the neighborhood of x in Equation (2), A = x — x; becomes a
small constant, and the relevance is determined only by the nearby
gradients. Given a point a within the domain of the neural network
as defined in Figure 1, for all points to the right of a, the relevance of

pixel y is shoud the same as that of a. Since x, < x3, and 5—)2 > %,
however, it can be proven that the existing of a point b such that:
7] ?]
Eb:AX—f>A><—f 7)
X oxp
and
7] 7]
Hb:xax—fszx—f, 8)
0xq oxp,

where f(xq,Yya) < f(xp,yp). Both Equation (7) (DTD within the
neighborhood) and Equation (8) (LRP-( rule) result in relevances
that do not satisfy the conservation law as described in Equation (5).
When the model detects an increase in object information in the
pixel domain, the overall correlation tends to remain unchanged or
even decreased.

The ideal root is being questioned. While all root derivations
in DTD [4, 5] are based on Equation (3), the value of ¢ is not con-
strained, resulting in many actual roots being far away from x; [6].
In this scenario, the theory of Taylor expansion is not supported
[3]. As illustrated in Figure 1, for example, the actual ideal roots
are at an infinitely distant location in the lower left corner where
the gradient is zero. Fortunately, LRP rules can be derived using
Equation (3) and it is effective in most cases (Note in Equation (8),
it is highly likely that the second b cannot be found in the right
of a). However, the theoretical foundation of DTD is still being
questioned for the following reasons: i) LRP rules is derived under
the assumption that all layers are linear; ii) the different variants of
LRP are inherently class-agnostic [2], contradicting the premise of
Equation (1).

What is the root that minimizes the output of a function?
Here, we aim to demonstrate that limitations of DTD extend beyond
the issue of roots and encompass the underfitting of nonlinear
functions by first-order Taylor approximation. Returning to the
toy example described in Figure 1, we manually specify an optimal
root located at (0, 0), where the model’s output is minimized within
the domain. As the root (0, 0) is not far, let’s assume that point c is
located directly above a, while b is to the right of a, with its height
(i.e. the model’s output) equal to that of c. We can then establish
that the difference in relevance value between a and b depends
on the x-value, and the difference in relevance between a and c is
dependent on the y-value. Through observations, it can be inferred
that, with a being the reference, the relevance of point c is greater
than that of b, even though they are actually on the same contour
line. This observation contradicts Equation (5).

3 QUALITATIVE EVALUATION RESULTS

More visualizations of heatmaps are presented here.

Figure 2 illustrates the comparison of heatmaps generated by the
proposed and all baselines, involving multiple classes of ImageNet.
In these examples, the proposed method produces a less noisy
interpretation, indicates that the proposed method correctly assigns
a higher relevance to the object being detected.

Anonymous Authors

We further compared the heatmaps generated by the proposed
method with the suboptimal baseline (DTD-z*) across four scenar-
ios: feature-level interpretation (Figure 3), detail recovery (Figure 4),
complex backgrounds (Figure 5), and multi-target scenes (Figure 6).

As can be seen from Figure 3, the heatmaps of proposed method
significantly distinguishe the varying relevance among different
regions of the detected object. This insightful heatmaps reveal the
critical features of the target object that play a dominant role in
classification. Through these heatmaps, we gain valuable insights
into the model’s discernment of feature importance and its impact
on the classification outcomes.

Figure 5 illustrates several typical complex background scenarios
that involves significant line interference or occlusion, resulting in
a lot of noise in the heatmaps of the suboptimal baseline (DTD-z™).
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Figure 2: Illustration of the heatmap comparison between the proposed method and the baselines.

291
292
293
294
295
296
297
298
299
300
301
302
303
304

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

339
340
341
342
343
344
345
346
347
348



ACM MM, 2024, Melbourne, Australia Anonymous Authors

349 407
350 = 408
351 g" 409
—
352 410
353 411
354 o 412
355 ;Eg 413
356 @ 414
357 ;23 415
358 416
359 417
360 wn 418
=
361 5 419
362 420
363 421
364 422
365 423
366 424
367 - 425
368 E_' 426
369 = 427
370 1428
371 429
. o ;
372 4 430
=
373 = 431
374 £ | 432
375 M § 433
376 434
377 o i 435
378 E ! 436
379 @) 437
380 438
381 439
382 440
383 441
384 442
385 B 443
386 % 444
387 —_ 445
388 446
389 o 447
390 S 448
—_
391 3] 449
392 ﬁ 450
393 451
394 452
395 % 453
396 8 454
397 455
398 456
399 457
400 Figure 5: Comparison of heatmaps in complex background scenes. 458
401 459
402 460
403 461
404 462
405 463

406 464



465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

Supplementary Materials: Effective optimization of root selection towards improved explanation of deep classifiers

Baseline Input

Ours

Figure 6: Comparison of heatmaps between the suboptimal baseline and the proposed in multi-objective scenarios.
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